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Abstract  
 In this paper, we have presented an implementation of Handwritten Digit Recognition. HCR 

or Handwritten Character Recognition is one of the most challenging tasks in machine learning 

as the handwriting of every individual on the Earth is unique. So it’s quite challenging to train 

a model that can predict handwritten text with high accuracy. We have developed a CNN 

(Convolutional Neural Network) model that can recognize digits from images with a 99.15% 

accuracy. This model is useful in converting handwritten numbers to digital form and our 

purpose to build this model is to develop a system for automatically inserting marks awarded 

to students on answer sheets into a database. Nowadays, everything is getting digitized and the 

proposed application is capable of reducing the effort taken and mistakes done while manually 

inserting numbers into the database. 
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1. Introduction 

Handwritten Digit Recognition is a classic 

problem of image classification. In this, we 

have to classify handwritten digits into labels 

i.e. 0-9. Neural Network models are very 

powerful and efficient classification methods to 

perform this task. Human beings are intelligent 

and can read and recognize different 

handwritten characters and digits written by 

other fellow humans. We want to inculcate the 

same features in a machine using Artificial 

Intelligence and Machine Learning. 

   Covid-19 global pandemic made us realize 

the significance of digitalization in educational 

and business organizations. It makes all the 

processes faster, efficient, and accessible. 

Features like Auto Classification, Text Reader, 

Automatic Data Extraction, etc. helps in the 

identification of the documents and indexes 

accordingly. In remote teaching and work from 

home scenarios, these features can be pivotal. 

The conversion of an image of text (printed or 

handwritten) to machine-encoded format is 

Optical Character Recognition (OCR). 
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 This technology is widely used in form 

processing and data entry applications. Various 

stages of OCR are shown in Fig. 1 and we go 

through these four-stage process while 

implementing an OCR model.  Training a 

model for all the different handwritings in this 

world is impossible as handwriting is unique to 

every individual. So we can train a model using 

a large dataset of handwritten digits like the 

MNIST dataset and test them on other 

handwritings. OCR is challenging but very 

useful for quick processing of data records like 

bank statements, emails, passport documents, 

invoices, mark sheets, etc. OCR helps in 

digitizing handwritten and printed text and 

hence making it easy to apply functions like 

searching, sorting, and editing easier.  

   Accuracy is the most important parameter 

in our proposed system - to automate the 

process of manual entry of numeric data 

(marks, roll number, subject code, etc.), as even 

one wrongly recognized digit can have serious 

consequences. The accuracy and efficiency of 

the system bank upon the methodology and 

dataset used. In this implementation, we have 

used the Convolutional Neural Network 

(CNN). CNN has a couple of key 

characteristics. The patterns that they learn are 

translation invariant [1]. After learning a certain 

pattern convolution neural network can 

recognize it anywhere. They can learn spatial 

hierarchies of the pattern. In the first 



convolution layer, we learn small local patterns 

such as edges. In the second convolutional 

layer, we learn larger patterns made from 

features from the first layer, and so on. This 

allows us to efficiently learn increasingly 

complex and abstract visual concepts [2]. 

The paper is structured as: Section 2 

contains steps involved and other details of the 

implementation of the model. The pseudocode 

of our implemented system is written in Section 

3. Section 4 contains a comparison with the 

traditional model for character recognition from 

images and Section 5 contains the result and 

some further scopes and improvements. 

 

 
 

Figure 1: Stages of Optical Character 
Recognition [3] 

2. Implementation 

In this section, we will discuss the 

segmentation process and implementation of 

the CNN model we created using Tensor Flow 

for digit recognition from the image. 

Our first task will be to convert a numeric 

string into single digits. We used the OpenCV 

library for the segmentation of a string. We 

converted a colored image into grayscale using 

the BGR2GRAY function in OpenCV. We are 

recognizing black pixels in the white 

background for the segmentation process. We 

make rectangular boxes around the digits in a 

string and extract them. We are using the 

matplotlib library to represent it. After getting 

the digits from the string, we pass them into a 

CNN model. 

To develop the CNN model we download 

and pre-process MNIST handwritten digital 

mission data set (Refer Fig. 2). We reshape each 

image into a 4D tensor. This is done to satisfy 

the input requirements of the CNNs. So, the 

reshaping is done with a reshape command. 

Both train images and test images tensors are 

reshaped into 4D tensors. Now we have 

prepared data for training. To build a model we 

will first create the convolution base. We are 

using the equation model. We add a 

convolution layer to the model. The 

convolution layer is added using 

layers.Conv2D command.  

The convolution operation involves a filter 

that captures a local pattern and applies it to the 

image as shown in Fig. 3. The filter is a 3D 

tensor of a specific width, height, and depth. 

Each entry in the filter is a real number. The 

entries in the filter are learned during the CNN 

transition. The filter slides across the width, 

height, and depth stopping at all possible 

positions to extract a local 3D patch of the 

surrounding feature. We take the filter and 

position it at different places in the image. If we 

slide the filter we get a new position of the 

filter. We keep doing this across the length and 

breadth of the image till the final positioning of 

the filter. Since the input is a grayscale image 

we have depth = 1.  

Apart from convolution, there is a second 

important operation - pooling. Pooling 

aggressively downsamples the output of the 

convolution. Strides while sliding across the 

image, provides a way to calculate the next 

position along each axis to position the filter 

starting from the current position. We have 

taken stride = 1 which is the most common 

choice.  

Such a stridden convolution tends to 

downsample the input by the factor 

proportional to the stride. It helps us to calculate 

the next position of the filter. The filter got 

shifted by one column to the right. Once it 

exhausts all the columns we start shifting it 

downwards by rows. This is how we slide the 

filter across the image and try to match the 

pattern in the image. So, let us say we have a 28 

x 28 x 1 image and we have a filter of size 3 x 

3 x 1 using which we will be able to position 

the filter at 26 possible positions along the 

width as well as on the height. So, the final 

position of the filter will be at position 26. So, 

this is how we get 26 x 26 x 1 output of the 

convolution. In a convolution layer, we 



typically used k different filters. We define all 

these filters with the Conv2D layer in a Keras 

command. In a tf.keras API, we use Conv2D. 

We specify the number of filters, the size of the 

patch, the activation, and the input shape. Here, 

we have 32 filters; each filter is of size 3 x 3. 

Then we specify the activation that we want to 

use after a linear combination of weight of the 

filter with the values of the pixel in the image 

and finally, we specify the shape of the input. 

The size of the filter and the stride (which is 1 

by default) is applicable across all the k filters. 

After applying the convolution of k filters we 

get a 3D tensor with the same number of rows 

and columns for each filter. 

All the outputs are combined. So, we get all 

the channels to be 32; each having 26 x 26 

output. So, concretely for our MNIST example, 

we get a 3D tensor as output with 26 rows 26 

columns, and 32 channels, i.e. 1 for each filter. 

The total number of parameters for this filter 

will be 320 because we have 10 parameters per 

filter as shown in Fig. 4. 

Pooling is usually done with a window of 

size 2 x 2 with a stride of 2. We apply the 

pooling policy on the first 2x2 square box and 

select a number based on that policy. We use 

either max pooling or average pooling as the 

pooling policies. The second important point is 

we apply pooling operation on each channel 

separately. 

If the output is 26 x 26 x 1 and if we apply a 

max-pooling of 2 x 2 we get the output of 13 x 

13 x 1. So, we can see that there is 

downsampling happening from the output of 

the convolution when we apply max pooling on 

it as depicted in Fig. 5. Note that max-pooling 

does not have any parameters. In practice, we 

set up a series of convolution and pooling layers 

in CNNs. The number of convolution and 

pooling layers is a configurable parameter and 

is set by the designer of the network. In the 

current example, we use two convolutions and 

one more convolution layer.  

In the current example, we use two 

convolution pooling layers and one additional 

convolution layer at the end. We use 32 filters 

in the first convolution layer and 64 filters each 

in the second and the third layer. Each filter is 

3 x 3 in size and we use a stride of 1. We have 

not used any padding in any of the convolution 

layers. We used max-pooling for 

downsampling with a window of 2 x 2 with a 

stride of 2. 

 

 
 

Figure 2: MNIST Dataset [4] 
 

The number of parameters in the 

convolution layer depends only on the filter 

size. It does not depend on the height and width 

of the input. It can be observed that the width 

and height dimensions tend to shrink as we go 

deeper into the network. We started with a 

height and width of 28 each and after a couple 

of convolutional pooling followed by a single 

convolution operation, we got a height and 

width of 3. 

So, what is happening here is, we take an 

image, we apply a bunch of convolution 

pooling operations that gave us a representation 

that will feed into a feed-forward neural 

network which will give us the label 

corresponding to the digit written in the image. 



 
Figure 3: 28x28 pixel image (left) and 3x3 filter (right) with activation function (Z) 

 

So, here the input is (3, 3, 64). We pass it to 

the Flatten layer which gives us 576 numbers 

that are fed into a dense layer whose output is 

fed into another dense layer; flatten has no 

parameters it outputs 576 numbers which are 

input to each of the 64 units in the dense layer 

over here. So, each of the units in the dense 

layer has 576 parameters + 1 bias which makes 

it to 577 parameters per unit and we have 64 

such units making it, 36928 parameters. So, this 

produces 64 values one corresponding to each 

unit. So, the final dense layer has 10 units; each 

unit receives 64 values from the previous layer 

adding 1 bias parameter to it makes it 65 values 

per unit. So, in total, we have 650 parameters 

for the final layer. So, if we sum across the 

CNNs and fully connected top layer which 

gives a total of 93,322 parameters. For training 

the model we use 

sparse_categoricalcrossentropy loss with 

Adam optimizer. We train the model for 5 

epochs with training images and training labels. 

So, we can see that in the case of CNN we 

are defining patches and we are taking a patch 

and performing a convolution operation with 

the filter. We perform a linear combination of 

each position of the image with each parameter 

in the filter. We perform linear combination 

followed by non-linear activation; while in the 

case of feed-forward neural network we take 

the entire image, you flatten it so that we get a 

single array. In this case, since we have a 20 x 

20 image we get an array of 576 numbers which 

we are passing to a hidden layer with 128 units 

followed by a dense layer of 10 units to get the 

output. If we come up with the equivalent 

flattened representation, we have these 9 values 

and we have a node. These 9 values are 

connected to this particular node which is a 

neuron or a unit in the neural network which 

performs linear combination followed by 

activation. So, we are capturing local patterns 

in CNN. 

So, CNN procedures by capturing local 

patterns; whereas, in a feed-forward neural 

network, a global pattern involving all the 

pixels are captured. 

3. Pseudocode 

In this section, we are giving pseudocode of 

the segmentation of image containing a string 

of numeric digits and CNN model recognize 

each digit in the string and store it.  

 

segmentation() 

img=image of string 

image_size=height_of_image*width_of_im

age 

  

preprocess image using MSER in opencv 

library 

 

{Convert the image to grayscale} 

 

gray_image = BGR2GRAY ( img , 

image_size )  



 
Figure 4: 32 3x3 patch applied on the image giving 3D tensor of 26x26x32 
 

 
Figure 5: Convolutional Model Building process and parameter calculation 
 

 

(none,28,28,1) 

(none,28,28,28,1) 

(none,28,28,28,1) 

 

(none,26,26,32) 

(none,28,28,28,1) 

(none,28,28,28,1) 

 

(none,3,3,64) 

(none,13,13,32) 

(none,28,28,28,1) 

(none,28,28,28,1) 

 
(none,11,11,64) 

(none,28,28,28,1) 

(none,28,28,28,1) 

 

(none,5,5,64) 

(none,28,28,28,1) 

(none,28,28,28,1) 

 

32 conv. Filters(3x3), stride=1 

64 conv. Filters(3x3), stride=1 

64 conv. Filters(3x3), stride=1 

Max pool(2x2), stride=2 

Max pool(2x2), stride=2 

INPUT IMAGE 

((3x3)+1)x32=320 parameters 

((3x3x32)+1)x64=18496 parameters 

((3x3x64)+1)x64=36928 parameters 

bias 



{Using inbuilt opencv function to detect 

regions} 

 

x,y=detectRegions(binary_values_of_gray_

image)  

 

Makerectagles(x,y,x+height_of_image, 

y+width_of_image) 

 

{inbuilt function in matplotlib library} 

 

plot(gray_image)  

return gray_image 

 

 

character_recognition() 

 load (MNIST_dataset) 

{convert 3D tensor to 4D tensor} 

 

 reshape(train_images,4) 

 reshape(test_image,4) 

 

{Normalize pixel values to be between 0 and 1} 

 

 train_images = train_images / 255.0 

 test_images = test_images / 255.0 

 

{Make a sequential model by adding 

convolutional layers with relu activation} 

 

 add_conv_layer(activation='relu') 

 add_MaxPooling() 

 add_conv_layer(activation='relu') 

 add_MaxPooling() 

 add_conv_layer(activation='relu') 

 print(model.summary()) 

 

 
 
Figure 6: Summary of Model and total parameters 
 



To complete our model, we will feed the last 

output tensor from the convolutional base (of 

shape (3, 3, 64)) into one or more dense layers 

to perform classification. Dense layers take 

vectors as input (which are 1D), while the 

current output in a 3D tensor. First, we will 

fatten (or unroll) the 3D output to 1D, then add 

one or more Dense layers on top as shown in 

the model summary i.e. Fig.6. MNIST has 10 

output classes, so we use a final dense layer 

with 10 outputs and a softmax activation [5]. 

 

flatten_layers(model) 

add_dense_layer(64,activation='relu') 

add_dense_layer(10,activation='softmax') 

print(model.summary()) 

 

{Compiling model with adam optimizer, sparse 

categorical crossentropy loss and metric we are 

interested in i.e accuracy} 

 

compile(model,optimizer='adam', 

loss='sparse_categorical_crossentropy', 

metrics='accuracy') 

 

{train model for 5 epochs/iterations} 

 

train(model,train_images,epochs=5)  

test_accuracy=evalute(model,test_images) 

print(test_accuracy) 

gray_image=segmentation() 

 

{Recognise the segmented image one by one 

and print it}  

 

for(all the images in rectangles in 

gray_image) 

 test_predict = model.predict(image) 

 max=max_value(test_predict) 

 number=index_of(max) 

 print(number) 

4. Comparison with the Traditional 
Method 

We did a detailed review and comparative 

study of various significant handwritten 

character recognition methods and techniques 

in our paper – “A Review on Handwritten 

Character Recognition Methods and 

Techniques"  published in the International 

Conference on Communication and Signal 

Processing (ICCSP), Chennai, India, 2020 [6].  

    In traditional machine learning flow given 

an image, we used to first perform feature 

engineering using computer vision libraries. A 

feature is fed into any machine learning 

classifier which after training will give us the 

output. Now, the feature engineering part in 

traditional machine learning is getting replaced 

by CNN. So, we can think of CNNs as a way of 

generating features automatically for a given 

image. The beauty of this approach is that the 

right representation is learned during the model 

training freeing us from expensive and tedious 

feature engineering tasks.   

We see that Feed Forward Neural Network 

(FFNN) has more than 100k parameters as 

compared against 93k parameters that our CNN 

has and despite that classification with FFNN 

has less accuracy for training and test data as 

we can see in Fig. 7. 

5. CONCLUSION 

We can see from Fig. 8 that in the output, the 

digits in the string are in rectangular boxes and 

can be extracted by using the crop function. As 

shown in Fig. 10 our CNN model has a training 

accuracy of 99.36% and a testing accuracy of 

99.15%. When we segment the string and pass 

the digits into our model, they are being 

correctly recognized as we see in Fig. 9 where 

the grayscale image of digit '8' is correctly 

predicted by our model. Similarly, we can pass 

all the digits one by one from the segmented 

string to obtain the string/number in digital 

format.  

So this model can be used for building a 

proposed system to automate the process of 

storing marks and other details like roll number 

and subject code in a database by just taking a 

photograph. It will nearly remove the manual 

process which is hectic, tedious, and error-

prone 

Further scope involves improving this 

model to recognize alphabets/character string 

by training it on a suitable database so that the 

usability of this system can be extended to other 

domains of HCR as well. 

 



  

 

Figure 7: Training and Testing accuracy using Feed Forward Neural Network 

 

Figure 8: Output of segmentation 

 

 
Figure 9: Grayscale input and predicted output by our model 

 
 
 
 



 
Figure 10: Training and Testing accuracy of CNN model 
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