
Implementation of Handwritten Digit Recognizer using CNN

B M Vinjit, Mohit Kumar Bhojak, Sujit Kumar and Gitanjali Nikam

National Institute of Technology, Kurukshetra Haryana, India

Abstract
 In this paper, we have presented an implementation of Handwritten Digit Recognition. HCR

or Handwritten Character Recognition is one of the most challenging tasks in machine learning

as the handwriting of every individual on the Earth is unique. So it’s quite challenging to train

a model that can predict handwritten text with high accuracy. We have developed a CNN

(Convolutional Neural Network) model that can recognize digits from images with a 99.15%

accuracy. This model is useful in converting handwritten numbers to digital form and our

purpose to build this model is to develop a system for automatically inserting marks awarded

to students on answer sheets into a database. Nowadays, everything is getting digitized and the

proposed application is capable of reducing the effort taken and mistakes done while manually

inserting numbers into the database.

Keywords
Machine Learning, Artificial Intelligence, Convolutional Neural Network, Optical Character

Recognition, Offline Recognition, Handwritten character recognition, Image Processing

1. Introduction

Handwritten Digit Recognition is a classic

problem of image classification. In this, we

have to classify handwritten digits into labels

i.e. 0-9. Neural Network models are very

powerful and efficient classification methods to

perform this task. Human beings are intelligent

and can read and recognize different

handwritten characters and digits written by

other fellow humans. We want to inculcate the

same features in a machine using Artificial

Intelligence and Machine Learning.

 Covid-19 global pandemic made us realize

the significance of digitalization in educational

and business organizations. It makes all the

processes faster, efficient, and accessible.

Features like Auto Classification, Text Reader,

Automatic Data Extraction, etc. helps in the

identification of the documents and indexes

accordingly. In remote teaching and work from

home scenarios, these features can be pivotal.

The conversion of an image of text (printed or

handwritten) to machine-encoded format is

Optical Character Recognition (OCR).

ACI’21: Workshop on Advances in Computational Intelligence
at ISIC 2021, February 25–27, 2021, Delhi, India

EMAIL: bm_51810062@nitkkr.ac.in (B M Vinjit);

ORCID: 0000-0003-4242-1885 (B M Vinjit);

©️ 2021 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

 This technology is widely used in form

processing and data entry applications. Various

stages of OCR are shown in Fig. 1 and we go

through these four-stage process while

implementing an OCR model. Training a

model for all the different handwritings in this

world is impossible as handwriting is unique to

every individual. So we can train a model using

a large dataset of handwritten digits like the

MNIST dataset and test them on other

handwritings. OCR is challenging but very

useful for quick processing of data records like

bank statements, emails, passport documents,

invoices, mark sheets, etc. OCR helps in

digitizing handwritten and printed text and

hence making it easy to apply functions like

searching, sorting, and editing easier.

 Accuracy is the most important parameter

in our proposed system - to automate the

process of manual entry of numeric data

(marks, roll number, subject code, etc.), as even

one wrongly recognized digit can have serious

consequences. The accuracy and efficiency of

the system bank upon the methodology and

dataset used. In this implementation, we have

used the Convolutional Neural Network

(CNN). CNN has a couple of key

characteristics. The patterns that they learn are

translation invariant [1]. After learning a certain

pattern convolution neural network can

recognize it anywhere. They can learn spatial

hierarchies of the pattern. In the first

convolution layer, we learn small local patterns

such as edges. In the second convolutional

layer, we learn larger patterns made from

features from the first layer, and so on. This

allows us to efficiently learn increasingly

complex and abstract visual concepts [2].

The paper is structured as: Section 2

contains steps involved and other details of the

implementation of the model. The pseudocode

of our implemented system is written in Section

3. Section 4 contains a comparison with the

traditional model for character recognition from

images and Section 5 contains the result and

some further scopes and improvements.

Figure 1: Stages of Optical Character
Recognition [3]

2. Implementation

In this section, we will discuss the

segmentation process and implementation of

the CNN model we created using Tensor Flow

for digit recognition from the image.

Our first task will be to convert a numeric

string into single digits. We used the OpenCV

library for the segmentation of a string. We

converted a colored image into grayscale using

the BGR2GRAY function in OpenCV. We are

recognizing black pixels in the white

background for the segmentation process. We

make rectangular boxes around the digits in a

string and extract them. We are using the

matplotlib library to represent it. After getting

the digits from the string, we pass them into a

CNN model.

To develop the CNN model we download

and pre-process MNIST handwritten digital

mission data set (Refer Fig. 2). We reshape each

image into a 4D tensor. This is done to satisfy

the input requirements of the CNNs. So, the

reshaping is done with a reshape command.

Both train images and test images tensors are

reshaped into 4D tensors. Now we have

prepared data for training. To build a model we

will first create the convolution base. We are

using the equation model. We add a

convolution layer to the model. The

convolution layer is added using

layers.Conv2D command.

The convolution operation involves a filter

that captures a local pattern and applies it to the

image as shown in Fig. 3. The filter is a 3D

tensor of a specific width, height, and depth.

Each entry in the filter is a real number. The

entries in the filter are learned during the CNN

transition. The filter slides across the width,

height, and depth stopping at all possible

positions to extract a local 3D patch of the

surrounding feature. We take the filter and

position it at different places in the image. If we

slide the filter we get a new position of the

filter. We keep doing this across the length and

breadth of the image till the final positioning of

the filter. Since the input is a grayscale image

we have depth = 1.

Apart from convolution, there is a second

important operation - pooling. Pooling

aggressively downsamples the output of the

convolution. Strides while sliding across the

image, provides a way to calculate the next

position along each axis to position the filter

starting from the current position. We have

taken stride = 1 which is the most common

choice.

Such a stridden convolution tends to

downsample the input by the factor

proportional to the stride. It helps us to calculate

the next position of the filter. The filter got

shifted by one column to the right. Once it

exhausts all the columns we start shifting it

downwards by rows. This is how we slide the

filter across the image and try to match the

pattern in the image. So, let us say we have a 28

x 28 x 1 image and we have a filter of size 3 x

3 x 1 using which we will be able to position

the filter at 26 possible positions along the

width as well as on the height. So, the final

position of the filter will be at position 26. So,

this is how we get 26 x 26 x 1 output of the

convolution. In a convolution layer, we

typically used k different filters. We define all

these filters with the Conv2D layer in a Keras

command. In a tf.keras API, we use Conv2D.

We specify the number of filters, the size of the

patch, the activation, and the input shape. Here,

we have 32 filters; each filter is of size 3 x 3.

Then we specify the activation that we want to

use after a linear combination of weight of the

filter with the values of the pixel in the image

and finally, we specify the shape of the input.

The size of the filter and the stride (which is 1

by default) is applicable across all the k filters.

After applying the convolution of k filters we

get a 3D tensor with the same number of rows

and columns for each filter.

All the outputs are combined. So, we get all

the channels to be 32; each having 26 x 26

output. So, concretely for our MNIST example,

we get a 3D tensor as output with 26 rows 26

columns, and 32 channels, i.e. 1 for each filter.

The total number of parameters for this filter

will be 320 because we have 10 parameters per

filter as shown in Fig. 4.

Pooling is usually done with a window of

size 2 x 2 with a stride of 2. We apply the

pooling policy on the first 2x2 square box and

select a number based on that policy. We use

either max pooling or average pooling as the

pooling policies. The second important point is

we apply pooling operation on each channel

separately.

If the output is 26 x 26 x 1 and if we apply a

max-pooling of 2 x 2 we get the output of 13 x

13 x 1. So, we can see that there is

downsampling happening from the output of

the convolution when we apply max pooling on

it as depicted in Fig. 5. Note that max-pooling

does not have any parameters. In practice, we

set up a series of convolution and pooling layers

in CNNs. The number of convolution and

pooling layers is a configurable parameter and

is set by the designer of the network. In the

current example, we use two convolutions and

one more convolution layer.

In the current example, we use two

convolution pooling layers and one additional

convolution layer at the end. We use 32 filters

in the first convolution layer and 64 filters each

in the second and the third layer. Each filter is

3 x 3 in size and we use a stride of 1. We have

not used any padding in any of the convolution

layers. We used max-pooling for

downsampling with a window of 2 x 2 with a

stride of 2.

Figure 2: MNIST Dataset [4]

The number of parameters in the

convolution layer depends only on the filter

size. It does not depend on the height and width

of the input. It can be observed that the width

and height dimensions tend to shrink as we go

deeper into the network. We started with a

height and width of 28 each and after a couple

of convolutional pooling followed by a single

convolution operation, we got a height and

width of 3.

So, what is happening here is, we take an

image, we apply a bunch of convolution

pooling operations that gave us a representation

that will feed into a feed-forward neural

network which will give us the label

corresponding to the digit written in the image.

Figure 3: 28x28 pixel image (left) and 3x3 filter (right) with activation function (Z)

So, here the input is (3, 3, 64). We pass it to

the Flatten layer which gives us 576 numbers

that are fed into a dense layer whose output is

fed into another dense layer; flatten has no

parameters it outputs 576 numbers which are

input to each of the 64 units in the dense layer

over here. So, each of the units in the dense

layer has 576 parameters + 1 bias which makes

it to 577 parameters per unit and we have 64

such units making it, 36928 parameters. So, this

produces 64 values one corresponding to each

unit. So, the final dense layer has 10 units; each

unit receives 64 values from the previous layer

adding 1 bias parameter to it makes it 65 values

per unit. So, in total, we have 650 parameters

for the final layer. So, if we sum across the

CNNs and fully connected top layer which

gives a total of 93,322 parameters. For training

the model we use

sparse_categoricalcrossentropy loss with

Adam optimizer. We train the model for 5

epochs with training images and training labels.

So, we can see that in the case of CNN we

are defining patches and we are taking a patch

and performing a convolution operation with

the filter. We perform a linear combination of

each position of the image with each parameter

in the filter. We perform linear combination

followed by non-linear activation; while in the

case of feed-forward neural network we take

the entire image, you flatten it so that we get a

single array. In this case, since we have a 20 x

20 image we get an array of 576 numbers which

we are passing to a hidden layer with 128 units

followed by a dense layer of 10 units to get the

output. If we come up with the equivalent

flattened representation, we have these 9 values

and we have a node. These 9 values are

connected to this particular node which is a

neuron or a unit in the neural network which

performs linear combination followed by

activation. So, we are capturing local patterns

in CNN.

So, CNN procedures by capturing local

patterns; whereas, in a feed-forward neural

network, a global pattern involving all the

pixels are captured.

3. Pseudocode

In this section, we are giving pseudocode of

the segmentation of image containing a string

of numeric digits and CNN model recognize

each digit in the string and store it.

segmentation()

img=image of string

image_size=height_of_image*width_of_im

age

preprocess image using MSER in opencv

library

{Convert the image to grayscale}

gray_image = BGR2GRAY (img ,

image_size)

Figure 4: 32 3x3 patch applied on the image giving 3D tensor of 26x26x32

Figure 5: Convolutional Model Building process and parameter calculation

(none,28,28,1)

(none,28,28,28,1)

(none,28,28,28,1)

(none,26,26,32)

(none,28,28,28,1)

(none,28,28,28,1)

(none,3,3,64)

(none,13,13,32)

(none,28,28,28,1)

(none,28,28,28,1)

(none,11,11,64)

(none,28,28,28,1)

(none,28,28,28,1)

(none,5,5,64)

(none,28,28,28,1)

(none,28,28,28,1)

32 conv. Filters(3x3), stride=1

64 conv. Filters(3x3), stride=1

64 conv. Filters(3x3), stride=1

Max pool(2x2), stride=2

Max pool(2x2), stride=2

INPUT IMAGE

((3x3)+1)x32=320 parameters

((3x3x32)+1)x64=18496 parameters

((3x3x64)+1)x64=36928 parameters

bias

{Using inbuilt opencv function to detect

regions}

x,y=detectRegions(binary_values_of_gray_

image)

Makerectagles(x,y,x+height_of_image,

y+width_of_image)

{inbuilt function in matplotlib library}

plot(gray_image)

return gray_image

character_recognition()

 load (MNIST_dataset)

{convert 3D tensor to 4D tensor}

 reshape(train_images,4)

 reshape(test_image,4)

{Normalize pixel values to be between 0 and 1}

 train_images = train_images / 255.0

 test_images = test_images / 255.0

{Make a sequential model by adding

convolutional layers with relu activation}

 add_conv_layer(activation='relu')

 add_MaxPooling()

 add_conv_layer(activation='relu')

 add_MaxPooling()

 add_conv_layer(activation='relu')

 print(model.summary())

Figure 6: Summary of Model and total parameters

To complete our model, we will feed the last

output tensor from the convolutional base (of

shape (3, 3, 64)) into one or more dense layers

to perform classification. Dense layers take

vectors as input (which are 1D), while the

current output in a 3D tensor. First, we will

fatten (or unroll) the 3D output to 1D, then add

one or more Dense layers on top as shown in

the model summary i.e. Fig.6. MNIST has 10

output classes, so we use a final dense layer

with 10 outputs and a softmax activation [5].

flatten_layers(model)

add_dense_layer(64,activation='relu')

add_dense_layer(10,activation='softmax')

print(model.summary())

{Compiling model with adam optimizer, sparse

categorical crossentropy loss and metric we are

interested in i.e accuracy}

compile(model,optimizer='adam',

loss='sparse_categorical_crossentropy',

metrics='accuracy')

{train model for 5 epochs/iterations}

train(model,train_images,epochs=5)

test_accuracy=evalute(model,test_images)

print(test_accuracy)

gray_image=segmentation()

{Recognise the segmented image one by one

and print it}

for(all the images in rectangles in

gray_image)

 test_predict = model.predict(image)

 max=max_value(test_predict)

 number=index_of(max)

 print(number)

4. Comparison with the Traditional
Method

We did a detailed review and comparative

study of various significant handwritten

character recognition methods and techniques

in our paper – “A Review on Handwritten

Character Recognition Methods and

Techniques" published in the International

Conference on Communication and Signal

Processing (ICCSP), Chennai, India, 2020 [6].

 In traditional machine learning flow given

an image, we used to first perform feature

engineering using computer vision libraries. A

feature is fed into any machine learning

classifier which after training will give us the

output. Now, the feature engineering part in

traditional machine learning is getting replaced

by CNN. So, we can think of CNNs as a way of

generating features automatically for a given

image. The beauty of this approach is that the

right representation is learned during the model

training freeing us from expensive and tedious

feature engineering tasks.

We see that Feed Forward Neural Network

(FFNN) has more than 100k parameters as

compared against 93k parameters that our CNN

has and despite that classification with FFNN

has less accuracy for training and test data as

we can see in Fig. 7.

5. CONCLUSION

We can see from Fig. 8 that in the output, the

digits in the string are in rectangular boxes and

can be extracted by using the crop function. As

shown in Fig. 10 our CNN model has a training

accuracy of 99.36% and a testing accuracy of

99.15%. When we segment the string and pass

the digits into our model, they are being

correctly recognized as we see in Fig. 9 where

the grayscale image of digit '8' is correctly

predicted by our model. Similarly, we can pass

all the digits one by one from the segmented

string to obtain the string/number in digital

format.

So this model can be used for building a

proposed system to automate the process of

storing marks and other details like roll number

and subject code in a database by just taking a

photograph. It will nearly remove the manual

process which is hectic, tedious, and error-

prone

Further scope involves improving this

model to recognize alphabets/character string

by training it on a suitable database so that the

usability of this system can be extended to other

domains of HCR as well.

Figure 7: Training and Testing accuracy using Feed Forward Neural Network

Figure 8: Output of segmentation

Figure 9: Grayscale input and predicted output by our model

Figure 10: Training and Testing accuracy of CNN model

6. References

[1] Donald J. Norris. "Chapter 6 CNN

demonstrations", Springer Science and

Business Media LLC, 2020

[2] José-Sergio Ruiz-Castilla, Juan-José

RangelCortes, Farid García-Lamont,

Adrián TruebaEspinosa. "Chapter 54 CNN

and Metadata for Classification of Benign

and Malignant Melanomas", Springer

Science and Business Media LLC, 2019.

[3] RS, S.N., and Afseena, S., 2015.

Handwritten Character Recognition–A

Review. International Journal of Scientific

and Research Publications.

[4] MNIST image-Lim, Seung-Hwan &

Young, Steven & Patton, Robert. (2016).

An analysis of image storage systems for

scalable training of deep neural networks.

[5] Internet Source - www.tensorflow.org

[6] B. M. Vinjit, M. K. Bhojak, S. Kumar and

G. Chalak, "A Review on Handwritten

Character Recognition Methods and

Techniques," 2020 International

Conference on Communication and Signal

Processing (ICCSP), Chennai, India, 2020,

pp. 1224-1228, DOI:

10.1109/ICCSP48568.2020.9182129.

