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Abstract  
An effective processing of Big Data in various application areas is an important task today. 

Modern development of information technology provides the ability to calculate a large 

number of different tasks using a certain number of computers in distributed mode. MapReduce 

technology allows to perform distributed calculations on a huge amount of data by dividing 

them into parts, performing parallel calculations of each of them and combining the results. In 

this paper, experimental studies were performed to compare CUDA and OpenGL frameworks 

performance measurements for MapReduce operations on heterogeneous cluster. It has been 

found that CUDA is a more suitable framework that provide a significant advantage in this 

regard. It is determined that the greater the amount of processing data, the greater the delay 

caused by OpenCL. Further research will be conducted to determine the energy consumption 

of both technologies. 
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1. Introduction 

Dramatic demand for usage of big data processing technologies has been observed during last few 

years. Simultaneously, general-purpose GPU accelerated computation frameworks develops. Both 

techniques are being used in similar fields eg. data science [1], data processing [2], data mining [3], 

machine learning [4], [5], solving various biological [6], [7], medical [8], [9], physical [10] and 

geographical [11] problems. Consequently, many research studies have been made to compose 

scalability of big data processing systems with maximization of resources usage and performance of 

GPU powered computations. Those attempts aim improving performance [12], power-usage [13], deal 

with low capacity of GPU memory [14] and improve programmability [2] of this approach 

Computation using graphic processors can speed up any type of calculations. The technique is called 

GPGPU – general-purpose GPU [15]. It is possible to implement MapReduce’s reduce operation using 

previously mentioned GPU computing frameworks in order to speed-up whole algorithm. GPGPU 

enables to run a code on way more cores than standard CPU. Although GPU is not designed for general 

usage and has significantly less memory that CPU [16], well designed algorithm can speed up 

computations of many different kinds 

The main goal of this paper is to compare performance of basic algorithm which aggregates results 

by sum. We test both CUDA and OpenCL™ implementations. CUDA and OpenCL are frameworks 
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which enable using GPU for non-graphic related computing [17]. They provide GPU acceleration for 

mass parallel computation that can potentially speed-up MapReduce algorithms execution [14]. 

To achieve our goal we use Apache™ HadoopⓇ [18] powered heterogeneous cluster. Algorithms 

are implemented according to MapReduce paradigm in CUDA and OpenCL. Apache Hadoop is a 

software framework for distributed computing dedicated for big data processing. It environment consist 

of connected workstations forming a cluster. 

MapReduce is a paradigm for constructing algorithms dedicated to run on distributed environment 

[19]. It is supported by Apache Hadoop framework. It allows to spread process of computing among 

workstations connected into Hadoop cluster. It enables relatively fast processing of large amount of 

data by making the process parallel. Hadoop implements scheduling algorithm for optimal nodes 

resources usage and techniques for error recovery 

We measure performance by measuring time taken to execute widely used MapReduce algorithms 

implemented with two leading GPU general purpose computation frameworks - CUDA and OpenGL. 

CUDA [17] is a framework dedicated for NVIDIA graphics cards while OpenCL [20] is multi-platform 

framework which computes using every fond CPU and GPU resource available on a host machine. This 

means that what we measure is an overhead introduced by OpenCL in the specific environment of 

Hadoop based heterogeneous cluster. 

Other approaches includes using other distributed computation frameworks such as MPI. However, 

these are lesser fault-tolerant than Hadoop [1], [21]. On the other hand, consequence of using Hadoop 

and MapReduce paradigm forces redesigning data processing algorithm so as they fit into specific 

schema. Some techniques of visual programming may be applied to overcome this issue [2], but it does 

not ensure correctness of designed solution 

There are many different systems that strive in the field of some kind of GPU powered MapReduce 

paradigm implementation. For example: 

1. HAPI [22] 

Hadoop combined with Aparapi – Java-to-OpenCL conversion tool developed and released by 

AMD. Proposes easy and ready to use API for designing and implementation of GPU MapReduce 

algorithms. By hiding complexity of GPU programming by system of annotations, allows programmers 

to focus on developing good algorithms. 

2. HadoopCL [1] 

Extension to Apache Hadoop, HadoopCL combines Hadoop and OpenCL by usage of Aparapi. 

Provides easy and flexible programming interface, guarantees reliability and low power consumption. 

States that it achieves nearly 3x overall speedup and 55x of computational sections of example 

MapReduce application algorithms. 

3. GPMR [23] 

GPMR is a stand-alone library for MapReduce that is supposed to use GPU clusters for large scale 

computing. By modifying MapReduce to combine large amounts of map and reduce items into chunks 

and partial reductions and accumulation, they better utilize power of GPU. 

4. MITHRA [24] 

An architecture that combines power of NVIDIA CUDA and Apache Hadoop to create scalable 

performance gains by utilizing MapReduce programming model. MITHRA was designed especially for 

executing computing tasks of massive and independent data. 

5. MARS [25] 

Mars is a MapReduce framework that is supposed to improve and ease programming complexity of 

GPU programming by a familiar MapReduce interface. 

Authors of those systems compared their solutions with other works in terms of performance – 

however, reliable comparison of most popular GPGPU computation framework, that would be free of 

overhead ensuing from their framework usage, is still lacking 

2. Proposed architecture 

For the purpose of our research we have built a cluster containing 10 workstations, each of them 

hosting HortonWorksⓇ Apache Hadoop framework implementation. Workstations uses two different 



physical configuration – differing with presence of GPU. Configuration consist of: IntelⓇ XeonⓇ CPU 

E5-1630 v3 3.70 GHz, 16 GB RAM and optional NVIDIA Quadro K4200. 

 

 
Figure 1: Architecture diagram. Own work 

 

 
Figure 2: MapReduce data flow diagram. Own work. 

 



Workstation are organized in star topology; they communicate with each other through a switch. 

Complete architecture can be found on Figure 1. 

The area of work presented in this article are Apache Hadoop powered nodes. Hadoop schedules 

map and reduce tasks to be executed on a free node, preferably near to the place where input data are 

stored. In our approach this can lead to non-effective node usage because of a presence of GPU is 

irrelevant for scheduler when making a decision on which node certain task has to be executed. Some 

works have already been done in this field [26]. 

Our approach is to implement Reduce operation to move calculations and some algorithms 

from CPU to GPU. 

3. Aggregation algorithm development 

Basic idea behind our project is speeding up reduce operation (see Figure 2) using algorithms 

designed specifically for GPUs. As an example, we would use modified algorithm for calculation of 

exponent. 

Exponent can be calculated using following formula [27]: 

𝑒𝑥 =∑
𝑥𝑛
𝑛!

∞

𝑛=0

 
(1) 

It is easy to notice that sum factors are independent, and as a result it is easy to calculate overall 

value by just summing up middle results (in any order). 

 

When creating algorithm of fast sum calculation we inspired with NVIDIA publication [28] on 

parallel computation. 

 

Basic idea behind it is following: having an array of numbers on length N, we can sum up pairs of 

elements, so complexity reduces from O(N) to around O(log_2 (n)) (Figure 3). 

 
Figure 3: Illustration of naive summing algorithm. Source: [28] 

 

As single operation is around simultaneous, speed-up is quite impressive. In order to achieve that 

with MapReduce in Hadoop we created modified implementations of map and reduce. 

Map output was (key, value) pair where key was always 1, and value was n-th factor of the sum. As 

a result, after reduce operation we always got single key, and value which represents a result 



4. Methodology 

In this section, we describe methodology of our time performance analysis and comparison of 

MapReduce solution on both CUDA and OpenCl. 

To measure a performance of the system we run several tests of exponent calculation, each of them 

differing number of jobs with and without GPU for both frameworks separately. The first test was run 

on only one GPU powered node. Then we have tested every number of nodes each kind starting from 

one to 10 total amount of nodes. All results were presented on charts below alongside with its 

discussion. 

We measure performance, by measuring runtime of tests on all used nodes from sending data to each 

node, to receiving data from each node on master machine. Results often are shown as an improvement 

factor. This should be considered as execution time in certain case divided by execution time for non-

GPU solution. 

All the tests were run 5 times and presented results are average value. It was necessary due to the 

cache memory misses. Nevertheless, some small differences in similar measurements can be still 

observed. 

5. Results  

On the Figure 4 linear increase of computation time depending on the number of calculated elements 

can be observed. For our comparison the most significant information is difference between CUDA and 

OpenCL improvement. The results shows that usage of OpenCL generates latency in availability of 

computation results that linearly depends on the number of elements.  

 
Figure 4: Execution time for various number of elements. Own work. 

 

That means difference in improvement factor of execution time (Figure 5) between those two 

frameworks grows. These data were measured for very small – in terms of big data processing – number 

of elements. Big data algorithms usually work with millions of items. That implies that simple 

summation and memory move operations powered by OpenCL in big data analysis, when it comes to 

practical usage, can lead to significant superiority of CUDA over OpenCL 



 
Figure 5: Improvement factor basing on execution time for each tested number of elements. Own 
work. 

6. Conclusion 

We have presented comparison of CUDA and OpenGL frameworks performance measurements for 

MapReduce operations on heterogeneous cluster. The results shows noticeable superiority of CUDA in 

this issue. Specifically, the biggest amount of is processed, the bigger OpenCL caused latency occurred 

to be. Nevertheless, it should be mentioned that CUDA is supported only by GPUs of the only one of 

two leading graphical cards manufacturers – namely NVIDIA. Therefore, this research does not solve 

the problem of the right framework choice for particular task on particular hardware resources available. 

Moreover, the comparison can be also done in the field of energy-saving [13]. 
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