

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Towards Model-Driven Smart Contract Systems
– Code Generation and Improving Expressivity

of Smart Contract Modeling

Marek Skotnica, Jan Klicpera and Robert Pergl

Faculty of Information Technology,
Czech Technical University, Prague, Czech Republic

marek.skotnica@fit.cvut.cz

ORCiD: 0000-0002-8811-3389
ORCiD: 0000-0003-2980-4400

Abstract. Public blockchains are increasingly important in industries
such as finance, supply-chain management, and governance. In the last
two years, there has been increased usage of blockchain for decentral-
ized finance (DeFi). The usage of DeFi mainly consists of cryptocurrency
lending and providing liquidity for decentralized exchanges. However, the
considerable volume of reports shows large financial losses during net-
work congestion, increasing transaction prices, programming errors, and
hacker attacks. One survey suggested that only 40% of people working
with DeFi smart contracts understand their source code.
To address the issues, this paper proposes a model-driven approach to
create blockchain smart contracts based on a visual domain-specific lan-
guage called DasContract. An improved design of the DasContract lan-
guage is presented, and a code generation process into a blockchain smart
contract is described. The proposed approach is demonstrated on a proof-
of-concept model of a decentralized mortgage process where the contract
is designed, generated, and simulated in a blockchain environment.

Key words: Process Modeling, Blockchain, Smart Contract, DasCon-
tract

1 Introduction

The blockchain smart contracts promise a revolution in many industries that
so far resisted the digital revolution. They may play a significant role in fi-
nance, supply chain management, voting, and many other industries. However,
the promises of the blockchain technology were not yet materialized. According
to the Gartner, mainstream adoption is expected in 2030 [15].

The public blockchains’ primary use is currently the decentralized finance
(DeFi) that is used for decentralized exchanges and crypto loans. However, there
are many problems DeFi is currently facing. The first one is network congestion,
which increases the transaction processing time and price (that reaches up to
12 USD per transaction [39]). Another issue is the smart contract programming

marek.skotnica@fit.cvut.cz

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

2 Marek Skotnica, Jan Klicpera, Robert Pergl

errors. In one of the many incidents, an input error led to a token price plunging
25% [26]. Furthermore, according to the CoinGeco survey [7], only 40% of the
DeFi users can read and understand the smart contract’s source code.

To address these challenges, a visual language for modeling smart contracts,
DasContract, has been proposed in [35]. It argues that by using a visual domain-
specific language (DSL), the readability of smart contracts would be more com-
fortable, and using model-driven engineering (MDE) approach generates the
smart contracts source code. However, a complete method to generate the source
code was not provided, and the included case study was very elementary.

Therefore, this paper aims to bridge the gap and build on top of the pre-
liminary research. First, the DSL initially provided by the DasContract pa-
per [35] was completely redesigned to support an automatic and blockchain
implementation-independent code generation suitable for a limited execution en-
vironment provided by the blockchain technology. Second, a straightforward way
to generate smart contract algorithms with non-fungible tokens was described
together with an open-source implementation algorithm. Finally, to demonstrate
the functionality of the proposed approach, a decentralized mortgage case study
was created. A model of a mortgage process running in blockchain was modeled,
Solidity smart contract was generated, and finally, a simulation of the function-
ality was performed.

The paper is organized as follows: In Section 2, the research method and the
research question are formulated. In Section 3, the underlying scientific founda-
tions are briefly discussed. An approach to generate blockchain smart contracts
from a DasContract language is introduced in Section 4. The proposed approach
is demonstrated on a Mortrage case study in Section 5. The related research is
discussed in Section 6. Finally, in Section 7, the current results are summarized,
and further research is proposed.

2 Research Approach

This research applies the design science (DS) approach of Hevner [19, 18], which
is shown in Figure 1. In the first cycle, a relevance of the problem is discussed
in Section 1. The second cycle is described in Section 4. And finally, the rele-
vant grounding into the existing knowledge base is in Section 3, Section 4, and
Section 7.

The research question is: How to generate blockchain smart contracts
from a high-level modelling language in a deterministic way so the
probability of creating error-free smart contracts is increased?

3 Theoretical Background

3.1 Blockchain

First conceptualized in 2008 [25] by Satoshi Nakamato, blockchain is a technology
that provides a cryptographically secure, decentralized method to store data.

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Towards Model-Driven Smart Contract Systems 3

Fig. 1. Design Science Research Cycles [18]

The key aspects of a blockchain systems are: 1)Decentralization The data in a
blockchain is distributed and managed by a cluster of computers, without any
central authority. 2)Transparency All the data in a blockchain is completely
visible to any computer in the blockchain.3) Immutability Once a data block is
verified and added to the blockchain, it is not possible to edit or remove it.

3.2 Smart Contracts

A smart contract is a computer protocol that allows creating digital contracts
between multiple parties without a need for a trusted third-party intermediary.
Once deployed, the smart contract will automatically evaluate the commitments
that may occur to the parties over time, based on the agreed terms [36].

Ethereum [13, 14] is a smart contract implementation used in this paper that
is described as: “an open source, globally decentralized computing infrastructure
that executes programs called smart contracts. It uses a blockchain to synchronize
and store the system’s state changes, along with a cryptocurrency called ether to
meter and constrain execution resource costs.” [3]

As further described in [3], the smart contracts are deployed onto the
blockchain in the form of a specialized bytecode. This bytecode then runs on
each Ethereum node in a limited execution environment, called Ethereum Vir-
tual Machine (EVM). Since creating smart contracts directly in the bytecode
would be too impractical, multiple specialized high-level languages have been
created, together with the compilers needed to convert them into EVM bytecode.
The most popular high-level language for creating EVM-based smart contracts
is Solidity.

3.3 Cryptographic Tokens

As described by Voshmgir [38]: “Cryptographic tokens represent programmable
assets or access rights, managed by a smart contract and an underlying dis-
tributed ledger. They are accessible only by the person who has the private key
for that address and can only be signed using this private key.”

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

4 Marek Skotnica, Jan Klicpera, Robert Pergl

On the Ethereum platform, Ethereum Improvement Proposals (EIPs) [1] are
used to standardize the general structure of tokens. This ensures that the smart
contracts running on Ethereum can interact with tokens defined by other smart
contracts.

One of these standards is the ERC-20, providing a typical list of rules on how
the tokens should be structured. These tokens are fungible, meaning that tokens
of the same type are interchangeable. That makes them easy to trade, as there
is no need to differentiate the tokens. To represent unique assets, however, the
tokens must be non-fungible – every token is unique and non-interchangeable,
even if they are of the same type. In order to facilitate these types of tokens, the
ERC-721 standard was created. [38]

3.4 BPMN

BPMN is a standard notation for business process modeling under the Object
Management Group (OMG) [27]. There are three levels of BPMN modeling based
on the goal. This paper uses the DasContract language that builds on BPMN
level 3 to express machine-executable process models.

3.5 Unified Modeling Language (UML)

Unified Modeling Language (UML) [32] is a standardized modeling language
enabling developers to specify, visualize, construct and document artifacts of a
software system. [37] In this paper, a UML Class diagram is used to describe
a meta-model of a DasContract language and also to represent a DasContract
data model.

3.6 DasContract

The DasContract was first introduced in [35] and it builds on top of the existing
knowledge about Business Process Management (BPM) [4] and Enterprise Engi-
neering discipline [8]. DasContract provides a visual domain-specific language to
describe blockchain smart contracts that is based on an extended combination
of DEMO modeling language [8], BPMN [6], and UML [28].

The main goal of the DasContract is to provide a way to conclude digital
contracts for people, companies, and governments without the need for an in-
termediary. The contract conditions are agreed on upfront and inserted into a
blockchain smart contract that ensures the contract’s immutability and execu-
tion according to the agreed conditions.

The proposed concept architecture of the DasContract is shown on Figure 2.
First, a contract between parties is formalized using the DasContract language
and a legal text, then a smart contract is generated, and finally, the people,
companies, and legal authorities interact according to the smart contract logic.

However, the original paper does not provide a straightforward method for
translating the DEMO model to the executable BPMN and does not provide

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Towards Model-Driven Smart Contract Systems 5

Legal Text
+

Formal
Models

A Person

A Company

A Legal
Authority

A Smart
Contract

CodeCode
Generation

A Blockchain
A Contract

Human Understanding Technical Implementation Digital Interaction

Fig. 2. A proposed concept architecture of DasContract [35].

code generation algorithms. This leaves a gap that this paper aims to fill by
introducing a new DSL language (shown in Figure 3) and describes how the
smart contract code should be generated.

4 Towards Generating Smart Contracts from DasContract
Language

This section introduces a way to generate blockchain smart contracts using a
Model-Driven Engineering approach (MDE) [5]. To achieve this, a complete re-
design of the original DasContract metamodel [35] was done, and a way of auto-
matically generating blockchain smart contracts is described. Ethereum Solidity
language is used as a demonstration; however, the principles described should
be transferable to other blockchain implementations.

The new DasContract DSL metamodel is shown on fig. 3. The original Das-
Contract metamodel was based on DEMO models. Although the execution of
DEMO models is described in [34] and the translation of DEMO to BPMN
in [24], the approach creates models that contain all possible execution paths
according to the DEMO transaction axiom. This is not desired in a blockchain
smart contract because only the necessary execution paths should be modeled
to prevent unwanted behavior. However, the DEMO models still should be pro-
duced before modeling the DasContract to achieve a better ontological under-
standing of the domain.

As a basis for the execution behavior, an extended subset of BPMN 2.0 level
3 is used. However, compared to the BPM systems that interpret the model, an
approach that generates code with the model behavior is used. This approach is
used due to blockchain performance and storage limitations. Each line of code
executed in the blockchain costs money, and the storage costs are also at a
premium.

The algorithm described in this paper is implemented in C# programming
language and published on Github under an MIT license [33].

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

6 Marek Skotnica, Jan Klicpera, Robert Pergl

1 0..* 1 0..*
Property

+ Id: string

+ Name: string

+ IsMandatory: boolean

+ IsCollection: boolean

+ Type: PropertyType

<<Enumeration>>
PropertyType

Int
Uint
Bool
String
DateTime
Address
AddressPayable
Data
Entity

Contract

+ Id: string

+ ProcessDiagram: string

10..*

Process

+ Id: string

0..*

1 Source

1

0..*

1

1

1 0..*

ProcessRole

+ Id: string

+ Name: string

+ Description: string

SequenceFlow

+ Id: string

+ Name: string

+ Condition: string

0..*

0..*

ProcessUser

+ Id: string

+ Name: string

+ Description: string

0..*

0..*

C
an
di
da
te
R
ol
es

Entity

+ Id: string

+ Name: string

Task

ExclusiveGatewayParallelGateway

Gateway

1

0..*

0..*

0..*

UserTask

+ Id: string

+ Name: string

C
an
di
da
te
U
se
rs

As
ig
ne
e

ServiceTask

+ ImplementationType: string

+ Configuration: string

1

0..*

D
ef
au
ltS
eq
ue
nc
eF
lo
w

BusinessRuleTask

+ BusinessRuleDefinitionXml: string

ScriptTask

+ Script: string

ProcessElement

+ Id: string

+ Name: string

0..*

1 Target

StartEvent EndEvent

Event

1

1

UserForm

+ Id: string

FormField

+ Id: string

+ Order: int

+ Type: FormFieldType

+ DisplayName: string

+ IsReadOnly: boolean

+ PropertyExpression: string

+ CustomConfiguration: string

1 0..*

<<Enumeration>>
FormFieldType

Property
Custom

0..*

1

StartForm

Fig. 3. A new DasContract DSL metamodel

The DasContract DSL consists of the following models: Data Model Specifies
data structures used inside of the smart contract. These structures can be refer-
enced inside of the process model. Process Model Specifies a contract’s business
process as an extended subset of the BPMN 2.0 language. Forms Model Specifies
a user form required to fill by the user in a process user task. The forms provide
a way to interact with smart contracts.

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Towards Model-Driven Smart Contract Systems 7

4.1 Data Model

The data model’s implementation is straightforward because the blockchain
smart contract languages provide generous native support to specify data struc-
tures. The supported concepts are entities, properties, entity properties, and ar-
rays. Each property can also be marked as mandatory. The data types of prop-
erties are Int, UInt, Bool, String, DateTime, Address, AddressPayable, Data,
Entity. The types Address and AddressPayable are blockchain specific and sup-
port cryptocurrency or token payments.

Example Let’s have an entity Payment with four properties – two addresses
identifying the sender and receiver, a numeric defining the amount sent and a
boolean indicating whether the payment was on schedule. The generated code
is shown in Listing 1.

struct Payment {

uint256 amount;

bool onSchedule;

address sender;

address receiver;

}

Listing 1. An example of a generated data structure.

4.2 Process Model

The process model uses an extended subset of the BPMN 2.0 level 3 notation.
The formal specification of a BPMN execution is already well researched, and
there are many different formalizations such as [9, 21]. In this paper, the algo-
rithms are based on Petri-net based formalization described in [10].

The blockchain smart contracts are more similar to a programmable database
rather than a desktop, web, or console application. Due to this fact, not all of
the BPMN concepts can be implemented or make sense. Therefore only a limited
subset is implemented: user task, script task, XOR gateway, parallel gateway,
start event, and end event. The blockchain-specific activities were added: pay-
ment task. The payment task is a task attribute that can be added to both user
and script task to add support to work with cryptocurrency or tokens.

Process Flow Exclusive gateways are converted into a sequence of if-else state-
ments, advancing the execution based on the statement’s result. Parallel gate-
ways are more complex, as they can not only create multiple execution branches
but are also used for synchronizing multiple flows (branches) into a single flow. If
a gateway has multiple incoming flows, then a counter is defined, keeping track
of the number of flows that have reached the gateway. The outgoing flows are
triggered once the counter matches the number of incoming flows. An example
can be seen in Listing 2, that contains the logic of parallel gateways generated
based on Figure 4.

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

8 Marek Skotnica, Jan Klicpera, Robert Pergl

Fig. 4. A contract snippet used to demonstrate a gateway conversion in Listing 2 and
user task conversion in Listing 3

int Gateway_2Incoming = 0;

function Gateway_1Logic() internal {

ActiveStates["EscrowPropertyRights"] = true;

ActiveStates["AcceptInsurance"] = true;

ActiveStates["EscrowMoneyPayable"] = true;

}

function Gateway_2Logic() internal {

if(Gateway_2Incoming==3){

ActiveStates["ValidateContractPayable"] = true;

ValidateContractPayable();

Gateway_2Incoming = 0;

}

}

Listing 2. Gateway logic generated based on the model snippet in Figure 4.

Activities Functions are also used to encapsulate the logic of activities. Unlike the
internal gateway functions, these functions are publicly visible. User activities
allow accepting parameters and store them inside of the contract using property
binding logic. The generator also allows restricting access to function execution
based on the executor’s address. This is done using roles defined using square
brackets inside the name of the activity (see Figure 4). The addresses to each
role are assigned at runtime, meaning that anyone can execute an activity with
an unassigned role. The first execution assigns the role, reserving the remaining
activities of the given role to that address.

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Towards Model-Driven Smart Contract Systems 9

modifier isEscrowPropertyRightsAuthorized{

if(addressMapping["Property Owner"] == address(0x0)){

addressMapping["Property Owner"] = msg.sender;

}

require(msg.sender==addressMapping["Property Owner"]);

_;

}

modifier isEscrowPropertyRightsState{

require(isStateActive("EscrowPropertyRights")==true);

_;

}

function EscrowPropertyRights(bool Agree) isEscrowPropertyRightsState

isEscrowPropertyRightsAuthorized public {

ActiveStates["EscrowPropertyRights"] = false;

escrowagreement.agreeToEscrow = Agree;

ActiveStates["EscrowProperty"] = true;

EscrowProperty();

}

Listing 3. User task logic generated based on the model snippet in Figure 4.

An example of a converted user activity can be seen in Listing 3, generated
based on the Escrow Property Rights activity in Figure 4. The generated function
contains two modifiers, checking whether the contract is in the valid state and
whether the executor (Property Owner role) is authorized. The function has
one input parameter that has been defined using the editor. This parameter is
then stored inside the contract according to the defined property binding logic.
An address of the property owner is read from the msg.sender property that
provides a sender’s public address verified by his private key while sending the
transaction to the blockchain.

Token Activities Described in Section 3.3, tokens play a significant role in the
smart contract ecosystem by allowing to express ownership of an asset. By com-
plying with the token standards, these tokens can also interact with other smart
contracts. An activity that would allow us to create/send/receive tokens would
significantly improve the generated smart contracts’ capabilities. For example,
it would allow sending voting ballots (in the form of a token) to the voters.

4.3 Forms Model

The forms model defines a form that is shown to a user and allows interaction
with a contract. Such logic is implemented in two places called on-chain and
off-chain.

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

10 Marek Skotnica, Jan Klicpera, Robert Pergl

On-chain code is run inside the blockchain. Our algorithm is represented as pa-
rameters that are passed into a function generated from a user task. An example
is shown on Listing 3 - the method EscrowPropertyRights contains a parameter
Agree that will be provided by the user while calling the method.

Off-chain code is run inside a cryptocurrency wallet to provide the user with
comfortable user experience while interacting with a smart contract. However,
the Ethereum Solidity does not support off-chain code, and therefore we leave
this aspect for further research.

4.4 Design, Compilation and Execution

For the modeling of the new DasContract models, a new visual modeling en-
vironment was created. The visual modeling reduces the modeler’s errors and
reduces the time required to produce a model. The modeling environment is
available on Github under an MIT license [11].

Compilation to the Solidity code assumes a valid DasContract model cre-
ated in the modeling environment and does not check for other errors. The last
check is done during the Solidity code compilation (usually in the Remix envi-
ronment) and allows the modeler to fix issues in custom script tasks and user
task validation logic.

4.5 Limitations

There are the following limitations to this approach, and they should be ad-
dressed in future research. First, the script tasks and a validation logic of
user tasks still need to be expressed in Solidity language. An implementation-
independent DSL for such expressions should be added to the design of the
language. Second, the language only contains support for receiving tokens. Sup-
port to issue both fungible and non-fungible tokens would be required. Third,
it is not clear how would people authenticate themselves and prove their roles
outside of the standard smart contract wallet. A way to support decentralized
identity standards such as W3C DID should be explored. Finally, according to
Gartner [15], the public blockchains are still immature for mass adoption mostly
because of low transaction processing capability and high cost and, therefore,
only minimal applications such as initial coin offerings, escrows, and decentral-
ized finance are currently possible.

5 Case Study: Mortgage

This section provides a case study to demonstrate the capabilities of the ap-
proach proposed in the previous section. A case of a decentralized mortgage
that supports non-fungible tokens (ERC-721) to represent the property owner-
ship was created. This case study designs the process in a decentralized way

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Towards Model-Driven Smart Contract Systems 11

that means that the property token is held in the smart contract as collateral.
A scenario where the lenders can request a default of the loan is modeled. The
complete DasContract model and the generated source code are published on
Github under an MIT license [33].

[Borrower]
Apply For a
Mortgage

[Insurer] Accept
Insurance

[Property
Owner] Escrow
Property Rights

[Lender]
Escrow Money

Validate
Contract

Release
Escrows

[Borrower]
Cancel

Application

Pay Owner
Payment

[Lender]
Request Default

Validate Terms
Violation

Loan Defaulted

Transfer the
Property to the

Lender

[Borrower] Pay
Mortgage Fee

Check Payment
Schedule

Transfer the
Property to the

Borrower

Loan Completed

[Insurer] Check
Indemnity Terms

[Insurer] Pay for
the Borrower

Payment to the
Insurer and

Lender

[Lender]
Transfer

Proportion
Money to the

Borrower

Valid

Invalid

Terms Not
Violated

Terms Violated

Payments
Finished

Behind Payment

Payment On
Schedule

Valid

Invalid

Contract
Cancelled

Fig. 5. Mortgage Process Model

The following steps were taken while conducting this case study: 1) A Das-
Contract model was created in a visual editor. 2) An Ethereum Solidity smart
contract code was created by an algorithm described in Section 4. 3) A sim-
ulation of the generated smart contract was performed in the Remix [2] test
environment.

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

12 Marek Skotnica, Jan Klicpera, Robert Pergl

The process model of the proposed process can be seen in Figure 5. The
process begins with a borrower applying for a mortgage. Three other parties
– insurer, property owner, lender – must then confirm their involvement by
carrying out their specific action. If any of them declines, or the borrower changes
their mind, then the contract is deemed invalid, and any escrows that have been
already transferred will be released back to their previous holders.

When all parties agree and the contract is successfully validated, then the full
payment to the owner is automatically released, also ending their involvement in
the contract. In the next phase of the contract, the borrower is tasked to carry
out to periodically pay the mortgage fees. Those fees are then automatically dis-
tributed to the insurer and lender. The payment schedule is checked afterward,
resulting in three possible scenarios. First, the payment is on schedule; the con-
tracts state will return to “waiting” for another payment. Second, The payments
are behind schedule; in this case, the insurer checks the indemnity terms, paying
for the borrower if they are met. Third, the payments are finished, in which case
the property is automatically transferred to the borrower, ending the contract.

Before the payments are fully finished, the lender is also at any time allowed
to request for borrower’s default to check whether the borrower has not violated
terms. If the terms have indeed been violated, then the lender will pay propor-
tion money defined in the terms to the borrower. The property will then be
transferred to the lender, ending the contract.

The described process was simulated using the Remix IDE. The test en-
vironment allows to perform transactions from various addresses, enabling to
simulate people interacting with the smart contract. The transaction was suc-
cessfully run by the borrower (left sidebar), returning status information about
the transaction (right window).

The limitations of the case study are the following. First, the mortgage is
paid in a cryptocurrency, which is a very volatile asset. This can be addressed
using a stablecoins [23]. The second issue is that the case requires a cadastre
of properties being represented by a non-fungible token that is recognized in a
country’s legal context. This can be addressed by a legal binding of the token
to property and mapping to a real cadastre record using a blockchain oracle
solution such as [12]. Third, the insurer is represented by a human oracle and is
not enforced by a code to pay. Therefore, the terms of insurance would be needed
to sign in a separate legal contract. This is already a part of the DasContract
architecture described at Figure 2.

6 Related Research

A very similar research is done by the Caterpillar project [30, 31] that is cre-
ating a BPM engine in the Solidity language. The main difference between the
approaches is that the DasContract generates the logic of the model into the
smart contract where the Caterpillar interprets it. The goal of the DasContract
is to provide a decentralized way to conduct contracts between people, compa-

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Towards Model-Driven Smart Contract Systems 13

nies, and governments in a blockchain implementation independent way. The
Caterpillar is currently bound to the Solidity programming language.

Other approaches provide a graphic environment to visually compose smart
contract code based on Blockly [17] such as [16]. There is also another approach
that proposes a domain specific language for definition of financial smart con-
tracts called Marlowe [22]. The approach presented in this paper does not rep-
resent the script part in the visual format; it instead focuses on modeling data,
processes, and forms that is not supported by Blockly-based approaches.

7 Conclusions

The paper introduced an approach to creating a model-driven blockchain smart
contracts. The potential benefits are: 1) An increase readability of the blockchain
smart contracts by providing a visual DSL that allows contract simulation. 2)The
simulation also contributes to eliminating smart contract errors as the behavior
can be examined before publishing the contract. 3)The expressivity was im-
proved by a complete redesign of the DasContract DSL and providing the capa-
bility to support non-fungible tokens. To demonstrate the proposed approach’s
functionality, a decentralized mortgage case study was presented in Section 5.
The mortgage case was modeled; a Solidity code was generated and simulated
in the Remix environment.

The major limitation of this approach remains the immaturity of available
blockchain implementations. According to the Gartner [15], the blockchain tech-
nology is very immature to support most of the potential use cases, and there
is still a tremendous amount of research, implementation, and adoption to be
done.

Further research is following: 1) Support for generation of smart contracts
on different platforms. 2) Case studies and usability studies to improve the pro-
posed language design. 3) Explore a possible extension with more BPMN sym-
bols and concepts. 4) Explore a possible extension of the proposed model by
DMN [29] OMG standard. 5) Propose a method to devise DasContract models
from DEMO. 6) Propose a case study of a smart contract in financial domain
aligned with CC-CP ontology [20].

Acknowledgement This research has been supported by CTU SGS grant
No. SGS20/209/OHK3/3T/18

References

1. Ethereum improvement proposals, https://eips.ethereum.org/
2. Remix - ethereum ide, https://ethereum.org/en/foundation/
3. Antonopoulos, A., Wood, G.: Mastering Ethereum: Building Smart Con-

tracts and DApps (2018), https://github.com/ethereumbook/ethereumbook/

blob/develop/book.asciidoc

4. BPM: What is BPM (2012), http://bpm.com/what-is-bpm

https://eips.ethereum.org/
https://ethereum.org/en/foundation/
https://github.com/ethereumbook/ethereumbook/blob/develop/book.asciidoc
https://github.com/ethereumbook/ethereumbook/blob/develop/book.asciidoc
http://bpm.com/what-is-bpm

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

14 Marek Skotnica, Jan Klicpera, Robert Pergl

5. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in
Practice: Second Edition. Morgan & Claypool Publishers, 2nd edn. (2017)

6. CAMUNDA: Bpmn 2.0 symbol reference, https://camunda.com/bpmn/

reference/

7. CoinGeco: Coingecko yield farming survey 2020, https://www.coingecko.com/

buzz/yield-farming-survey-2020?locale=en, [online], [cit. 2020-09-22]
8. Dietz, J.L.G., Mulder, H.B.F.: Enterprise Ontology: A Human-Centric Approach

to Understanding the Essence of Organisation. The Enterprise Engineering Series,
Springer International Publishing (2020), https://www.springer.com/gp/book/

9783030388539

9. Dijkman, R., Van Gorp, P.: Bpmn 2.0 execution semantics formalized as graph
rewrite rules. In: Mendling, J., Weidlich, M., Weske, M. (eds.) Business Pro-
cess Modeling Notation. pp. 16–30. Springer Berlin Heidelberg, Berlin, Heidelberg
(2010)

10. Dijkman, R.M., Dumas, M., Ouyang, C.: Formal semantics and analysis of bpmn
process models using petri nets. Queensland University of Technology, Tech. Rep
pp. 1–30 (2007)

11. Drozd́ık, M., e.a.: Dascontract editor github repository (2020), https://github.
com/drozdik-m/das-contract-editor

12. Ellis, S., Juels, A., Nazarov, S.: Chainlink: A decentralized oracle network (2017),
https://link.smartcontract.com/whitepaper

13. Ethereum Foundation: About the ethereum foundation, https://ethereum.org/
en/foundation/

14. Ethereum Foundation: Ethereum whitepaper, https://ethereum.org/en/

whitepaper/

15. Garther: The reality of blockchain, https://www.gartner.com/

smarterwithgartner/the-reality-of-blockchain/, [online], [cit. 2019-01-
29]

16. Github: Solidity for blockly, https://github.com/promethe42/

blockly-solidity, [online], [cit. 2020-08-10]
17. Google: Blockly, https://developers.google.com/blockly/, [online], [cit. 2020-

08-10]
18. Hevner, A.: A Three Cycle View of Design Science Research. Scandinavian Journal

of Information Systems 19(2) (Jan 2007), http://aisel.aisnet.org/sjis/vol19/
iss2/4

19. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design Science in Information Sys-
tems Research. MIS Q. 28(1), 75–105 (Mar 2004)

20. Huňka, F., Kervel, S.: A Generic DEMO Model for Co-creation and Co-production
as a Basis for a Truthful and Appropriate REA Model Representation, pp. 203–218
(08 2019)

21. Lam, V.S.: A precise execution semantics for bpmn. IAENG International Journal
of Computer Science 39(1), 20–33 (2012)

22. Lamela Seijas, P., Thompson, S.: Marlowe: Financial Contracts on Blockchain: 8th
International Symposium, ISoLA 2018, Limassol, Cyprus, November 5-9, 2018,
Proceedings, Part IV, pp. 356–375 (11 2018)

23. Mita, M., Ito, K., Ohsawa, S., Tanaka, H.: What is stablecoin?: A survey on price
stabilization mechanisms for decentralized payment systems. In: 2019 8th Inter-
national Congress on Advanced Applied Informatics (IIAI-AAI). pp. 60–66. IEEE
(2019)

https://camunda.com/bpmn/reference/
https://camunda.com/bpmn/reference/
https://www.coingecko.com/buzz/yield-farming-survey-2020?locale=en
https://www.coingecko.com/buzz/yield-farming-survey-2020?locale=en
https://www.springer.com/gp/book/9783030388539
https://www.springer.com/gp/book/9783030388539
https://github.com/drozdik-m/das-contract-editor
https://github.com/drozdik-m/das-contract-editor
https://link.smartcontract.com/whitepaper
https://ethereum.org/en/foundation/
https://ethereum.org/en/foundation/
https://ethereum.org/en/whitepaper/
https://ethereum.org/en/whitepaper/
https://www.gartner.com/smarterwithgartner/the-reality-of-blockchain/
https://www.gartner.com/smarterwithgartner/the-reality-of-blockchain/
https://github.com/promethe42/blockly-solidity
https://github.com/promethe42/blockly-solidity
https://developers.google.com/blockly/
http://aisel.aisnet.org/sjis/vol19/iss2/4
http://aisel.aisnet.org/sjis/vol19/iss2/4

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Towards Model-Driven Smart Contract Systems 15

24. Mráz, O., Náplava, P., Pergl, R., Skotnica, M.: Converting DEMO PSI Transaction
Pattern into BPMN: A Complete Method. In: Aveiro, D., Pergl, R., Guizzardi,
G., Almeida, J.P., Magalhães, R., Lekkerkerk, H. (eds.) Advances in Enterprise
Engineering XI: 7th Enterprise Engineering Working Conference, EEWC 2017,
Antwerp, Belgium, May 8-12, 2017, Proceedings, pp. 85–98. Springer International
Publishing, Cham (2017), http://dx.doi.org/10.1007/978-3-319-57955-9_7

25. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008), https://

bitcoin.org/bitcoin.pdf

26. News, B.: Defi’s smart contract risks: Cream finance’s input error
led to cream token plunging 25%, https://blockchain.news/news/

defi-smart-contract-risks-cream-finance-input-error-token-plunge,
[online], [cit. 2020-09-22]

27. OMG: Business Process Model and Notation (BPMN), Version 2.0 (Jan 2011),
http://www.omg.org/spec/BPMN/2.0

28. OMG: Unified Modeling Language, version 2.5 (Mar 2015), http://www.omg.org/
spec/UML/2.5

29. OMG: Decision Model and Notation (DMN), Version 1.2 (Jan 2019), https://

www.omg.org/spec/DMN/1.2/

30. Pintado, O.: Caterpillar: A Blockchain-Based Business Process Management Sys-
tem (2017)

31. Pintado, O., Garćıa-Bañuelos, L., Dumas, M., Weber, I., Ponomarev, A.: CATER-
PILLAR: A Business Process Execution Engine on the Ethereum Blockchain (2018)

32. Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Language Reference
Manual, The (2nd Edition). Pearson Higher Education (2004)

33. Skotnica, M., e.a.: Dascontract 1.0 github repository (2020), https://github.com/
CCMiResearch/DasContract/tree/v1.0

34. Skotnica, M., van Kervel, S.J.H., Pergl, R.: A DEMO Machine - A Formal Foun-
dation for Execution of DEMO Models. In: Aveiro, D., Pergl, R., Guizzardi, G.,
Almeida, J.P., Magalhaes, R., Lekkerkerk, H. (eds.) Advances in Enterprise Engi-
neering XI. pp. 18–32. Springer International Publishing, Cham (2017)

35. Skotnica, M., Pergl, R.: Das contract - a visual domain specific language for mod-
eling blockchain smart contracts. In: Aveiro, D., Guizzardi, G., Borbinha, J. (eds.)
Advances in Enterprise Engineering XIII. pp. 149–166. Springer International Pub-
lishing, Cham (2020)

36. Szabo, N.: Smart contracts, https://www.fon.hum.uva.nl/rob/Courses/

InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.

vwh.net/smart.contracts.html

37. Techopedia: Definition - what does unified modeling language (uml) mean?, https:
//www.techopedia.com/definition/3243/unified-modeling-language-uml,
[online], [cit. 2019-01-29]

38. Voshmgir, S.: Token Economy: How Blockchains and Smart Contracts Revolution-
ize the Economy. Shermin Voshmgir (2019)

39. YChart: Ethereum average transaction fee (2020), https://ycharts.com/

indicators/ethereum_average_transaction_fee

http://dx.doi.org/10.1007/978-3-319-57955-9_7
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://blockchain.news/news/defi-smart-contract-risks-cream-finance-input-error-token-plunge
https://blockchain.news/news/defi-smart-contract-risks-cream-finance-input-error-token-plunge
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/UML/2.5
https://www.omg.org/spec/DMN/1.2/
https://www.omg.org/spec/DMN/1.2/
https://github.com/CCMiResearch/DasContract/tree/v1.0
https://github.com/CCMiResearch/DasContract/tree/v1.0
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.techopedia.com/definition/3243/unified-modeling-language-uml
https://www.techopedia.com/definition/3243/unified-modeling-language-uml
https://ycharts.com/indicators/ethereum_average_transaction_fee
https://ycharts.com/indicators/ethereum_average_transaction_fee

	Towards Model-Driven Smart Contract Systems – Code Generation and Improving Expressivity of Smart Contract Modeling
	Marek Skotnica, Jan Klicpera, Robert Pergl

