
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). 

Towards Generating Software Systems From
Legacy Code: Gathering Associations From

Smalltalk Software

Jan Blizničenko and Robert Pergl

Faculty of Information Technology, Czech Technical University in Prague,
Thákurova 9, Prague, 16000, Czech Republic

{jan.bliznicenko,robert.pergl}@fit.cvut.cz

Abstract. Generating programming code out of models is a useful ap-
proach towards maintainable software systems, yet legacy systems have
often no models at all. There are multiple ways to partially automate
or aid the process of generating models out of legacy code, yet there is
one kind of object-oriented programming languages substantially harder
to transform – dynamically typed languages. While statically typed lan-
guages enforce programmers to explicitly state the data types of various
elements, dynamically typed languages do not, presenting significant dif-
ficulties when gathering associations between classes. This paper presents
an ongoing effort towards dealing with gathering associations by combin-
ing various type inference techniques and tools and how the authors aim
to use UML models as a transition form between origin and destination
programming languages, producing UML models as useful byproducts.
Pharo – Smalltalk-based dynamically typed programming language is
used as a case study.

Keywords: software models, generating, reverse-engineering, type in-
ference

1 Introduction & Motivation

Modeling software systems before implementation has been recommended for
several decades [1, 3] and general model-driven development as well as Normal-
ized Systems theory [7] advises automated or semi-automated ways of generating
programming code out of models [20, 27]. There are several kinds of models, like
Unified Modeling Language – UML [18] – for various aspects of the software,
BPMN for business processes or Normalized Systems models allowing building
modular and well-maintainable software. Furthermore, such models are being
used to automatically generate programming code and even whole systems.

Unfortunately, there are still too many recent or legacy software systems
of various proportions without any models and diagrams at all. Such systems
can be found in any programming language and that is why there are tools for
automating the other way around - generating UML-like diagrams from the code
itself. Generated models and diagrams are not as useful and clear as hand-made



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). 

2 Jan Blizničenko and Robert Pergl

conceptual-level diagrams, yet even the generated models and diagrams provide
a general overview that even well-commented text files with code lack.

With the ability to generate UML models and generate code out of these
models, the long-term goal is to find a way to transform legacy software systems
into modern technologies with as much automation as possible.

To generate UML models, there are several tools available for statically typed
programming languages like C++, Java, C#, and many others. These tools are
able to at least provide UML Class Diagram-like diagrams and some of them
even generate actual UML models by specification. Gathering associations and
data types does not pose any significant problem for such languages, because all
types are explicitly stated in the code itself.

Unlike statically typed languages, dynamically typed ones, like Python, Ruby,
or Smalltalk, do not enforce types of variables, method arguments, and return
values and therefore do not explicitly state data types in the code. For example,
whenever a variable is introduced, there are no checks whether a programmer
assigns an integer, a date, or a person object to the variable. To generate as-
sociations out of attributes and to put types into method signatures in UML
structural models, type inference techniques are needed to extract data types
out of the code.

In this paper, the term association is used for binary associations defined
in OMG UML [6], including aggregations and compositions, but not including
generalizations.

Smalltalk is a dynamically typed language used for over 40 years in various
industrial applications and has several implementations as well as Smalltalk-
based languages, like Pharo, that is used as a case study for all aspects of our
work.

With the ability to generate UML models from legacy software systems cre-
ated in discontinued object-oriented programming languages and the ability to
generate code of recent programming languages, the process of transforming
legacy software systems to current technology could be automated or, at least,
improved.

1.1 Type Inference

Type inference is a process of finding data types in a code that does not specify
them. It can be used in both statically and dynamically typed languages.

Statically Typed Languages In statically typed languages, the data type
information of variables, method parameters, and return types must be known
during compilation (i.e., before the code is actually executed). Certain languages
or their recent versions allow not to specify types in cases where the type can be
found in other parts of code. For example, a compiler will assign the data type to
the variable based on the first object assigned to it and disallow objects of other
types to be assigned there as well. This kind of inference can be (and actually has
to be) done completely in compile time and does not present any new options
or functionality to the programmer, it is just a matter of convenience.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). 

Gathering Associations From Smalltalk 3

Dynamically Typed Languages In this paper, by type inference, it is meant
the kind used for dynamically typed languages. In dynamically typed languages,
data types are usually not provided by the programmer and instead of checking
and verifying data types, only behavior of the object during execution is im-
portant. This is very convenient for fast prototyping, but poses a challenge for
analysis of the code, as it is much harder for both human analysts and analy-
sis tools to determine what kinds of objects could be assigned to the variable,
returned by the method or provided as parameters of the method. To achieve
that, analysis tools (and possibly integrated development environments – IDE)
rely on multiple algorithms and heuristics used in type inference [15]. There are
two general ways to do that: static type inference is usually used where run-time
– or dynamic – type inference is another option for certain cases.

Static Type Inference As the name suggest, static type inference does not
need the code to be actually executed or even fully executable. It relies on
information in the code itself and there are several techniques, algorithms, and
principles to gather these types. For example, wherever a new instance of a
class is created, then assigned to an instance variable (attribute), the class of
which the instance has been created is one of the possible types of the variable.
However, even in this case, where the class surely is a possible type, there is no
indication whether even its superclass and its other subclasses might be used as
well.

Run-time Type Inference The runtime type inference relies on running the
application, executing tests, or otherwise executing the code. Once the code
is executed, any actually used type is being recorded. Unfortunately, there are
several problems limiting the usefulness or even preventing the possibility to use
it [10]. Main issue is with applications that can no longer be executed and fully
used and or not even very thoroughly tested. The reason is that anything about
parts of the code that have not been used cannot be recorded, although rest of
the application has been executed. Additionally, if the method could return both
an integer and a floating-point real number, but returns only integers during the
analyzed execution, its type could be wrongly assumed to be an integer, although
it could be any number.

1.2 Problem Description

This work attempts to present answers to the following questions:

1. How to improve the generating of UML associations from Pharo code, pos-
sibly using and improving upon existing type inference tools and techniques
in Pharo?

2. How to integrate these results into an existing UML and Java code generation
earlier prototype?

Regarding the usage of type inference, the focus is on the amount and quality
of results rather than time efficiency.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). 

4 Jan Blizničenko and Robert Pergl

2 Previous Results & Related Work

This chapter describes the past work of the authors, related state-of-the-art
work, and the current type inference implementation in Pharo.

2.1 Past Work of the Authors

Authors entire work consists of multiple problems and the problem of linking
everything together from the Pharo code to UML Class Diagram and then into
a new code in different programming languages. This paper is a follow-up of
a previous one describing the technical details of the main ideas and early im-
plementation [2], while this one focuses on further achievements on generating
associations between classes using type inference based on combining and im-
proving upon currently known ways.

2.2 Related Work & Current State-of-the-Art

Normalized Systems theory [7] suggests building software from 5 basic elements.
The system should be modified on the model level only, disapproving any mod-
ifications on the generated system as a whole. If such modifications are done,
there are various harmful combinatorial effects impairing the modularity and the
ability to reverse-engineer such changes back into the model. In practice, unless
Normalized Systems theory or strict model-driven development is followed, such
problems are very common and require tools for generating models out of the
code itself.

There are various tools for generating UML models and diagrams for stati-
cally typed languages as well as models similar to UML or partial UML models
for dynamically typed languages, including Pharo.

For example, Pyreverse [12], PyNSource [4], and Lumpy [9] are diagram gen-
erating tools for Python and Umlify [21] for Ruby. Lumpy, PyNSource and Um-
lify do not show any data types or associations, while Pyreverse, as the most
advanced of all, does. However, because of type inference limitations, only some
basic or easily inferred associations and types of instance variables are extracted
and method arguments and return types have not type information at all, as can
be seen in Figure 1.

Special case is the popular web application framework Ruby on Rails with
very strict naming rules that allows both the framework itself and related tools
to find all important data types and associations.

In the case of Pharo, a code analysis tool Moose has several features, generat-
ing FAMIX [8, 13] models being the most relevant. It is able to display very few
associations thanks to the type inference tool RoelTyper. Similarly to Pyreverse,
no method argument types and return types could be found using it. Although
it provides great ideas, it cannot be accepted as a solution, as general knowledge
of the modeling notation, commercial tools support, and the existence of code
generating tools is important as well.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). 

Gathering Associations From Smalltalk 5

OpenPonk modeling tool [24] implemented in Pharo offers UML Class Dia-
gram modeling and provides a full UML metamodel generated from UML spec-
ifications, although no means of generating it.

2.3 Type Inference in Pharo

Pharo community offers 3 static type inference tools – RoelTyper, RBRefac-
toryTyper, and J2Inferer – used, for example, by refactoring tools [26]. It is
important for the community and is subject to several works even just for Pharo
itself [22, 11, 19, 5, 16].

Out of these three, only J2Inferer [23], although being much slower, provides
inference of method arguments and return types [23] and only RBRefactory-
Typer is able to find the types of contents of collections, while others just mark
the type as, for example, Set, without any indication what elements count be
inside.

Run-type (also called dynamic) type inference has been the subject of re-
search for a long time as well [5, 28], including specifically Pharo [17, 25].



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). 

6 Jan Blizničenko and Robert Pergl

Fig. 1: Pyreverse [12] output with unknown types marked as NoneType



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). 

Gathering Associations From Smalltalk 7

3 The Solution

As stated earlier, Pharo is used as the source platform in the case study. Since
the long-term goal is transforming its code into a statically typed programming
languages, Java has been chosen for its lasting popularity and general support. It
would be possible to attempt to directly generate Java classes with some content
from Pharo itself, however, the authors do not aim at full automation of code
transformation, but rather at providing the best information and simplifying the
lives of human analysts. Therefore, another step is taken in between.

Since there already is a partial UML model structure generator [2], it can be
used to create UML models and class diagrams first, improve it, especially the
type inference part to create as many associations as possible, and finally use
existing tools for generating Java code out of UML.

3.1 Generating Associations

To generate associations, type inference is required. With that as a requirement,
type inference can be used not only for associations, but for all possible items
with data types, like instance variables, method attributes, and method return
types. Actually, it is up to the UML user whether she or he creates an association
with another class or just marks the data type of a simple UML class attribute.
In this use case, associations are preferred between classes inside the packages
that are being analyzed and generated from, and simple attributes in other cases,
like String or Date, although these are classes as well.

Their results may come in the form of a list of possible classes (data types)
where only one could be used in both UML and Java code. The correct one
might be one of them or any of their common superclasses. Choosing the right
one may be done either by human analysts or automatically – depending on
how much and how precise the results are needed compared to time and effort.
A simple user interface has been created to provide analysts with the found
possibilities along with a code browser and information about superclasses. In
case of automatic decisions, a quite simple search of the common superclass is
used, with possible improvements for future work. For example, in Figure 2,
where SmallInteger and LargeInteger are both provided as possible, their
closest common superclass – Integer – is marked as the result. If Float was
added to the set of possibilities, Number would be the result.

Despite all that, in some cases, no singular type could ever be found. For
example, it is completely legitimate to provide either an instance of class Block-
Closure or Symbol as an argument in several cases, without them having any
common superclass except Object – the superclass of all classes in both Pharo
and Java.

3.2 Real-time Inferer

Because the success rate of static type inference is quite limited, an own real-time
type inferrer has been implemented, inspired by previous solutions [17, 25].



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). 

8 Jan Blizničenko and Robert Pergl

Number

Integer

SmallInteger LargeInteger

Float

Fig. 2: Simplified class structure example

First, it collects the types of a package (or multiple packages), then tests and
examples and use cases are executed to run the code and collect those types.
Finally, the recording of data types is stopped and the inferrer with its results is
passed inside its own adaptor to the main tool that does not even need to know
how those results were collected.

The real-time type inferrer relies on the code being actually executed. Meth-
ods that are never executed could have no information about its types, as well
as instance variables having no information if nothing has been assigned. On the
other hand, there might be multiple classes, because any object could be present
in the case of dynamically typed languages. For example, an integer, a float, a
date, or any other in the very same variable, even during a single execution of
a single method. Furthermore, only a single class, or even just its subclasses,
might be recorded as a type, even if some other could be there as well: in a
case where only one alternative usage has been executed but not the other. An
example of such structure is illustrated in the figure 2, where Integer subclasses
are correctly marked as possible types, while Float is not.

As a result, the amount and quality of found types depends on the amount
and quality of tests, examples or ability to manually use the application to its
greatest extent. In some cases, the real-time inferrer found several times more
types than all static ones combined, while in other cases it found completely
nothing as there was nothing that could have been executed.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). 

Gathering Associations From Smalltalk 9

3.3 Inferer Chaining

All three described static type inference tools in Pharo have been tested – Roel-
Typer, RBRefactoryTyper, and J2Inferer – along with the custom real-time solu-
tion and compared their results. Adaptor system has been created with adaptors
for each of them, that allows to switch them easily during both testing and final
UML generating. Some attributes were found by one of them, other attributes
by other ones, and J2Inferer added some type information about methods. As a
result, choosing any single of them did not provide satisfactory results. To take
the best results of each alternative, all of them are being chained:

All inferrers are being asked one by one until a sufficient answer is provided.
For example, whenever RBRefactoryTyper did not find any sufficient answer,
J2Inferer is asked. As sufficient are marked such outputs that provide either one
type or multiple ones with a common superclass other than Object.

4 Results and Comparison

To evaluate the results of each type inferrer, along with all of them chained,
each inference option has been used on several packages in Pharo with automatic
evaluation of possible provided options by each one.

4.1 Inference Output Comparison

To compare the results, instance variable types are inferred to create associations,
the amount of these is compared, then these counts are added to the amount
of found method attribute types and method return types. For simplification
purposes, instance variables, method attributes, and return types are further
often referred just as ”items”.

In both cases, for each package used for testing, following steps were taken:

1. picked several core packages of Pharo
2. used each type inferrer separately and all of them chained
3. set automatic way of picking types
4. in the case of real-time type inference, executed all available tests and exe-

cutable examples
5. counted items with sufficient results (single found type other than Object)

Since the focus is on the amount of results, rather than time, their efficiency
has not yet been compared, although it is clear that the combined approach
takes longer time than any single one.

Comparison of found instance variables, and therefore possible UML associa-
tions, can be found in Table 1. The table has an entry for each package, the total
amount of instance variables, the amount of them sufficiently answered by each
type inferrer, including the chained one, and percentage of the total amount.
This is the percentage of possible associations that could be found and created
in the UML model.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). 

10 Jan Blizničenko and Robert Pergl

Table 1: Comparison of the amount of inferred variable types by each type
inferrer

Package name Total Roel RB J2Inferer Real-time Chained

TraitsV2 19 14 (74 %) 16 (84 %) 9 (47 %) 10 (53 %) 16 (84 %)

Tool-Diff 56 33 (59 %) 28 (50 %) 16 (29 %) 41 (73 %) 44 (79 %)

XML-Parser 337 210 (62 %) 207 (61 %) 129 (38 %) 244 (72 %) 264 (78 %)

Zinc-HTTP 167 77 (46 %) 88 (53 %) 48 (29 %) 117 (70 %) 132 (79 %)

Athens-Cairo 222 34 (15 %) 30 (14 %) 22 (10 %) 37 (17 %) 47 (21 %)

OSWindow-Core 440 63 (14 %) 59 (13 %) 39 (9 %) 38 (9 %) 82 (19 %)

LibGit-Core 257 10 (4 %) 15 (6 %) 8 (3 %) 0 (0 %) 15 (6 %)

Table 2: Comparison of the amount of all inferred types by each type inferrer
Package name Total Roel RB J2Inferer Real-time Chained

TraitsV2 744 14 (2 %) 16 (2 %) 136 (18 %) 314 (42 %) 386 (52 %)

Tool-Diff 564 33 (6 %) 28 (5 %) 85 (15 %) 307 (54 %) 342 (61 %)

XML-Parser 6659 210 (3 %) 207 (3 %) 1247 (19 %) 4769 (72 %) 4878 (73 %)

Zinc-HTTP 2364 77 (3 %) 88 (4 %) 312 (13 %) 1590 (67 %) 1648 (70 %)

Athens-Cairo 2064 34 (2 %) 30 (2 %) 92 (5 %) 615 (30 %) 656 (32 %)

OSWindow-Core 1783 63 (4 %) 59 (3 %) 176 (10 %) 175 (10 %) 342 (19 %)

LibGit-Core 3363 10 (<1 %) 15 (<1 %) 451 (13 %) 18 (<1 %) 476 (14 %)

Table 2 has the same structure, but contains method-related types (method
arguments and return types) along with instance and shared variables.

From these tables, it is clear that the results vary greatly between each pack-
age and each inferrer. In some cases, static type inferrers were way more suc-
cessful than real-time one, while in other cases it was the other way around.
Interesting is the comparison between Zinc-HTTP and LibGit-Core in the first
table, where real-time inferrer has substantially greater results in the case of
Zinc-HTTP while having absolutely no results in the case of the LibGit-Core.

In the second table, where method-related types are added to the num-
bers, RoelTyper and RBRefactoryTyper have substantially worse results, be-
cause these are not able to find method-related types at all. Results of J2Inferer
and real-time inferrer are worse too (except for LibGit-Core package), but by a
much smaller margin, especially in the case of the real-time inferrer.

Most importantly, yet as expected, using both static and real-time inference
combined provides the best results – even in the worst case it has results equal
to the best type inferrer out of the four.

In the end, it is possible to create UML models with associations, create
UML class diagrams and generate a basic structure of Java code with classes,
empty methods, and attributes, mostly with proper data types. This part is yet
still in progress.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). 

Gathering Associations From Smalltalk 11

Table 3: Relation to Test Code Coverage
Package name Code coverage Examples Real-time Chained

TraitsV2 51 % 0 314 (42 %) 386 (52 %)

Tool-Diff 0 % 3 307 (54 %) 342 (61 %)

XML-Parser 80,5 % 0 4769 (72 %) 4878 (73 %)

Zinc-HTTP 52 % 3 1590 (67 %) 1648 (70 %)

Athens-Cairo 3,6 % 35 615 (30 %) 656 (32 %)

OSWindow-Core 4,5 % 11 175 (10 %) 342 (19 %)

LibGit-Core 0 % 0 18 (<1 %) 476 (14 %)

4.2 Package Difference Reasons

As stated previously, real-time type inference logs only the types of actually
executed code with as much variance as possible. To get the best results, as
many tests, examples, and use-case scenarios have to be executed as possible.
Such differences between packages might therefore be related to the amount of
such tests, examples, and use-case scenarios provided. To verify this hypothesis,
code coverage was calculated along with counting amount of executable examples
used for logging and is presented in table fig:coverage.

Although no reliable outcome could be generalized with such a small amount
of packages, it indicates that with increasing amount of examples and especially
code coverage, real-time type inference results might improve too. There are still
some exceptions, like Tool-Diff, that has no tests and only 3 examples, yet these
examples are so thorough that result in a quite high amount of found items.
Although LibGit-Core has no tests and no examples, 18 types have been found,
because LibGit is constantly being used by background processes.

5 Discussion and Conclusions

Type inference is important for dynamically typed languages for both analysis
and refactoring tools. Because of that, lots of research and engineering work has
been put into it and several existing tools. There is no single one consistently
better than any other, therefore the proposed approach of combining existing
solutions along with the custom inferrer provides the best results in cases where
the amount of results is more important than speed. Although there might be
cases where the result does not improve upon all specific existing algorithms or
tools, using the best result of all guarantees that the result is at least as good
as the best one, while the initial results presented in tables 1 and 2 suggest that
most of the cases get actual improvements.

Because of that, it is possible to continue efforts towards providing ways for
analysts and researchers to generate UML and finally statically typed modern
code out of legacy systems created in dynamically typed languages.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). 

12 Jan Blizničenko and Robert Pergl

5.1 Programming Languages

Although no legacy applications are implemented in the Pharo itself, Pharo
shares all main similarities with various Smalltalk implementations where sev-
eral important legacy systems exist. For example, there are tools to generate
VisualWorks code from Pharo and vice versa [14], making this solution for
Pharo applicable to at least some other important Smalltalk-based languages
and Smalltalk implementations as well. Although the main ideas of the article
could be applicable to Python, Ruby, and other popular dynamically typed lan-
guages, practical implementation possibilities have yet to be analyzed, especially
regarding real-time type logging mechanisms.

5.2 Generated Models Quality

While the generation of classes, attributes, and operations is mostly good enough
to understand their use and the amount of found data types has been increased,
models lacking even as little as every tenth association could not be very reliable
regarding the overall architecture. With that in mind, most of the future work is
still related to the ability to find associations and data types both automatically
and with human input.

5.3 Future Work

Despite the advancements, there are several ways to build upon the work or
improve what already exists.

Generating UML Class Diagrams The proposed solution is able to create
the full UML model and generate Java code using existing code generators, yet
generating UML class diagrams out of models is a much more complex task.
In the case of large applications with several hundreds or thousands of classes,
creating a single diagram for the whole model would be near to useless. Models
for each subpackage could be created, but many programming languages have
a very shallow package structure or structure so deep that each diagram would
consist of just a few classes without a general overview of the related parts of
the system.

User Interface Although this paper compares purely automatically gained
results, some human interaction would be required in some cases, for which a user
interface and proper tooling would need to be created. While a very simple GUI
(Graphical User Interface) for choosing the data types manually from multiple
options has already been created, most of the work has to be done through code.
The authors aim to improve the situation by creating a complete user interface.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). 

Gathering Associations From Smalltalk 13

Selecting Type from Options Provided by Type inferrers The authors
plan to improve the way of selecting the final type from the options offered by
each type inferrer as well. For example, in some cases, it could be assumed that
a class from the same package has a greatly higher chance of being the correct
type than from a completely unrelated package. This assumption, however, may
be wrong in other cases and needs further analysis.

Improving Type Inference Tools Although type inference results have been
greatly improved, there are always many ways to get even better results. At this
time, only existing type inferrers are used as black boxes, yet these could be
improved using known algorithms and rules not yet implemented in Pharo.

6 Acknowledgements

The presented research was sponsored by Tomcat® computer GmbH.

References

1. Ambler, S.W.: Process patterns: building large-scale systems using object technol-
ogy. Cambridge university press (1998)

2. Bliznicenko, J., Pergl, R.: Generating UML Models with Inferred Types from Pharo
Code. Not yet published (2019). URL http://esug.github.io/2019-Conference/
articles/2019-08-26-IWST19.zip

3. Brambilla, M., Cabot, J., Wimmer, M.: Model-driven software engineering in prac-
tice. Synthesis lectures on software engineering 3(1), 1–207 (2017)

4. Bulka, A.: PyNSource [software]. Online (2019). URL https://github.com/abulka/
pynsource

5. Chugh, R., Jhala, R., Lerner, S.: Type Inference with Run-time Logs (Work in
Progress)

6. Cook, S., Bock, C., Rivett, P., Rutt, T., Seidewitz, E., Selic, B., Tolbert, D.: Unified
Modeling Language (UML) Version 2.5.1. Standard, Object Management Group
(OMG) (2017). URL https://www.omg.org/spec/UML/2.5.1

7. De Bruyn, P., Mannaert, H., Verelst, J., Huysmans, P.: Enabling Normalized Sys-
tems in Practice–Exploring a Modeling Approach. Business & Information Systems
Engineering 60(1), 55–67 (2018)

8. Demeyer, S., Ducasse, S., Tichelaar, S.: Why FAMIX and not UML. In: Proceed-
ings of UML’99, vol. 1723 (1999)

9. Downey, A.: Lumpy: UML in Python [software]. Online (2007). URL http://www.
greenteapress.com/thinkpython/swampy/lumpy.html

10. Meijer, H.J.M., Obasanjo, O.V.: Efficient data access via runtime type inference
(2011). US Patent 7,970,730

11. Milojkovic, N., Ghafari, M., Nierstrasz, O.: Exploiting type hints in method ar-
gument names to improve lightweight type inference. In: 2017 IEEE/ACM 25th
International Conference on Program Comprehension (ICPC), pp. 77–87. IEEE
(2017)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). 

14 Jan Blizničenko and Robert Pergl

12. Nakamura, N.: Exploring Pyreverse. Online (2014). URL https:
//pythonhosted.org/theape/documentation/developer/explorations/explore\
graphs/explore\ pyreverse.html

13. Nierstrasz, O.: Agile software assessment with Moose. ACM SIGSOFT Software
engineering notes 37(3), 1–5 (2012)

14. Object Profile: Pharo2VW [software]. Online (2018). URL https://github.com/
ObjectProfile/Pharo2VW

15. Plevyak, J., Chien, A.A.: Precise concrete type inference for object-oriented lan-
guages. ACM SIGPLAN Notices 29(10), 324–340 (1994)

16. Pluquet, F., Marot, A., Wuyts, R.: Fast type reconstruction for dynamically typed
programming languages. In: ACM Sigplan Notices, vol. 44, pp. 69–78. ACM (2009)

17. Rapicault, P., Blay-Fornarino, M., Ducasse, S., Dery, A.M.: Dynamic type inference
to support object-oriented reengineering in Smalltalk. In: ECOOP Workshops, pp.
76–77 (1998)

18. Rumbaugh, J., Jacobson, I., Booch, G.: Unified modeling language reference man-
ual, the. Pearson Higher Education (2004)

19. Schweizer, D.: Exporting MOOSE Models to Rational Rose UML (2000)
20. Sendall, S., Kozaczynski, W.: Model transformation: The heart and soul of model-

driven software development. IEEE software 20(5), 42–45 (2003)
21. Sokol, M.: Umlify [software]. Online (2011). URL https://github.com/mikaa123/

umlify
22. Spasojević, B., Lungu, M., Nierstrasz, O.: Mining the ecosystem to improve type

inference for dynamically typed languages. In: Proceedings of the 2014 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming & Software, pp. 133–142. ACM (2014)

23. Tesone, P.: Type inference in Pharo. Online (2015). URL https://github.com/
tesonep/j2Inferer/blob/master/presentation/main.pdf

24. Uhnák, P., Pergl, R.: The OpenPonk modeling platform. In: IWST, p. 14 (2016)
25. Uhnák, P., Pergl, R.: Ad-hoc Runtime Object Structure Visualizations with Met-

aLinks. In: Proceedings of the 12th edition of the International Workshop on
Smalltalk Technologies, p. 7. ACM (2017)

26. Unterholzner, M.: Improving refactoring tools in Smalltalk using static type infer-
ence. Science of Computer Programming 96, 70–83 (2014)

27. Vernadat, F.: UEML: towards a unified enterprise modelling language. Interna-
tional Journal of Production Research 40(17), 4309–4321 (2002)

28. Xu, Z., Zhang, X., Chen, L., Pei, K., Xu, B.: Python probabilistic type inference
with natural language support. In: Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp. 607–618
(2016)


