

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Decentralized Enforcement of DEMO Action
Rules Using Blockchain Smart Contracts

Marta Apaŕıcio12 and Sérgio Guerreiro12 Pedro Sousa123

1 Instituto Superior Técnico, University of Lisbon,
Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal

2 INESC-ID, Rua Alves Redol 9, 1000-029 Lisbon, Portugal
3 Link Consulting SA, Av. Duque de Avila 23, 1000-138 Lisbon, Portugal

{marta.m.s.aparicio, sergio.guerreiro, pedro.manuel.sousa}@tecnico.ulisboa.pt

Abstract. Blockchain technology is a solution to coordinate inter-
organizational processes involving untrusted parties. Blockchain is by
design an immutable record, so it is non-trivial or even infeasible to
update Smart Contract. Concerning the automatic generation of Smart
Contracts, Model-Driven Engineering is a software engineering method
that uses models with various views and levels of abstraction to achieve
different goals in the software development process. Models with a lower
level of abstraction can be used to directly generate software production
code. This paper sets out to address the hypothesis of using Blockchain
Smart Contracts to implement DEMO Action Models. If the hypoth-
esis ends up being admissible, through demonstration and verification,
this will mean the reuse of Ontological models in line with the correct
implementation of the Smart Contract on Blockchain.

Key words: Blockchain, DEMO, DEMO Action Model, Ethereum,
Smart Contract

1 Introduction

As enterprises are complex systems involving both human and technological as-
pects and are highly influenced by the environment in which they operate, archi-
tecting an enterprise and the information systems that support their functioning
is not an easy task [1].

Each enterprise has to manage several processes. Business Processes (BPs)
are what enterprises do whenever they deliver a service or a product to cus-
tomers. Dumas et al. [2] defines a BP as “a collection of inter-related events,
activities, and decision points that involve a number of actors and objects, which
collectively lead to an outcome that is of value to at least one customer”. Armed
with this definition of a BP, Business Process Management (BPM), was also
defined in [2], as a “body of methods, techniques, and tools to identify, discover,
analyze, redesign, execute, and monitor business processes to optimize their per-
formance”.

Information Technologies (IT) plays a significant role in BPs or processes in
general, as more and more of them are supported by IT systems. Business Pro-

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

2 Marta Apaŕıcio et al.

cess Management Systems (BPMSs) are just one type of IT tool that supports
the implementation and execution of BPs. There are many others, including
Enterprise Resource Planning (ERP) systems, Customer Relationship Manage-
ment (CRM) systems, and Document Management Systems (DMSs). BPMSs
are mainly focused on the automation of BPs within a given organization (intra-
organizational processes). Many processes, however, span across organizational
boundaries (inter-organizational processes).

The continuous development of digitization and internationalization in var-
ious fields such as e-commerce or supply chain management [3] has led to an
increasing shift to more collaboration in BPs. A characteristic of collaborative
BPs is that they are composed of different sub-processes executed by various or-
ganizations. By their nature, sub-processes carried out by one organization are
usually beyond the domain of influence of all other collaborators [4]. But in the
context of the process, the results of the sub-process may be important to other
collaborators. Therefore, from the perspective of all other collaborators, this cre-
ates uncertainty in the process. Where there is uncertainty, trust is needed [5].
Therefore, collaborative BPs are trust-intensive.

The intricate environment created by global trading leads to enforcing trust
by centralized organizations such as insurances and banks, which themselves
are supported by the ultimate centralized authority in the system, the state
institutions. Nonetheless, this type of organization forces business partners to
depend upon third parties to manage and enforce those contractual agreements.

BC technology can be seen as a solution to coordinate inter-organizational
processes involving untrusted parties [2]. This technology provides a way to
record something that happened to ensure that it cannot be deleted once
recorded. Smart Contracts are mechanisms, that exist in latter BC generations,
that ensure that a given routine is executed every time a transaction, of a given
type, is recorded. Traditionally, the coordination of all parties in a transaction
is accomplished through message exchange. Instead of exchanging messages, all
parties involved in the inter-organizational process can execute transactions on
the BC. This alternative method ensures that important business rules are al-
ways followed.

Through a distributed ledger and shared business logic in the form of Smart
Contracts, enterprises can execute shared business logic and monitor the state
of process instances [4]. Compared to other enterprise integration efforts, such as
Service-Oriented Architectures (SOAs), BC allows organizations to use a single
shared database to manage and operate their shared BP.

Although the feasibility of implementing BPs on top of BC has been proven,
BC is considered a relatively new technology compared to others. As Gartner
claims [6], BC technology is still very immature to support most of the potential
use cases and there’s still a tremendous amount of research, implementation,
and adoption to be done. Further, building systems on BC is non-trivial due to
the steep learning curve of the BC technology. According to another survey by
Gartner [7], “23 percent of [relevant surveyed] CIOs said that blockchain requires

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

DEMO Action Rules Using Blockchain Smart Contracts 3

the most new skills to implement of any technology area, while 18 percent said
that blockchain skills are the most difficult to find” [7].

A concrete and real example of a problem that occurred in a BC was analyzed
and discussed by Alex Norta in [8]. The paper refers to a crowdfunding project
that was hacked due to security flaws, which resulted in a loss of $50 million.
Concerning this problem, North states “The incident shows it is not enough to
merely equip the protocol layer on top of a BC with a Turing-complete language
such as Solidity to realize smart-contract management. Instead, we propose in
this keynote paper that is crucial to address a gap for secure smart-contract
management pertaining to the currently ignored application-layer development”
[8]. This suggests that the automatic generation of Smart Contracts would have
the added value of creating a new level of security.

Concerning the automatic generation of Smart Contracts, several approaches
can be followed, one of which being a Model-Driven Engineering (MDE) ap-
proach. MDE is a software engineering method that uses models with various
views and levels of abstraction to achieve different goals in the software devel-
opment process. Models with a lower level of abstraction can be used to directly
generate software production code. In the context of BC applications, MDE is
of particular importance as the BC is by design an immutable record, so it is
non-trivial or even infeasible to update Smart Contracts [9].

In an industrial environment, BPs, as part of enterprises, can be decomposed
into two parts: the BP model, the desired behavior of a BP; and the BP instance,
the actual behavior in operation in a specific enterprise. An ontology model of
a system is fully independent of the implementation, and it only shows the
essential features. A good example of an ontology is the Design & Engineering
Methodology for Organizations (DEMO) method of Enterprise Ontology (EO)
because it treats the enterprise as a system [10].

DEMO has been widely accepted in both scientific research and practical
appliances [11, 12]. In DEMO, an enterprise is seen as a system of people and
their relations, authority and responsibility. The usage of a strongly simplified
models that focus on people forms the basis of DEMO. By using a language that
is common in the enterprise, the understanding of such models is guaranteed,
even though they’re abstract and have a conceptual nature.

Compared with its implementation model, the EO model reduces complexity
[13]. This reduction in complexity makes the organization more transparent. It
also shows the consistency between all areas within the enterprise, such as BPs
and workflows.

This paper, as the title suggests, intends to explore the implementation of
DEMO Action Models in BC Smart Contracts. To demonstrate and later discuss
the ontological implications of this implementation, a Rent-A-Car use case was
created. A BC Smart Contract was generated and a simulation of the function-
ality was performed as well.

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

4 Marta Apaŕıcio et al.

2 Related Research

There have been attempts at raising the level of abstraction from code-centric
to model-centric SCs development. The different approaches tried so far, can
be divided into three: the Agent-Based Approach, the State Machine Approach,
and the Process-based approach [16].

The Agent-Based Approach described by [17] proposes a modeling approach
that supports the semi-automated translation of human-readable contract repre-
sentations into computational equivalents to enable the codification of laws into
verifiable and enforceable computational structures that reside within a pub-
lic BC. They identify SC components that correspond to real-world institutions
and propose a mapping using a domain-specific language to support the contract
modeling process. The concept Grammar of Institutions [18] is used to decom-
pose institutions into rule-based statements. These statements are then compiled
in a structured formalization. In this case, the statements are constructed from
five components, abbreviated to ADICO. The Attributes describing an actor’s
characteristics or attributes. The Deontic describing the nature of the statement
as an obligation, permission, or prohibition. The AIm describing the action or
outcome that this statement regulates. The Conditions describing the contextual
conditions under which this statement holds. And the Or else describing conse-
quences associated with non-conformance. Using these components, statements
on the execution of the SC are made.

The State Machine Approach is based on the observation that SCs act as
state machines. A SC is in an initial state and a transaction transitions the
contract from one state to the next. The possibility of SCs as state machines is
also described in the Solidity specification. [19] show that the transformation of
the Finite State Machine to Solidity is partly automated since to ensure Solidity
code quality, some manual coding might be necessary or added through plugins.

In [20] was proposed as a tool to support inter-organizational processes
through BC technology. To ensure that the joint process is correctly executed,
the control flow and business logic of inter-organizational business processes are
compiled from the processes models into smart contracts. Weber et al. developed
a technique to integrate BC into the choreography of processes to maintain trust,
employing triggers and web services. By storing the status of process execution
across all involved participants, as well as coordinating the collaborative busi-
ness process execution in the BC. The validation was made against the ability
to distinguish between conforming and non-conforming traces. [21] presented an
optimization in regards to the already presented paper [20]. To compile BPMN
models into a Smart Contract in Solidity Language, the BPMN model is first
translated into a reduced Petri Net. Only after this first step, the reduced Petri is
compiled into a Solidity Smart Contract. Compared to [20], [21] managed to de-
crease the amount of paid resources and achieve higher throughput. Caterpillar,
first presented in [22] and further discussed in [23], is an open-source Business
Process Management System that runs on top of the Ethereum BC. Like any
BPMS, Caterpillar supports the creation of instances of a process model (cap-
tured in BPMN) and allows users to track the state of process instances and

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

DEMO Action Rules Using Blockchain Smart Contracts 5

to execute tasks thereof. The specificity of Caterpillar is that the state of each
process instance is maintained on the Ethereum BC, and the workflow routing
is performed by Smart Contracts generated by a BPMN-to-Solidity compiler.
Given a BPMN model (in standard XML format), it generates a Smart Con-
tract (in Solidity), which encapsulates the workflow routing logic of the process
model. Specifically, the Smart Contract contains variables to encode the state
of a process instance, and scripts to update this state when-ever a task com-
pletes or an event occurs. Tran et al. [24] presented a tool that automatically
creates a well-tested Smart Contract code from specifications that are encoded in
the business process and data registry models based on the implemented model
transformations. The BPMN translator can automatically generate Smart Con-
tracts in Solidity from BPMNmodels while the registry generator creates Solidity
Smart Contract based on the registry models. The BPMN translator takes an
existing BPMN business process model as input and outputs a Smart Contract.
This output includes the information to call registry functions and to instanti-
ate and execute the process model. The registry generator takes data structure
information and registry type as fields, and basic and advanced operations as
methods, from which it generates the registry Smart Contract. This work builds
upon already seen works, such as [21, 20], for the BPMN translation algorithms.

3 Methodologies Used

3.1 DEMO

Dietz uses the ψ − theory to construct a methodology providing an ontological
model of an organization, i.e. a model that is coherent, comprehensive, consis-
tent, and concise, and that only shows the essence of the operation of an organi-
zation model. This methodology is called Design and Engineering Methodology
for Organizations (DEMO). DEMO has been widely accepted in both scientific
research and practical appliance [11]. In DEMO, an enterprise is seen as a system
of people and their relations, authority and responsibility. The usage of a strongly
simplified models that focus on people forms the basis of DEMO. By using a
language that is common in the enterprise, the understanding of such models
is guaranteed, even though they’re abstract and have a conceptual nature. The
core concept of DEMO is a transaction, fully based on the ψ − theory.

This paper starts with a belief that a DEMO transaction is represented as a
contract in BC. The contract has its own address, internal storage, attributes,
methods and it is callable by either an external actor or another contract. This is
the functionality needed to represent a DEMO transaction. They implemented
the execution of DEMO transactions according to the DEMO Machine [31] and
associated theories. Now, this present work argues that the SCs automated gen-
eration could be done directly from the Action Model. It believes that the struc-
ture and content of a SC can be directly mapped to each action rule. Since that,
by creating the action rules it is also being created the logic on which the SCs
operate. In fact, the action rules contain all the decomposed detail of the above

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

6 Marta Apaŕıcio et al.

Fig. 1. Proposed Solution Architecture, original figure from [30]

models, the basis of the DEMO methodology is exactly the Action Model, as
can be seen in Figure 3.1. The Construction Model specifies the construction
of the organization, specifies the identified transaction types and the associated
actor roles, as well as the information links between the actor roles and the in-
formation banks. By occupying the top of the triangle it is suggested that is the
most concise model. The Process Model contains, for every transaction type in
the Construction Model, the specific transaction pattern of the transaction type.
And, also contains the causal and conditional relationships between transactions.
The Process Model is put just below the Construction Model in the triangle be-
cause it is the first level of detailing of the Construction Model, namely, the
detailing of the identified trans-action types. The Action Model specifies the ac-
tion rules that serve as guidelines for the actors in dealing with their agenda.
The Action Model is put just below the Process Model in the triangle because
it is the second level of detailing of the Construction Model, namely, the de-
tailing of the identified steps in the Process Model of the transaction types in
the Construction Model. At the ontological level of abstraction, there is nothing
below the Action Model. The Fact Model is put on top of the Action Model
in Figure 3.1 because it is directly based on the Action Model; it specifies all
object classes, fact types, and ontological coexistence rules that are contained in
the Action Model. The Action Model is in a very literal sense the basis of the
other aspect models since it contains all information that is (also) contained in
the Construction Model, Process Model, and Fact Model; but differently. These
models have as if a zoom in (Action Model) zoom out (Construction Model)
relationship between each other. The Action Model is the most detailed and
comprehensive aspect model.

3.2 Model-Driven Engineering

MDE is a software engineering method that uses models with various views
and levels of abstraction to achieve different goals in the software development

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

DEMO Action Rules Using Blockchain Smart Contracts 7

process. Models with a lower level of abstraction can be used to directly generate
software production code.

In the context of BC applications, MDE is of particular importance as the
BC is by design an immutable record, so it is non-trivial or even infeasible to
update Smart Contracts [9].

MDE tools can generate well-tested code implementing best practices and
help developers manage software complexity by only focusing on building high-
level models without requiring expert development knowledge [27], thereby re-
ducing the occurrence of vulnerable code that may easily be attacked. With
research on BC technology on the rise and new ways of applying this technology
to different domains being discovered [28], it becomes necessary not to over-
fit to a specific BC platform. Model abstraction can avoid this problem, and
Model-Driven development tools can be applied at multiple BC platforms. Mod-
els are easier to understand than code, which improves development efficiency
[29]. It is easier to check the correctness of a model, and Model-Driven tools
can ensure that the deployed code is not modified after it is generated from the
model. MDE development of BC applications can facilitate communication with
domain experts [24], who can examine models to understand how their ideas are
represented in the system.

3.3 Blockchain

Nakamoto [25] described BC as an architecture that gives participants the ability
to perform electronic transactions without relying on trust. What makes this
possible is that each block contains some data, the hash of the block, and the
hash of the previous block. The data that is stored inside a block depends on the
type of BC, but normally stores the details of multiple transactions, each with
identification for the sender, the receiver, and the asset. A block also has a hash
that identifies its content and it’s always unique. If something is changed inside
a block, that would cause the hash to change. That’s why hashes are very useful
to detect changes in blocks. The hash of the previous block effectively creates a
chain of blocks and it’s this technique that makes a BC so secure.

However, the hashing technique is not enough, with the high computational
capacity that exists today, where a computer can calculate hundreds of thou-
sands of hashes, per second [16]). To mitigate this problem, BC has a consensus
mechanism called Proof-of-Work. This mechanism slows down the creation of
new blocks since if a block is tempered the Proof-of-Work of all the previous
blocks has to be recalculated. So, the security of BC comes from its creative
use of hashing and a Proof-of-Work mechanism. As long as a majority of CPU
power is controlled by nodes that are not cooperating to attack the network,
they’ll outpace attackers. Of course, its distributive nature also adds a level of
security, since instead of using a central entity to manage the chain, BC uses a
peer-to-peer network where anyone can join. Information is broadcast on a best
effort basis, and nodes can leave and rejoin the network at will, accepting the
longest Proof-of-Work chain as proof of what happened while they were gone.

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

8 Marta Apaŕıcio et al.

3.4 Smart Contracts

In the context of BC, in particular second-generation BC, SCs are just like con-
tracts in the real world. The only difference is that they are completely digital,
in the sense that they are both defined by software code and executed or en-
forced by the code itself automatically without discretion. The trust issue is also
addressed, once Smart Contracts are stored on a BC, they inherit some inter-
esting properties: immutable and distributed. Being immutable means that once
a SC is created, it can never be changed again. So, it is ’t possible to tamper
with the code of the contract. Being distributed means that the output of the
contract is validated by every node on the network. So, a single node can not
force the behavior of the contract since it is dependent on the other nodes. Like
all algorithms, SCs may require input values and only act if certain pre-defined
conditions are met. When a particular value is reached the SC changes its state
and executes the functions, that are programmatically predefined algorithms,
automatically triggering an event on the BC. If false data is inputted into the
system, then false results will be output [26].

4 Our Approach

Solidity is a high-level programming language to implement SCs specially design
for the Ethereum Virtual Machine (EVM). Solidity was chosen because itis de-
veloped under Ethereum and it is the most used language for SCs for EVM. The
building block in Solidity is a contract that is similar to a class in object-oriented
programming. A Contract contains persistent data in state variables, functions
to operate on this data and it also supports inheritance. A Contract can further
contain function modifiers, events, struct types, and other structures to allow
the implementation of complex contracts, and full usage of EVM and BC ca-
pabilities. A SC written in Solidity can be created either through an Ethereum
transaction or by another already running contract, just like an instance of a
class would be created. Either way, the contract code is then compiled to the
EVM bytecode, a new transaction is created holding the code and deployed to
BC, returning the address of the contract for further interaction.

Contracts often act as a state machine, which means that they have certain
stages in which they behave differently or in which different functions can be
called. A function call often ends a stage and transitions the contract into the
next stage, this is known as the State Machine common pattern [32]. Through
the DEMO theory, it is known that actors interact by means of creating and
dealing with C-facts. Since these contracts will model interactions it seems fit
to model C-facts into stages, these stages are implemented as Enums. Enums
are a way to create a user-defined type in Solidity, for this particular applica-
tion seven stages, corresponding to the coordination facts: Initial; Requested;
Promised; Declined; Declared; Accepted; Rejected. The Initial stage was cre-
ated with the assumption that the deployment of a contract by someone doesn’t
mean they want to immediately start the transactions. Function Modifiers can
automatically check a condition before executing a function. So to guard against

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

DEMO Action Rules Using Blockchain Smart Contracts 9

incorrect usage of the contract functions a dedicated function modifier will check
if a certain function can be called in a certain stage. The DEMO theory defines
C-acts as acts in a business conversation, so these will be modeled as functions
that can only be called by a certain address in a certain stage of the contract. To
implement the guard of access to the functions the Restricting Access common
pattern was implemented [32], through function modifiers once again. The P-act
by the same logic is implemented through a function modifier that is only called
in functions that represent the coordination act declares. The function modifier
that represents the P-act will emit an event corresponding to the P-fact, as a
production fact is a result of performing a production act. The model presented
below refers to the contract from which all other contracts are derived.

contract Transaction {

enum C_facts { Inital, Requested, Promissed, Declared, Accepted,

Declined, Rejected }

C_facts public c_fact = C_facts.Inital;

address payable public initiator;

address payable public executor;

event p_fact(address _from, bytes32 _hash);

modifier p_act(){ bytes32 hash = keccak256(abi.encodePacked(now,

block.difficulty, msg.sender));

emit p_fact(msg.sender, hash);

_; }

modifier atCFact(C_facts _c_fact) {

require(c_fact == _c_fact,

"Function cannot be called at this time.");

_; }

modifier onlyBy(address _account) {

require(msg.sender == _account, "Sender not authorized.");

_; }

function nextCFact(bool happyFlow) internal {

if(happyFlow == true){

c_fact = C_facts(uint(c_fact) + 1); }

if(happyFlow == false && c_fact == C_facts.Requested){

c_fact = C_facts.Declined; }

if(happyFlow == false && c_fact == C_facts.Declared){

c_fact = C_facts.Rejected; } }

modifier transitionNext(bool happyFlow) {

_;

nextCFact(happyFlow); }

}

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

10 Marta Apaŕıcio et al.

5 Use Case: Rent-A-Car

The case Rent-A-Car is an exercise in producing the essential model of an enter-
prise that offers the usufruct of tangible things: Rent-A-Car is a company that
rents cars to customers. At [12] all four aspect models (CM, AM, PM, and FM)
are presented. Together they constitute a coherent whole that offers full insight
into an overview of the essence of car rental companies. The product action rules
can directly be transformed into executable computer code.

After defining the parent contract, for each of the transaction kinds of the
Rent-A-Car case, a contract is created. The idea would be for the client to deploy
the RentalCompleting SC into the BC, after that he would be able to request
that same transaction.

contract RentalCompleting is Transaction{

struct Rental {

uint256 stratingDate;

uint256 endingDate;

uint256 maxRentalDuration;

uint256 drivingLicenseExpirationDay;

...}

//other defined facts

Rental public rental;

//other declared facts

constructor() public{

initiator = 0x5c80...; //rentACar

executor = msg.sender; //client

rental.maxRentalDuration = 10;

//other initialized facts

}

...

At the requestRentalCompleting the truth division of the assess part of ARS-1 is
implemented through the build-in function require(). After all the required check
and initializations the state of the requestRentalCompleting contract is changed
to Requested.

function requestRentalCompleting

(uint256 _startingDate, uint256 _endingDate,

uint256 _drivingLicenseExpirationDay) public

atCFact(C_facts.Inital) onlyBy(executor) {

require(_endingDate >= _startingDate);

//checks of truth division

...

c_fact = C_facts.Requested; }

At the promiseRentalCompleting the contract DepositPaying is created. The
DepositPaying contract must be deployed at the returned address. Note that
in this particular case at the end of the function the state is not updated to

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

DEMO Action Rules Using Blockchain Smart Contracts 11

Promised as this will only be done at the acceptInvoicePaying function of the
InvoicePaying contract as shown in the PSD at [10].

function promiseRentalCompleting() public

atCFact(C_facts.Requested) onlyBy(initiator) returns (address) {

DepositPaying depositPaying = new DepositPaying(address(this));

return address(depositPaying); }

Only at the requestDepositPaying the With clause of the action clause of the
response part of ARS-1 is implemented through the build-in require() function.

contract DepositPaying is Transaction {

RentalCompleting rentalCompleting;

//constructor

function requestDepositPaying

(uint256 _rq_depositAmount) public

atCFact(C_facts.Inital) onlyBy(executor) {

RentalCompleting.CarGroup memory cG

= rentalCompleting.rental();

require(_rq_depositAmount == cG.standardDepositAmount);

c_fact = C_facts.Requested; }

Due to space restrictions, the rest of the code won’t be shared but the logic
throughout the transactions is always the same. It’s also relevant to say that both
the declareDepositAmount and declareInvoicePaying implement the Withdrawal
common pattern. The rest of the generated code can be found on GitHub under
https://github.com/martasaparicio/try.

Fig. 2. A Screenshot from Remix Simulation

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

12 Marta Apaŕıcio et al.

6 Ontological Implications

With this fusion between DEMO Action Models and Smart Contracts, we be-
lieve multiple ontological changes would happen. These changes can be the dis-
appearance of transactions that are tacitly performed by the Blockchain, making
it difficult to distinguish between an executor role and an initiator role, or even
the disappearance of some type of actor roles.

This Use Case presented may ease access to car renting to the different parties
involved, especially the information exchange. Furthermore, this Use Case can
benefit from the use of BC to provide an immutable trace of registry changes.
The use of BC may also provide higher resilience to system faults and a more
seamless exchange of funds.

Going even further, some ontological transactions could disappear, at least
the ones that only exist to deal with truss issues between parties.

In this particular case, the CarTaking and CarReturning would be done tac-
itly, as the access to the asset, in this case a car, would be controlled by the
BC. The control could be done through a publish subscribe mechanism. When
the client invokes the functions declareCarTaking() and declareCarReturning(),
that consequently invoke the modifier p fact(), that in turn issues an event rep-
resenting the p act(). The Rent-A-Car may listen to these events by subscribing
to them.

More generically, the execution of the functions representing the declare
transaction step emit events, which are stored in the transactions tier of the
blocks the transactions are contained in. All the other transaction steps are also
recorded in the BC but without the emission of a representative event.

It is important to note, however, that in the solution presented human actors
are ultimately responsible and accountable for the acts of these artifacts. Human
actors send transactions to a BC via specific wallet software. The transaction
contains a data payload containing instructions to invoke SC functions with
specific input parameters. The function may update state variables, which are
stored, in the contract’s internal storage. Each declare function call may emit
an event, to which an actor can subscribe. All other DEMO transaction steps,
if successful, are also recorded in the BC.

Following the nomenclature suggested in [12], this solution does not remove
the final responsibility and accountability for the acts from subjects. By subjects,
it is understood, human beings responsible for actor roles. The technological
capabilities of the BC, however, outperform, in order of magnitude, the subject’s
capabilities. This work proves the feasibility of implementing actor roles using
BC. So, the question is, what it means to have agents perform the P-acts and
C-facts while keeping in mind that agents cannot be held accountable. By agents
understand BC artifacts to perform functions of, an actor role.

Transactions typically occur on one or more of the performa, informa, and
forma levels. Datalogical transactions, given this work, do not present any con-
tradiction in being executed by agents. However, there must always exist an
actor ultimately responsible for the work and who can be held accountable for
the agent. The solution presented makes the execution of P-acts tacit when

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

DEMO Action Rules Using Blockchain Smart Contracts 13

declaring a transaction. Since C-facts represent social commitments, C-acts are
performed by the actor, himself through the invocation of a SC function. Info-
logical transactions, in the perspective of this work, follow the same guideline
as Datalogical transactions. The guideline proposed for Datalogical transactions
allows exchanges of information or knowledge between actors. When it comes to
performing original P-acts, at an Ontological transaction level, agents are not
capable of dealing autonomously with it, as they cannot be ultimately respon-
sible and accountable for the acts. However, BC can support O-actors with the
P-acts by doing so as tacitly as possible, that is, by doing so by invoking the
function that represents the declaration C-act. However, this form of operation
must be known to the actor. This presented solution allows supporting O-actors,
to a large extent, while never taking over the authority and responsibility that
is assigned to an actor. This work defends the idea of co-existence between the
subjects and the BC.

7 Conclusion and Further Research

The research presented in this paper is both timely and relevant as [4] research
confirms an apparent synergy between artifact-centric process modeling and SCs.

To address this problem we propose a mapping between Solidity Concepts
and DEMO Action Model concepts, this proposition can be seen as a way to im-
plement DEMO Action Model. However, this work didn’t consider optimization
as an issue to resolve, for that reason, this must be considered as future work.
Although this work presents a verification of the research presented through the
Rent-A-Car Use Case a future work to consider would be related to its valida-
tion. Besides testing the mapping proposed in a more sizable sample of Action
Models would be of great importance.

Modeling methods based on Ontology can lead to better data standards, busi-
ness practices, and processes for developing and operating a Blockchain. The
modeling methods based on Ontology can aid in the formal specifications for
automated inference and verification in the operation of a Blockchain. This last
benefit is particularly interesting as is very similar to the definition of Smart Con-
tracts as “pieces of software that represent a business arrangement and execute
themselves automatically under predetermined circumstances” [33]. For these
reasons, Kim and Laskowski claimed in [34] that “ontology-based blockchain
modeling will result in a blockchain with enhanced interpretability” [34].

References

1. M. Op’t Land, E. Proper, M. Waage, J. Cloo, and C. Steghuis,Enterprise architec-
ture: creating value by informed governance. Springer Science & Business Media,
2008.

2. M. Dumas, M. L. Rosa, J. Mendling, and H. A. Reijers,Fundamentals of Business
Process Management. Springer Berlin, 2019.

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

14 Marta Apaŕıcio et al.

3. K. C. Laudon and C. G. Traver, E-commerce: business. technology. society. Pearson,
2020.

4. M. van Wingerde and H. Weigand, “An ontological analysis of artifact-centric busi-
ness processes managed by smart contracts,” in 2020 IEEE 22nd Conference on
Business Informatics (CBI), vol. 1.IEEE, 2020, pp. 231–240.

5. M. Muller, N. Ostern, and M. Rosemann, “Silver bullet for all trust issues?
blockchain-based trust patterns for collaborative business processes,”Blockchain for
Trust-aware Business Processes Preprint, 07 2020.

6. Gartner,“The reality of blockchain,”https://www.gartner.com/smarterwithgartner/the-
reality-of-blockchain/, 2019, accessed: 2020-08-10.

7. Gartner,“Gartner survey reveals the scarcity of current blockchain
deployments,”https://www.gartner.com/en/newsroom/press-releases/2018-05-
03-gartner-survey-reveals-the-scarcity-of-current-blockchain, 2018, accessed:
2020-08-10.

8. A. Norta, “Designing a smart-contract application layer for transacting decentral-
ized autonomous organizations,” in Advances in Computing and Data Sciences, M.
Singh, P. Gupta, V. Tyagi,A. Sharma, T. Oren, and W. Grosky, Eds. Singapore:
Springer Singapore, 2017, pp. 595–604.

9. X. Xu, I. Weber, and M. Staples, “Model-driven engineering for blockchain appli-
cations,” in Architecture for Blockchain Applications. Springer, 2019, pp. 149–172.

10. J. L. G. Dietz, Enterprise ontology: theory and methodology. Springer, 2011.
11. M. Andrade, D. Aveiro, and D. Pinto, “Demo based dynamic information system

modeller and exe-cuter,”Proceedings of the 10th International Joint Conference on
Knowledge Discovery, KnowledgeEngineering and Knowledge Management, 2018.

12. J.L.G. DIETZ, J.B.F. MULDER,ENTERPRISE ONTOLOGY: a human-centric
approach to understanding the essence of organisation. SPRINGER NATURE, 2020.

13. J. Dietz and J. Hoogervorst, “Enterprise ontology and enterprise architecture–how
to let them evolve into effective complementary notions,”GEAO Journal of Enter-
prise Architecture, vol. 2, no. 1, pp.121–149, 2007.

14. Hevner, A. (2007). A Three Cycle View of Design ScienceResearch.Scandinavian
Journal of Information Sys-tems, 19(2). http://aisel.aisnet.org/sjis/vol19/iss2/4.

15. Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). De-sign Science in Infor-
mation Systems Research.MISQ., 28(1), 75–105.

16. Aparicio., M., Guerreiro., S., & Sousa., P. (2020). Towards an automated demo
action model implementation using blockchain smart contracts. InProceedings of
the 22nd International Conference on Enterprise Information Systems - Volume 2:
ICEIS,(pp. 762–769).:INSTICC SciTePress.

17. Frantz, C. K. and Nowostawski, M. (2016).From institutions to code: Towards
automated generation ofsmart contracts. In2016 IEEE 1st International Work-shops
on Foundations and Applications of Self* Systems (FAS*W), pages 210–215.

18. Crawford, S. E. S. and Ostrom, E. (1995). A grammar of institutions.American
Political Science Review,89(3):582–600.

19. Mavridou, A. and Laszka, A. (2018).Designing Secure Ethereum Smart Contracts:
A Finite State Machine Based Approach, pages 523–540.

20. Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev,A., and Mendling, J.
(2016). Untrusted business process monitoring and execution using blockchain. In
La Rosa, M., Loos, P., and Pastor, O., editors,Busi-ness Process Management, pages
329–347, Cham.Springer International Publishing.

21. Garcia-Banuelos, L., Ponomarev, A., Dumas, M., and Weber, I. (2017). Optimized
execution of business processes on blockchain.

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

DEMO Action Rules Using Blockchain Smart Contracts 15

22. Pintado, O. (2017). Caterpillar: A blockchain-based business process management
system.

23. Pintado, O., Garciaa-Banuelos, L., Dumas, M., Weber, I.,and Ponomarev, A.
(2018). Caterpillar: A business process execution engine on the ethereum blockchain.

24. Tran, A. B., Lu, Q., and Weber, I. (2018). Lorikeet: A model-driven engineering tool
for blockchain-based business process execution and asset management. In BPM.

25. Nakamoto, S. (2009).Bitcoin: A peer-to-peer elec-tronic cash system.Cryptography
Mailing list athttps://metzdowd.com.

26. Bahga, A. and Madisetti, V. (2016). Blockchain platformfor industrial internet of
things.Journal of SoftwareEngineering and Applications, 09:533–546.

27. D. C. Schmidt, “Guest editor’s introduction: Model-driven engineering,”Computer,
vol. 39, no. 2, pp.25–31, Feb 2006.

28. B. Scott, J. Loonam, and V. Kumar, “Exploring the rise of blockchain technology:
Towards distributed collaborative organizations,”Strategic Change, vol. 26, no. 5,
pp. 423–428, 2017.

29. “Why model-driven engineering fits the needs for blockchain application develop-
ment.” [Online].

30. Guerreiro, S. (2012). Enterprise dynamic systems control enforcement of run-time
business transactions using demo: principles of design and implementation. Instituto
Superior Tecnico, Lisboa.

31. Skotnica, M., van Kervel, S. J. H., and Pergl, R. (2017).A demo machine - a formal
foundation for executionof demo models. In Aveiro, D., Pergl, R., Guizzardi,G.,
Almeida, J. P., Magalhaes, R., and Lekkerkerk, H.,editors,Advances in Enterprise
Engineering XI, pages18–32, Cham. Springer International Publishing.

32. Wohrer, M. and Zdun, U. (2018).Design patterns forsmart contracts in
the ethereum ecosystem. In2018IEEE International Conference on Internet of
Things(iThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart
Data(SmartData), pages 1513–1520.

33. “Not-so-clever contracts.” [Online].
34. H. Kim and M. Laskowski, “Towards an ontology-driven blockchain design for

supply chain prove-nance,” inWiley Online Library, 08 2016.

