
JudithJeyafreeda@Dravidian-CodeMix-FIRE2020:
Sentiment Analysis of YouTube Comments for Dravidian
Languages
Judith Jeyafreeda Andrew

GREYC, CNRS, Université de Caen, Normandie, France

Abstract
Sentiment Analysis is a process of identifying the tone of a given sentiment/opinion. It focuses on the polarity
of the sentiments - positive, negative or neutral. In this paper, the goal is to classify sentiments from a dataset
of comments/posts into pre-defined classes belonging to two code-mixed Dravidian Languages (code mixed
Malayalam-English and code mixed Tamil-English) collected from social media. A new gold standard corpus
for sentiment analysis for code-mixed Dravidian languages (Malayalam-English and Tamil-English) is used in
this paper. The classification is performed as a multi-class classification problem. For this purpose, several
well known machine learning models have been used. Based on the accuracy of each model obtained from the
development set, the best model is chosen for prediction.

Keywords
Sentiment Analysis, Multi-class classification, Machine Learning, Dravidian Languages

1. Introduction

Sentiment Analysis aims at identifying the polarity of the text. The task in FIRE 2020([1], [2]) is to
classify sentiments from the YouTube comments in the code-mixed Dravidian languages of Tamil and
Malayalam. Thus for this purpose, a Multiclass classification approach is used. Multiclass text classi-
fication is a process of classifying an instance into one of the multiple classes possible. In a multi class
classification problem, an instance can belong only to one class. There are several machine learning
models for these type of classification problems. Some of the models are better suited for a certain
problem than others. Thus the goal of this work is to find the best suited model for the particular task
at hand. This technique allows for experimenting with several machine learning models to obtain
better predictive performance. The task discussed in this paper uses datasets from two Dravidian lan-
guages - Tamil and Malayalam. The classification is a multi-class classification. In the sense that there
are several classes to choose from to classify an instance. Several machine learning algorithms have
been trained for this purpose. The accuracy of each model is then calculated from the development
datasets and based on this measure, the model with the highest accuracy is chosen for prediction.

2. Related Work

[3] presents an improvement of word sense translation for under-resourced languages. It focuses on
cleaning the noisy corpus in the form of code-mixed content at word-level based on orthographic

FIRE 2020: Forum for Information Retrieval Evaluation, December 16-20, 2020, Hyderabad, India
email: judith-jeyafreeda.andrew@unicaen.fr (J.J. Andrew)
orcid: 0000-0002-2305-1439 (J.J. Andrew)

© 2020 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:judith-jeyafreeda.andrew@unicaen.fr
https://orcid.org/0000-0002-2305-1439
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


information which results in improvement of Dravidian languages. It also proposes to alleviate the
problem of different scripts by transcribing the native script into a common representation such as
the Latin script or the International Phonetic Alphabet (IPA).

[4] presents the two popular methods which decompose multi-class problems into many binary
class problems, the “one-against-all” and the “one-against-one” approaches. The "one-against-all"
approach is fairly simple. Suppose there are 𝐾 classes, these 𝐾 classes are partitioned into a two
class problem - one for a "true" class and the other for the "others" class. Thus there are 𝐾 two way
classifiers, one for each class. In a "one-against-all" approach, a two way classifier is trained for all
possible pairs of classes leading to 𝐾 (𝐾 -1)/2 two way classifiers for a problem with 𝐾 classes.

Random Forests are popular machine learning models for classification [5], [6]. A random forest is
an ensemble of tree structure classifiers where every tree gives a unit vote assigning the most probable
class label to the input [7]. [8] describes an improved random forest classification approach for im-
proving the classification accuracy for a multi-class classification problem. Improved-RFC approach
uses Random Forest algorithm, an attribute evaluator method and an instance filter method-Resample
for the problem of multi-class classification problem.

A Naïve Bayes classifier is a simple probabilistic model that allows prediction of probablities of
class membership ([9]). This classifier handles missing attribute values by omitting the corresponding
probabilities for those attributes when calculating the likelihood of membership for each class. It
also requires the class conditional independence. [10] uses a hidden naïve Bayes (HNB) classifier
to a network intrusion detection system. The HNB is an extended version of the basic naïve Bayes
classifier which relaxes the conditional independence assumption. The HNB creates a new layer which
represents the hidden parent of each attribute. Thus the influences from all of the other attributes can
combined through conditional probabilities by estimating the attributes from the training dataset.

[11] compares various machine learning algorithms - Naïve Bayes, Random Forest, Decision Tree,
Logistic Regression and support vector machines for the classification of text reviews. The findings in-
dicate that the Logistic Regression for multi-class classification for product reviews is the best method
in terms of accuracy. It should also be noted that the overall classification accuracy in combination
with uni/bi/tri-gram models increases the average of classification accuracy.

3. Data

The dataset used here is from the Dravidian-CodeMix - FIRE 2020, which is a collection of YouTube
comments in two different languages - Tamil (data from [12]) and Malayalam (data from [13]). The
datasets of both the languages (Tamil and Malayalam) are in a way that the text is in Latin script. The
Tamil training dataset contains 11,335 instances, the validation/development dataset contains 1,260
instances and the test dataset contains 3,149 instances. The classes are "positive", "negative", "un-
known_state", "mixed_feeling" and "not_Tamil". The Malayalam training dataset contains 4,851 in-
stances, the validation/development dataset contains 674 instances and the test dataset contains 1,348
instances. The classes are "positive", "negative", "unknown_state", "mixed_feeling" and "not_Malayalam".

4. Text Representation

To be able to train a supervised classifier, every comment in the dataset is represented by a numerical
feature vector. One common approach for extracting features from text is to use the bag of words
model. In this model, the frequency of the words is taken into consideration, but the order in which



they occur is ignored. The Term Frequency, Inverse Document Frequency (tf-idf) measure is calcu-
lated for each term in the dataset (individually for Tamil and Malayalam).

5. Machine Learning Models

In this section, several machine learning methods designed for the task at hand are explained. The
models are Logistic Regression, Naïve Bayes, Support Vector Machines and Random Forests.

5.1. Logistic Regression

The well established multi-class logistic regression model is implemented for the task at hand [14].
The model of logistic regression for a multi-class classification problem forces the output layer to
have discrete probability distributions over the possible 𝑘 classes. This is accomplished by using the
softmax function. Given the input vector(z), the softmax function works as follows:

𝑠𝑜𝑓 𝑡𝑚𝑎𝑥(𝑧) =

𝑒
𝑧

∑
𝑘

𝑖=1
𝑒
𝑧𝑖

(1)

At this point, there are 𝑘 outputs and thus there is a necessity to impose weights connecting each
input to each output. The model thus is as follows:

�̂� = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥(𝑥𝑊 + 𝑏) (2)

where, W is the weight matrix between the input and output, x being the input and b is the bias.

5.2. Random Forest

Random Forest is a collection of large number of individual decision trees. Decision Trees for samples
from the training data sets are constructed. Following this, each decision tree predicts a class. A vote
is performed on all predicted results. The class with the maximum vote is decided on to be the output
class. For the training process, the random subspace method is used (i.e) if one or a few features are
very strong predictors for the target output, these features will be selected in many of the decision
trees. This makes the features more correlated.

5.3. Support Vector Machines

SVMs are very good classification algorithm. The idea is to identify hyper-planes that will separate
the various features. A linear SVM is used in this paper. The classification decision is thus performed
as follows:

𝑓 (𝑥) = 𝑠𝑖𝑔𝑛(𝑊
∗
.𝑥 + 𝑏

∗
) (3)

where x represents the input feature, W represents the model weight and b represents the bias. For
the multi-class classification problem, a one-vs-rest (also known as one-vs-all) approach is used. It
involves splitting the dataset into multiple binary classification problems. Thus a binary classification
boundary is constructed to train each binary SVMs and the one with the highest confidence is used
to solve the multi-class classification problem.



Model Parameters

SVM multi_class=ovr; max_iter=1000; penalty=l2; loss=squared_hinge
Logistic Regression solver=liblinear; penalty=l2; tol=0.0001; max_iter=100

Naïve Bayes alpha=1.0; fit_prior=True; class_prior=None
Random Forest Classifier n_estimators=200; max_depth=3; random_state=0

Table 1
Implementation details for the various machine learning models

Model Accuracy Language

SVM 0.64 Tamil
Logistic Regression 0.65 Tamil

Naïve Bayes 0.69 Tamil
Random Forest Classifier 0.67 Tamil

SVM 0.60 Malayalam
Logistic Regression 0.64 Malayalam

Naïve Bayes 0.55 Malayalam
Random Forest Classifier 0.43 Malayalam

Table 2
Accuracy of the different models.

5.4. Naïve Bayes

Naïve Bayes [15] is based on the Bayes theorem. For a given training dataset, the joint probability
distribution (P(X,Y)) is learned. When using Naïve Bayes for classification for an input x, the posterior
probability is calculated by the classification model. The class with the highest posterior probability
is the predicted class.

6. Implementation

The scikit-learn1 package in Python is used for the feature extraction and model training. The Tfid-
fVectorizer from the scikit-learn is used to convert the text data into TF-IDF feature vectors. The
models of logistic regression, linear support vector classification, multinomialNB and random Forest
provided by the scikit-learn toolkit are used for the training of the machine learning models discussed
in 5. The implementation details for these models are shown in table 1.

Every model described in section 5 is trained using the training sets for both the Tamil and Malay-
alam languages. The accuracy of each model for the two languages are calculated. The accuracy
of the model is calculated using the development set. The accuracy of each model for the different
languages are presented in table 2.

As seen from table 2, all models are quite closer to each other in terms of accuracy. However, the
highest accurate model to use for the classification of YouTube comments in the Tamil language is the
Naïve Bayes classifier. Thus this classifier is used for the classification of the test data set. As for the
Malayalam language, table 2, the Logistic Regression is the most accurate model which is thus used
for the classification of YouTube comments in the Malayalam language.

1https://scikit-learn.org/



Language Precision Recall F-score Algorithm

Tamil 0.57 0.66 0.54 NB classifier
Malayalam 0.68 0.62 0.58 Logistic Regression

Table 3
Results.

Language Positive Negative Mixed_Feelings unknown_state not_Tamil/Malayalam

Tamil 7,627 1,448 1,283 6,09 368
Malayalam 2,022 549 289 1,344 647

Table 4
Number of instances in each category from the training set of the two different languages.

7. Results and Conclusion

The weighted averages for the precision, recall and F-score for the task at hand is shown in table 3. A
precision of 0.57, a recall of 0.66 and a F-score of 0.54 is achieved by the method presented in this paper
for the Tamil language. A precision of 0.68, a recall of 0.62 and a F-score of 0.58 is achieved by the
method presented in this paper for the Malayalam language. The model for the Malayalam language
achieves a better performance than the model for the Tamil language. However, it has to be noted that
the same model has not been chosen for both the languages and thus comparing the results between
languages is not fair. It is seen from table 2 that the accuracy of the Naïve Bayes, which has been
chosen as the model for the Tamil language, has a very low accuracy for the Malayalam language.
On the other hand, the Linear Regression, which has been chosen as the model for the Malayalam
language, has a low accuracy for the Tamil language. This reassures the fact that the same model does
not suit very well for all the languages.

The higher accuracy of the various models for the Tamil language could be because of the fact
that the training and development data for the Tamil language is larger than that for the Malayalam
language. This could mean that the models are very well trained for the Tamil language when com-
pared to the Malayalam language. The number of instances for each case from the training set for
both languages are shown in table 4. It can also be noted from table 4 that the dataset for Tamil is
quite imbalanced with too many instances for the "Positive" category but not too many instances for
the other categories. For the Malayalam training dataset, the number of instances for the "Positive"
and "unknown_state" category are greater than the number of instances for the other categories. The
imbalance in the dataset for the various categories makes it harder for predicting the minor classes
(categories with fewer instances).

Thus in this paper, multiple models are investigated for the languages - Tamil and Malayalam. It
is noticed that two different models are chosen for the two languages. The models presented in this
paper are language independent. All of these models can be applied to any language as the model
with the best accuracy is chosen as final model for the classification of the sentences. Link to code 2.

2https://github.com/JudithJeyafreeda/FIRE2020.git



References

[1] B. R. Chakravarthi, R. Priyadharshini, V. Muralidaran, S. Suryawanshi, N. Jose, E. Sherly, J. P.
McCrae, Overview of the track on Sentiment Analysis for Dravidian Languages in Code-Mixed
Text, in: Proceedings of the 12th Forum for Information Retrieval Evaluation, FIRE ’20, 2020.

[2] B. R. Chakravarthi, R. Priyadharshini, V. Muralidaran, S. Suryawanshi, N. Jose, E. Sherly, J. P.
McCrae, Overview of the track on Sentiment Analysis for Dravidian Languages in Code-Mixed
Text, in: Working Notes of the Forum for Information Retrieval Evaluation (FIRE 2020). CEUR
Workshop Proceedings. In: CEUR-WS. org, Hyderabad, India, 2020.

[3] B. R. Chakravarthi, Leveraging orthographic information to improve machine translation of
under-resourced languages, Ph.D. thesis, NUI Galway, 2020.

[4] M. P. Brown, W. N. Grundy, D. Lin, N. Cristianini, C. W. Sugnet, T. S. Furey, M. Ares, D. Haussler,
Knowledge-based analysis of microarray gene expression data by using support vector machines,
Proceedings of the National Academy of Sciences 97 (2000) 262–267.

[5] D. R. Cutler, T. C. Edwards Jr, K. H. Beard, A. Cutler, K. T. Hess, J. Gibson, J. J. Lawler, Random
forests for classification in ecology, Ecology 88 (2007) 2783–2792.

[6] B. Ghimire, J. Rogan, J. Miller, Contextual land-cover classification: incorporating spatial depen-
dence in land-cover classification models using random forests and the getis statistic, Remote
Sensing Letters 1 (2010) 45–54.

[7] L. Breiman, Random forests, Machine learning 45 (2001) 5–32.
[8] A. Chaudhary, S. Kolhe, R. Kamal, An improved random forest classifier for multi-class classifi-

cation, Information Processing in Agriculture 3 (2016) 215–222.
[9] J. Chen, H. Huang, S. Tian, Y. Qu, Feature selection for text classification with naïve bayes,

Expert Systems with Applications 36 (2009) 5432–5435.
[10] L. Koc, T. A. Mazzuchi, S. Sarkani, A network intrusion detection system based on a hidden

naïve bayes multiclass classifier, Expert Systems with Applications 39 (2012) 13492–13500.
[11] T. Pranckevičius, V. Marcinkevičius, Comparison of naive bayes, random forest, decision tree,

support vector machines, and logistic regression classifiers for text reviews classification, Baltic
Journal of Modern Computing 5 (2017) 221.

[12] B. R. Chakravarthi, V. Muralidaran, R. Priyadharshini, J. P. McCrae, Corpus creation for senti-
ment analysis in code-mixed Tamil-English text, in: Proceedings of the 1st Joint Workshop on
Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration and
Computing for Under-Resourced Languages (CCURL), European Language Resources associa-
tion, Marseille, France, 2020, pp. 202–210. URL: https://www.aclweb.org/anthology/2020.sltu-1.
28.

[13] B. R. Chakravarthi, N. Jose, S. Suryawanshi, E. Sherly, J. P. McCrae, A sentiment analysis dataset
for code-mixed Malayalam-English, in: Proceedings of the 1st Joint Workshop on Spoken Lan-
guage Technologies for Under-resourced languages (SLTU) and Collaboration and Computing
for Under-Resourced Languages (CCURL), European Language Resources association, Marseille,
France, 2020, pp. 177–184. URL: https://www.aclweb.org/anthology/2020.sltu-1.25.

[14] Multiclass logistic regression from scratch, 2017. URL: https://gluon.mxnet.io/chapter02_
supervised-learning/softmax-regression-scratch.html.

[15] A. Y. Ng, M. I. Jordan, On discriminative vs. generative classifiers: A comparison of logistic
regression and naive bayes, in: Advances in neural information processing systems, 2002, pp.
841–848.

https://www.aclweb.org/anthology/2020.sltu-1.28
https://www.aclweb.org/anthology/2020.sltu-1.28
https://www.aclweb.org/anthology/2020.sltu-1.25
https://gluon.mxnet.io/chapter02_supervised-learning/softmax-regression-scratch.html
https://gluon.mxnet.io/chapter02_supervised-learning/softmax-regression-scratch.html

	1 Introduction
	2 Related Work
	3 Data
	4 Text Representation
	5 Machine Learning Models
	5.1 Logistic Regression
	5.2 Random Forest
	5.3 Support Vector Machines
	5.4 Naïve Bayes

	6 Implementation
	7 Results and Conclusion

