
Kode_Stylers: Author Identification through
Naturalness of Code: An Ensemble Approach
Panyawut Sriiesaranusorna, Supatsara Wattanakriengkraia, Teyon Sona,
Takeru Tanakaa, Christopher Wiraatmajaa, Takashi Ishioa and Raula Gaikovina Kulaa

aNara Institute of Science and Technology, Nara, Japan

Abstract
Authorship identification plays an important role in detecting undesirable deception of others’ content
misuse or exposing the owners of some anonymous hurtful content. The Authorship Identification of
SOurce COde (AI-SOCO) competition was held to investigate this task. Our team, namely Kode_Stylers,
participated in the competition and used the naturalness of code as the key to our solution. In this
working note, we (i) present methods to obtain features such as tokenization, N-gram TF-IDF, warning
messages, and coding styles, (ii) implement our framework using Random Forest and Transformer to
classify authors through our features, and (iii) apply an ensemble approach to increase the performance
of our solutions. The results suggest that the authorship can be identified through the features extracted
from source code and selected classifiers with up to an accuracy of 0.82, while the ensemble model
outperforms any single model.

Keywords
Authorship Identification, Code Naturalness, Ensemble Models

1. Introduction

Authorship identification is essential to the detection of undesirable deception of others’ content
misuse or exposing the owners of some anonymous hurtful content. The detection facilitates
solving issues related to cheating in academic, work, and open source environments. Also, it
could be useful in detecting the authors of malware software over the world. This working note
is in response to the call for general authorship identification of source code and is part of the
Authorship Identification of SOurce COde (AI-SOCO) competition[1].

Our team, namely Kode_Stylers, use the naturalness of code as our key intuition behind
the author identification. We depict code as being repetitive and predictable when compared
to English, much due to the presence of language specific syntax patterns such as separators,
operators, and keywords. Modelling programming languages as a language has made popular
the term ‘natural software’, which is now commonly used as a means to understand how code
is written. The naturalness of software refers to the repetitive nature of the code in a project [2].
Language modelling has revealed power-law distributions and the naturalness of source code
[3]. Natural software is useful for understanding refactoring activities [4, 5, 6], contributions
[7] , finding buggy code [4, 8, 9], and so on.

Forum for Information Retrieval Evaluation, December 16-20, 2020, Hyderabad, India
email: sri-iesaranusorn.panyawut@is.naist.jp (P. Sriiesaranusorn)

© 2020 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:sri-iesaranusorn.panyawut@is.naist.jp
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

2. Methodology Used

In this section, we present the dataset and explain how we treat source code as a natural
language model. Additionally, we discuss in the detail the different materials and methods used
in our submission.

2.1. Dataset

The dataset consists of source code files and their corresponding authors collect from an open
submission in the Codeforces. All source code files are implemented in C++ programming
language, contain comments, and are bug-free. More specifically, there are the selected 1,000
authors and 100 collected source code files per one author, a total of 100,000 source code files.
The dataset is divided into three parts, 50% of the training set, 25% of the validating set, and
25% of the testing set, ensuring approximately equal ratios among authors.

2.2. Similarity of Tokenized Source Code

Treating source code as a raw language, we perform tokenization which breaks a stream of text
into words called tokens [10]. Considering the programming syntax, we select the NCDSearch
tool implemented by [11] to do word-level tokenization. This tool is based on grammar from
the lexer files generated by the ANTLR4 parser generator [12]. It allows us to feed source code
as input, and return the word-level tokens as output. Along with the tokenization process,
NCDSearch also removes source code comments from source code.

Once we obtain the word tokens, preprocessing is required to handle low-frequency words or
rare word problems. Due to the different programming styles, one of the rare word types is the
variable name used in each source code file. According to a previous work [13], this problem
can be a cause of the inefficiency of classification models, which needs to be solved. Based on
the distribution of our data, we mask the low-frequency words as UNK token if the occurrence
of words is less than 10 in the dataset. With the limitation of our computational resource, we
select the first 3,000 tokens per each file to train the model, because most of our data contain
tokens less than 3,000 per each file. On the other hand, we perform padding in the case that the
total number of tokens is less than 3,000 tokens.

2.3. Similarity of N-gram TF-IDF in Source Code

Regarding the similarity of source code and raw language, we apply N-gram IDF [14, 15] to
extract the n-gram features. Inverse Document Frequency (IDF) measures how important a
term is; however, IDF cannot measure the importance of phrases, i.e., multi-word terms. More
specifically, some useful phrases are assigned less weight than rare phrases since IDF gives more
weight to rare terms which are found in fewer documents. N-gram IDF, a theoretical extension
of IDF, can be used to handle multiple terms and phrases by connecting the term weighting and
multi-word expression extraction [14, 15]. N-gram IDF has been widely used in the field of text
classification for bug reports [16] and self-admitted technical debt (SATD) [17, 18].

To enumerate valid n-gram terms, we use an n-gram weighting scheme tool [15] which
uses an enhanced suffix array [19]. Since the tool removes all special characters (e.g. ;) and

Table 1
Compiler options and description[20, 21, 22]

options Description

-Wall
Enables commonly used warning options pertaining to usage that
we recommend avoiding and that we believe are easy to avoid.

-Wextra
Enables some warning options for usages of
language features which may be problematic.

-Wc++compat
Warn about ISO C constructs that are outside of the common subset
of ISO C and ISO C++

-Wc++14-compat
Warn about C++ constructs whose meaning differs
between ISO C++ 2011 and ISO C++ 2014

-Wconversion Warn for implicit conversions that may alter a value.

-Wdate-time
Warn when macros __TIME__, __DATE__ or __TIMESTAMP__ are
encountered as they might prevent bit-wise-identical reproducible compilations.

-Wdisabled-optimization Warn if a requested optimization pass is disabled.
-Wlogical-op Warn about suspicious uses of logical operators in expressions.
-Wold-style-cast Warn if an old-style (C-style) cast to a non-void type is used within a C++ program.
-Wunused-macros Warn about macros defined in the main file that are unused.

-Weffc++
Warn about violations of the following style guidelines
from Scott Meyers’ Effective C++series of books.

-Wfloat-equal Warn if floating-point values are used in equality comparisons.
-Wpedantic Issue all the warnings demanded by strict ISO C and ISO C++.

-Wshadow
Warn whenever a local variable or type declaration shadows
another variable, parameter, type, class member (in C++)

-Wvariadic-macros
Warn if variadic macros are used in ISO C90 mode,
or if the GNU alternate syntax is used in ISO C99 mode

ignores capital characters during its process, we encode such special characters with terms
(e.g. semicolon) and then do lowercase on all terms before applying the tool. The output of the
tool is a list of all valid n-gram terms with a maximum length of 10. We obtain more than one
million n-gram terms from all source code in the training set. We calculate N-gram TF-IDF
scores, a measure of how significant an n-gram term is, of all n-gram terms to find n-gram
terms that would be useful in author identification. The higher the N-gram TF-IDF score, the
more important the n-gram term is. The score is defined as:

N-gram TF-IDF = 𝑙𝑜𝑔(
|𝐷|
𝑠𝑑𝑓

) ∗ gtf

Where |𝐷| is the total number of source code files (in the training set), sdf is the document
frequency of a set of words composing n-gram, and gtf is the global term frequency of the
term. We use the top five percent of n-gram terms which have the highest score as features
for classifier learning. For each source code file, we create a feature vector of frequencies that
n-gram terms appear in the file. The intuition behind this approach is that authors tend to use
repetitive terms in their code when programming.

2.4. Similarity of warning messages generated by Source Code

We assume that the compiler warnings are useful to extract the coding styles or naturalness
of source code authors. Compiler warnings are used to detect bugs by matching source code
with certain patterns which are likely to be causes of programming errors[23]. In programming

competitions, coding speed is one of the important factors to win the coding contests. Some
participants tend to use the same code snippets for solving resembling problems. Furthermore,
they intentionally ignore the manners of C++ to boost their coding speed (e.g. use “int” instead
of “size_t”).

To find the programmer coding style, we compile all the source code with the following
conditions and then extract compiler warnings. We use gcc compiler [24] with 5 types of
C++ versions (C++98,C++03,C++11,C++14,C++17), and 15 options. Table 1 shows the compiler
options description. These compiler options point out not only deprecated behaviors but also
coding styles. For example, options -Wold-style-cast can detect the old-style casting[20].

2.5. Similarity of Naming Conventions (Identifiers) in Source Code

We assume that the identifiers of the programs could provide useful information to identify
the authors of the source code. Identifiers are the tokens used to uniquely identify program
elements, such as variables and functions, in source code. Approximately 70% of the source code
of a software system consists of the identifiers[25], and some of the identifiers are user-defined
names.

To extract identifiers from source code, we use the Code Hash Tool[26] which implements the
ANTLR4-based lexical analyzer. This tool extracts a token sequence by removing comments and
white spaces, and then returns a list of word-level tokens, along with information on whether
the tokens are identifiers, in JSON format. Afterwards, we extract the identifiers such as the
variable name, and the non-identifiers (e.g., brackets) from the source code.

3. Implementation Techniques

In section, we present the implementation of our framework as the following pipeline.

3.1. Transformer Model

To build the classification models, we select the Transformer model which is used primarily
in the field of natural language processing (NLP) [27]. Previous studies used this model and
achieved outstanding performance, compared to the other deep neural networks and traditional
machine learnings [28, 29]. The transformer in this study is adopted from the source code in
[30]. The architecture starts from embedding layers with 128 embedding size, followed by a
transformer layer with 4 multi-head and 64 hidden neurons. We then feed the extracted features
to a simple feed-forward model, consisting of 2 fully-connected hidden layers, each regularized
by batch normalization and 40% dropout for regularization [31, 32]. Lastly, the output layer
uses the softmax activation function to simulate a probability vector, as our task is a multi-class
classification.

3.2. Random Forest Model

According to the prevalence of Random Forest (RF) in the field of natural language processing
[33, 34, 35], we select it as one of the candidate models. Random Forest is an ensemble technique

Table 2
The description and individual result of five single models

Features Classifier Accuracy
Model A Word-level tokens Transformer 0.7385
Model B Word-level tokens and N-gram TF-IDF Random Forest 0.8202
Model C Word-level tokens, Non-Identifier, and N-gram TF-IDF Random Forest 0.7452
Model D Word-level tokens, Warning message, and N-gram TF-IDF Random Forest 0.7848
Model E Word-level tokens, Identifier, and N-gram TF-IDF Random Forest 0.7501

that produces many classification and regression trees, where each tree is constructed by
bootstrap samples with a subset of features. The prediction of the random forest of the ensemble
is determined by combining the final decision of each tree. The advantage of this model is to
deal with the problem of noise or outliers which may possibly affect the result of the overall
classification method [36].

3.3. Ensemble of our proposed Models

As we have several models based on several approaches, the ensemble method is selected to
merge the results. In machine learning, this method allows us to combine several models based
on criteria such as majority voting or averaging, in order to produce one optimal predictive
model [37]. Prior works show that an ensemble method achieves the outstanding performance,
compared to using a single model [38, 39]. The ensemble used in this study is defined as:

Ensemble =
∑𝑁

𝑖 𝑤𝑖𝑀𝑖(𝑥)

∑𝑁
𝑖 𝑤𝑖

where 𝑤𝑖 is the selected weight for the output vector from the model 𝑀𝑖(𝑥), and 𝑁 is the total
number of selected models in this study.

4. Room for Improvements

Table 2 shows the results of the five main experiments according to the variety of features and
classifiers. The selected feature and classifier of models are different. Model A is based on the
technique of naturalness of source code with the hypothesis that ”authors tend to write code
that has similar naturalness” in their code. Model B is based on the term-frequency technique
with the hypothesis that ’authors tend to use repetitive terms in their code’ when programming.
Model C is based on the technique of looking at the coding syntax patterns with the hypothesis
that ’authors tend to use the same coding syntax’ when coding. Model D is based on the
technique of investigating different compiler warnings with the hypothesis that ’authors tend
to have the same compiler warnings’ when writing code. Model E is based on the technique
of identifier analysis with the hypothesis that ’authors tend to use the same identifiers’ when
writing code. All single models are evaluated on the test set of the competition. The results
suggest that Model B outperforms other single models.

Table 3
The result of using ensemble with five main models

Ensemble Threshold
Model A Model B Model C Model D Model E Accuracy

Ensemble#1 0.18 0.24 0.20 0.18 0.20 0.8067
Ensemble#2 0.12 0.44 0.32 0.06 0.06 0.8090
Ensemble#3 0.50 0.50 - - - 0.8091
Ensemble#4 0.15 0.31 0.23 0.08 0.23 0.8126
Ensemble#5 0.10 0.45 0.45 - - 0.8208

Table 3 shows the improvement of results when we use different weights through single
results. The Ensemble#5, which is a combination of Model A, B, and C, is accurate more than
other ensemble results, including the single Model B. These results suggest that the ensemble
result achieves higher performance.

With the limited time of the competition, we can perform only five main models and some
ensembles. To improve the performance of the model, we aim to investigate the other features
by applying software engineering knowledge. For tokenization, examining the performance
of NCDSearch and the other tools is required to improve the preprocessing. Considering
the hyper-parameter tuning of random forest and transformer models, the current results
possibly are not based on the best set of hyper-parameters. In the future, we plan to explore the
hyper-parameters and other approaches.

5. Conclusion

This working note presents models for author identification through the various hypotheses,
especially the naturalness of code. Our results suggest that the ensemble model achieves the
best performance, compared to the single models. We discuss the possibility for future works of
this study such as finding the other features, applying the other tokenization tools, and tuning
hyper-parameters of the classifiers.

Acknowledgments

This work has been supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI
Grant Numbers JP18H04094, JP18KT0013, JP20K19774, and JP20H05706.

References

[1] A. Fadel, H. Musleh, I. Tuffaha, M. Al-Ayyoub, Y. Jararweh, E. Benkhelifa, P. Rosso,
Overview of the PAN@FIRE 2020 task on Authorship Identification of SOurce COde
(AI-SOCO), in: Proceedings of The 12th meeting of the Forum for Information Retrieval
Evaluation (FIRE 2020), CEUR Workshop Proceedings, CEUR-WS.org, 2020.

[2] R. Robbes, M. Lanza, Improving code completion with program history, Automated
Software Engg. 17 (2010) 181–212.

[3] M. Rahman, D. Palani, P. C. Rigby, Natural software revisited, in: Proceedings of the 41st
International Conference on Software Engineering (ICSE), 2019, pp. 37–48.

[4] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, P. Devanbu, On the ”naturalness” of
buggy code, in: Proceedings of the 38th International Conference on Software Engineering
(ICSE), 2016, pp. 428–439.

[5] R. Arima, Y. Higo, S. Kusumoto, Toward refactoring evaluation with code naturalness, in:
Proceedings of the 26th Conference on Program Comprehension, 2018, p. 316–319.

[6] B. Lin, C. Nagy, G. Bavota, M. Lanza, On the impact of refactoring operations on code
naturalness, in: 2019 IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering (SANER), 2019, pp. 594–598.

[7] T. Bunkerd, D. Wang, R. G. Kula, C. Ragkhitwetsagul, M. Choetkiertikul, T. Sunetnanta,
T. Ishio, K. Matsumoto, How do contributors impact code naturalness? an exploratory
study of 50 python projects, in: 2019 10th International Workshop on Empirical Software
Engineering in Practice, 2019, pp. 7–75.

[8] E. A. Santos, J. C. Campbell, D. Patel, A. Hindle, J. N. Amaral, Syntax and sensibility:
Using language models to detect and correct syntax errors, in: 2018 IEEE 25th Interna-
tional Conference on Software Analysis, Evolution and Reengineering (SANER), 2018, pp.
311–322.

[9] H. Campbell, A. Hindle, J. Amaral, Syntax errors just aren’t natural: Improving error re-
porting with language models, 11th Working Conference on Mining Software Repositories,
MSR 2014 - Proceedings (2014).

[10] R. Renu, D. Gaur, Tokenization and filtering process in rapidminer, International Journal
of Applied Information Systems 7 (2014) 16–18.

[11] T. Ishio, N. Maeda, K. Shibuya, K. Inoue, Cloned buggy code detection in practice us-
ing normalized compression distance, in: Proceedings of the 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2018, pp. 591–594.

[12] ANTLR, 2020. URL: https://github.com/antlr/antlr4.
[13] B. Heap, M. Bain, W. Wobcke, A. Krzywicki, S. Schmeidl, Word vector enrichment of

low frequency words in the bag-of-words model for short text multi-class classification
problems, ArXiv abs/1709.05778 (2017).

[14] M. Shirakawa, T. Hara, S. Nishio, N-gram idf: A global term weighting scheme based on
information distance, 2015, pp. 960–970.

[15] M. Shirakawa, T. Hara, S. Nishio, Idf for word n-grams, ACM Trans. Inf. Syst. 36 (2017).
[16] P. Terdchanakul, H. Hata, P. Phannachitta, K. Matsumoto, Bug or not? bug report

classification using n-gram idf, in: 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2017, pp. 534–538.

[17] S. Wattanakriengkrai, R. Maipradit, H. Hata, M. Choetkiertikul, T. Sunetnanta, K. Mat-
sumoto, Identifying design and requirement self-admitted technical debt using n-gram
idf, in: 2018 9th International Workshop on Empirical Software Engineering in Practice
(IWESEP), 2018, pp. 7–12.

[18] R. Maipradit, C. Treude, H. Hata, K. Matsumoto, Wait for it: identifying “on-hold” self-
admitted technical debt, Empirical Software Engineering (2020) 1 – 29.

https://github.com/antlr/antlr4

[19] M. I. Abouelhoda, S. Kurtz, E. Ohlebusch, Replacing suffix trees with enhanced suffix
arrays, Journal of Discrete Algorithms 2 (2004) 53 – 86.

[20] 3.8 Options to Request or Suppress Warnings, 2020. URL: https://gcc.gnu.org/onlinedocs/
gcc/Warning-Options.html.

[21] 2.4 Options to request or suppress errors and warnings, 2020. URL: https://gcc.gnu.org/
onlinedocs/gfortran/Error-and-Warning-Options.html.

[22] 3.5 Options Controlling C++ Dialect, 2020. URL: https://gcc.gnu.org/onlinedocs/gcc/C_
002b_002b-Dialect-Options.html.

[23] C. Sun, V. Le, Z. Su, Finding and analyzing compiler warning defects, Proceedings of the
38th International Conference on Software Engineering (ICSE) (2016) 203–213.

[24] GCC, the GNU Compiler Collection, 2020. URL: https://gcc.gnu.org/.
[25] F. Deissenbock, M. Pizka, Concise and consistent naming, Software Quality Journal 14

(2006) 261–282.
[26] CodeHash Tool, 2019. URL: https://github.com/NAIST-SE/CodeHash.
[27] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, u. Kaiser, I. Polo-

sukhin, Attention is all you need, in: Proceedings of the 31st International Conference on
Neural Information Processing Systems, 2017, p. 6000–6010.

[28] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, in: BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding, 2019.

[29] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. Le, R. Salakhutdinov, in: Transformer-XL: Attentive
Language Models beyond a Fixed-Length Context, 2019, pp. 2978–2988.

[30] Transformer, 2020. URL: https://github.com/keras-team/keras-io/blob/master/examples/
nlp/text_classification_with_transformer.py.

[31] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing
internal covariate shift, in: Proceedings of the 32nd International Conference on Machine
Learning, volume 37, 2015, pp. 448–456.

[32] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: A simple
way to prevent neural networks from overfitting, Journal of Machine Learning Research
15 (2014) 1929–1958.

[33] H. Parmar, S. Bhanderi, G. Shah, in: Sentiment Mining of Movie Reviews using Random
Forest with Tuned Hyperparameters, 2014.

[34] M. Z. Islam, J. Liu, J. Li, L. Liu, W. Kang, A semantics aware random forest for text
classification, in: Proceedings of the 28th ACM International Conference on Information
and Knowledge Management, 2019, p. 1061–1070.

[35] K. Kowsari, K. Jafari Meimandi, M. Heidarysafa, S. Mendu, L. Barnes, D. Brown, L. Id,
Barnes, Text classification algorithms: A survey, Information (Switzerland) 10 (2019).

[36] G. Shah, H. Parmar, Experimental and comparative analysis of machine learning classifiers,
International Journal of Software Engineering and Knowledge Engineering 3 (2013) 9.

[37] F. Huang, G. Xie, R. Xiao, Research on ensemble learning, in: 2009 International Conference
on Artificial Intelligence and Computational Intelligence, volume 3, 2009, pp. 249–252.

[38] A. Jurek, Y. Bi, S. Wu, C. Nugent, A survey of commonly used ensemble-based classification
techniques, The Knowledge Engineering Review 29 (2014) 551–581.

[39] I. D. Mienye, Y. Sun, Z. Wang, An improved ensemble learning approach for the prediction
of heart disease risk, Informatics in Medicine Unlocked 20 (2020) 100402.

https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://gcc.gnu.org/onlinedocs/gfortran/Error-and-Warning-Options.html
https://gcc.gnu.org/onlinedocs/gfortran/Error-and-Warning-Options.html
https://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Dialect-Options.html
https://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Dialect-Options.html
https://gcc.gnu.org/
https://github.com/NAIST-SE/CodeHash
https://github.com/keras-team/keras-io/blob/master/examples/nlp/text_classification_with_transformer.py
https://github.com/keras-team/keras-io/blob/master/examples/nlp/text_classification_with_transformer.py

	1 Introduction
	2 Methodology Used
	2.1 Dataset
	2.2 Similarity of Tokenized Source Code
	2.3 Similarity of N-gram TF-IDF in Source Code
	2.4 Similarity of warning messages generated by Source Code
	2.5 Similarity of Naming Conventions (Identifiers) in Source Code

	3 Implementation Techniques
	3.1 Transformer Model
	3.2 Random Forest Model
	3.3 Ensemble of our proposed Models

	4 Room for Improvements
	5 Conclusion

