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Abstract. In medicine and neuroscience, the reconstruction of anatom-
ical structures from brain MRI images is an important goal, especially
for regions in the human cerebral cortex. Topological correctness is im-
portant because it is an essential prerequisite for brain atlas deformation
and surface flattening. We propose a new approach to repair a binary vol-
umetric brain segmentation so that it becomes topologically equivalent
to a sphere. A morphological multiscale approach which acts on fore-
ground and background simultaneously divides the segmentation into
several connected components, and subsequent region growing guaran-
tees convergence to the correct spherical topology and changes as few
voxels as possible. In addition to existing graph-based procedures, this
provides an alternate approach which has several advantages, including
high speed, ease of operation without graph analysis, and measuring the
size of a handle, cutting a handle or filling the corresponding tunnel
based on their sizes.

1 Introduction

Several methods for correcting the topology of brain segmentation have recently
been developed. Shattuck and Leahy [1] and Xiao Han et al. [2] introduced
graph-based methods for topology correction. Shattuck and Leahy examined
the connectivity of 2D segmentations between adjoining slices to detect topolog-
ical defects and minimally correct them by changing as few voxels as possible.
Building on their work, Han et al. developed an algorithm to remove all handles
from a binary object under any connectivity. Successive morphological openings
correct the segmentation at the smallest scale. This method is effective for small
handles, but large handles such as ventricles may need to be edited manually.
Chen and Wagenknecht [3] localized handles by simulating wavefront propa-
gation on the volume and the handles were deleted by a local region growing
method. One drawback of this method is that the correction is 3D, but the han-
dle localization is oriented along the Cartesian axes. Wood et al. [4] proposed a
different approach. Handles in the tessellation are localized by simulating wave-
front propagation on the tessellation and they are detected where the wavefronts
meet twice. The size of a handle is the shortest non-separating cut along such a
cycle, which helps retain as much fine geometrical detail of the model as possible.
The region growing models are adopted by Kriegeskorte et al. [5] as topology
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correction methods. They start from an initial point with the deepest distance
to the surface, and then grow the point by adding points that will not change
the topology. One drawback of this approach is that the result strongly depends
on the order in which the points are grown from the growing points set. Our
method provides a fully automatic topology correction mechanism.

2 Methods

Some basics of digital topology will be given here (see [6] for details). The initial
segmentation is a 3D binary digital image composed of a foreground object
X and an inverse background object X. From the conventional definition of
adjacency, three types of connectivity are considered: 6-, 18- and 26-connectivity.
For example, two voxels are 6-adjacent if they share a face, 18-adjacent if they
share at least an edge, and 26-adjacent if they share at least a corner. In order
to avoid topological paradoxes, different connectivities n and 7 must be used
for the foreground and background objects. This leaves four pairs of compatible
connectivities: (6, 18), (6, 26), (18, 6) and (26, 6). Considering a digital object,
the calculation of two numbers (criteria) is sufficient to check if the modification
of one single point will affect the topology. These topological numbers introduced
by Bertrand [6] are an elegant way to classify the topology type of a given voxel.
The following definitions are from [6].

Definition 1 (n-path) An n-path of length I > 0 from p to q in X is a sequence
of distinct points p = po,p1,...,p1 = ¢, where p; is n-adjacent to p;11, for i =
0,1,..., I — 1. An n-path pg,pi1,...,p1 s an n-closed path if and only if py is
n-adjacent to p;.

Definition 2 (Geodesic Neighborhood) Denote the n-neighborhood of a
point x with x removed by N} (x). The geodesic neighborhood of x with re-
spect to the object X of order k is the set NF(x,X) defined recursively by:
Ny (2, X) = Ny(2) NX, Njy(2,X) = {N;(y) N N3s(z) N X, y € Ny~ (z, X)}.

Definition 3 (Topological Numbers) An object is said to be n-connected, if
and only if for any two points of the object, there exists an n-path between these
two points within the object. Denote the set of all n-connected components of X
by Cn(X). The topological numbers of a point x relative to X are: Ts(x, X) =
#06(N(%($’ X))7 To+ (‘T7 X) = #Cs (Ng’(l‘,X)), TlS(va) = #ClS(N%S(va)))
Tog(w, X) = #C2(Nag(z, X)), where # denotes the number of n-connected com-
ponents of a set C,,.

Definition 4 (Sim;_)le Point) For a point x, it is a simple point if and only
if Tn(z, X) = Ta(x, X) = 1. Adding or removing a simple point will not change
the topology of the object.

Note, that in the definition of topological numbers there are two notations
for 6-connectivity, where the notation ”6%” implies 6-connectivity whose dual
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connectivity is 18, while the notation ”6” implies 6-connectivity whose dual
connectivity is 26. This distinction is necessary in order to correctly compute
topological numbers under 6-connectivity with different dual connectivities.

An object X has a handle if and only if there exists a closed n-path in X
that can not be compressed to a point through a connected deformation. For
example, as shown in Fig. la, the closed path abedefa can be compressed to a
point. For an object X, the existence of handles depends on the chosen pairs
of connectivities. As shown in Fig. la, when n = 6 and 1 = 26, there exists
a handle since the closed 26-path abédefga can not be compressed to a point;
when n = 67 and 7 = 18, points a and b are not 18-connected, there exists no
handle. In Fig. 1b, it has been illustrated that, when n = 18 or n = 26, the
n-closed path abede fga can not be compressed to a point, there exists a handle;
when n = 6 or n = 6T, there exists no handle.
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The foreground object X and its inverse background object X have exactly
the same number of handles in case a pair of compatible connectivities is used.
Therefore, the tunnel associated with a handle of X is a handle in X, where
there exists a closed A-path in X that cannot be deformed to a point through
connected deformation. The number of handles of an object is called the genus
of the object.

There are two types of filters which can be used to correct the topology of an
input segmentation: foreground filters and background filters. Handles removed
by a background filter correspond to tunnels filled in the foreground object. In
the algorithm described here, both filters are applied at continuously increasing
scales until all topology errors are fixed. Figure 2 shows the idea behind the
development of each step. Morphological opening is used as a multiscale analyzer
to detect handles at different scales. Figure 2b shows how the opening operation
divides the foreground object into two classes.

Points in the largest connected component of the opened object are called
body points, and points in the residue of the original object and body set are
called residue points (Fig. 2¢). Thus, the body set consists of one and the residue
set of many connected components. This method was designed to transfer as
many points as possible from the residue back to the body component. Unfor-
tunately, with complex shapes as in brain segmentations, opening can create
”false” tunnels in the body component. Thus, the body set must be grown with-
out introducing handles, but with filling the ”false” tunnels. This can be done by
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only adding nice points [2] from the residue set. The nice points can be detected
like the simple points defined in [6].

Definition 5 (Nice Point) Suppose that we add a point from the background
object X to the foreground object X. It is a nice point if and only if T,,(x, X) = 1.
It is equivalent to say that the n-components of X are preserved.

The concept of nice points is necessary because morphological opening can
introduce tunnels in the body, and these should be filled. Since a simple point
must satisfy two topological criteria — T, (2, X) = Tn(x,X) = 1 — and a nice
point only needs to satisfy one, T,,(z, X) = 1, adding a simple point to the body
preserves the topology of the body, but adding a nice point allows a tunnel in
the body to be filled. The morphological opening was done by using a distance
transform. The distance of a point within the object to its surface is the length
of the shortest line to the surface. The chamfer distance transform is a quick
way to calculate this distance. The morphological opening sequentially applies
morphological eroding and morphological dilating: The erosion with a threshold
r removes all points of the object with a distance less than or equal to 7. This
distance is the scale r. The dilation adds all points of the background with a
distance less than or equal to r to the surface after the erosion. If there are
regions within a handle which cannot fit a ball of radius r, then the handle
can be broken into body and residue parts. For each residue component R, we
performed the following iterative procedure:

Algorithm 1. Residue Component Expansion (RCE):

1. Recursively add each point of R to the body set B if it is a nice point. If
each point of R is added back, then stop; otherwise, go to step 2 (Fig 2d).

. From R, find the set S of residue points that are adjacent to the body B.

. Find and label all connected components in the set S.

. Take the largest connected component L.

. For each point of L, add it back to B if it is a nice point (Fig. 2d-f).

. If no points can be added back, stop; otherwise, go to step 2.

S U W N

Note that in steps 2-5, the largest set of border points (if there are nice
points) is added to the body. The criterion of nice points ensures that the final
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Fig. 3. WM/GM surface before and after topology corrections

residue points are not added back to the body and are positioned at the thinnest
parts of the handles.

3 Results and discussion

We applied the method to the labeled version of the ICBM single subject MRI
anatomical template (www.loni.ucla.edu/ICBM/ICBM_BrainTemplate.html).
The image size is 304 x 362 x 309 voxels. Cortical gyri, subcortical structures
and the cerebellum are assigned a unique label.

Processing time for each volume was between 0-7 minutes except the white
matter segmentation on an Intel Pentium IV 3.0-GHz CPU. Processing time for
the white matter segmentation volume was about 14 minutes. The tessellation
of each topologically corrected segmentation has the topology of a sphere, i.e, it
has an Euler characteristic of two [2], corresponding to a genus of zero. Fig. 3
shows two sample rendered surfaces before and after topology correction. This
algorithm changed between 0.0% and 1.8% of the voxels for each of the segmented
volumes of the labeled ICBM atlas, with an average of 0.05%.
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