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Abstract. A fundamental problem when computing statistical shape
models (SSMs) is the determination of correspondences between the in-
stances. Often, homologies between points that represent the surfaces
are assumed which might lead to imprecise mean shape and variation
results. We present a novel algorithm based on the affine Expectation
Maximization - Iterative Closest Point (EM-ICP) registration method.
Exact correspondences are replaced by iteratively evolving correspon-
dence probabilities which provide the basis for the computation of mean
shape and variability model. We validated our approach by computing
SSMs using inexact correspondences for kidney and putamen data. In
ongoing work, we want to use our methods for automatic classification
applications.

1 Introduction

One of the central difficulties of analyzing different organ shapes in a statistical
manner is the identification of correspondences between the shapes. As the man-
ual identification of landmarks is not a feasible option in 3D, several techniques
were developed to automatically find exact one-to-one correspondences. In or-
der to automatically establish correspondences between surfaces represented by
point clouds, some authors propose elaborate preprocessing methods [1, 2, 3].
Other approaches solve this with a search for the registration transformation us-
ing an atlas [4] or the ICP algorithm [5]. More recent methods directly combine
the search of correspondences and SSM [6, 7, 8]. All of these enforce homologies
between the shapes. However, exact correspondences can only be determined be-
tween continuous surfaces, not between point cloud representations of surfaces.
Thus, when using imprecise homologies, the resulting variability model will not
only represent the organ shape variations but also artificial variations caused
by the wrongly assumed exact correspondences. The SoftAssign algorithm tries
to solve this problem with an initial probabilistic formulation of the correspon-
dences but it also ends up with one-to-one correspondences [9].
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In order to solve for inexact correspondences, we pursue a probabilistic ap-
proach and base our work on an affine EM-ICP registration algorithm which
proved to be robust, precise, and fast (see [10] for rigid EM-ICP).

2 Methods

The affine EM-ICP algorithm determines the affine registration transformation
T to match a point set M ∈ (R3)Nm on S ∈ (R3)Ns . Instead of assuming
homologies, we focus on the probability of a transformed model point T ∗ mj

being a measure of an instance point si. If we knew that point si corresponds
exactly to point mj , the measurement process would be Gaussian (see eq. 1).

p(si|mj , T ) =
1

(2π)
3
2 |Σj | 12

exp(−1
2
(si − T ? mj)T .Σ−1

j (si − T ? mj)) (1)

where Σj represents the noise as the covariance of mj .
However, point si can in fact be a measure of any of the model points, so the

PDF of its spatial location is the mixture p(si|M,T ) = 1
Nm

∑Nm

j=1 p(si|mj , T ).
Unfortunately, even if we assume that all scene point measurements are inde-
pendent, no closed form solution exists for the maximization of p(S|M, T ). A
solution is to model the correspondences H ∈ R3Ns×3Nm as random hidden
variables and to maximize the likelihood efficiently using the EM algorithm. We
denote E(Hij) as the expectation of point si being an observation of point T ?mj

(with the constraint
∑Nm

j E(Hij) = 1). In the E-step, we fix T and estimate
the complete data likelihood log p(S, H|M, T ), thus calculating E(H). In the
M-step, we fix E(H) and maximize the estimated likelihood with respect to T .
This process is iterated until convergence. In order to easily reach the global
minimum, we employ a variance multi-scaling. We begin with great variances σ2

to ensure that shape positions, rotation and sizes are aligned and end with small
variances to cover for shape details. We also implemented the EM-ICP for rigid
transformations in order to be able to adapt to the data at hand.

The calculation of the mean shape point set M consists of two steps that are
iterated until convergence: First, all N instances Sk of the data set are registered
with the initial model M (iter) = M (0) using the affine EM-ICP. As initial model
we choose one of the instances of our data set which seems to have a ’typical’
shape. Next, a new model M (iter+1) is calculated. Using the EM-ICP framework,
we have to minimize the associated global criterion

Cglobal(T, E(H),M) =
N,Nsk,Nm∑

k,i,j

E(Hkij )(ski − Tk ? mj)Σ−1
j (ski − Tk ? mj)(2)

where ski is a point of instance Sk, E(Hkij ) the correspondence probability
between model point mj and instance point ski, and Tk the registration trans-
formation from the model to Sk. The criterion is optimized alternately with
respect to all Tk and E(Hk) (EM-ICP) and M (which is determined by a simple
derivation of equation (2)).
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Fig. 1. The original objects S (dark grey) and their transformed versions ST (light
grey) before (a) d(S, ST ) = 40, 3mm) and after (b) d(S, ST ) = 0.5mm) registration.
For the EM-ICP, the kidney was decimated from 10466 to 510 points, we chose an
initial sigma of 8mm, 30 EM-ICP iterations and a reducing factor of 0.9 (which leads
to a final sigma of 0.38mm)

(a) (b)

For the variability model we need to compute the principal modes of varia-
tion regarding all Sk and M . The usual method is to use the traditional PCA.
However, we do not dispose of the exact correspondences between each model
point and the instance points. Thus, we generate virtual correspondences s̆kj

for each mj and each Sk by evaluating the mean position of the probabilistic
correspondences. In that manner, the PCA results gain a certain independence
of the positions of the initially chosen points of the instances.

s̆kj =
∑

i

E(Hkij )∑
i E(Hkij )

(T−1
k ? sik) (3)

These “virtual surface points” are then used as input for the PCA.

3 Results

In order to evaluate the performance of the affine EM-ICP registration, we ap-
plied it to synthetic registration problems. We tested for rigid, similitude, and
affine Tsynth with different numbers of points, variances, and iteration numbers.
Our experiment object was a kidney S with Tsynth ? S = ST . To evaluate the
results, we introduced a distance measure d2(S, ST ) = 1

NS

∑NS

i=1 ‖si−sT,i‖2. The
source S and the deformed version ST were decimated using different param-
eters so that no exact correspondences existed between them and the number
of points in the clouds were different (for the decimating algorithm see [11]).
Thus, real conditions were simulated. We established that the affine EM-ICP
finds very good results, needs no previous rigid registration for the affine case
and converges quickly. For an evaluation example with distance values before
and after registration see the affine case in figure 1.

We computed successfully SSMs for data sets of kidney CTs, brain struc-
ture MRs, and sulcal lines. In this article, we focus on the SSM results for the
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Fig. 2. First image: Transversal slice of a CT volume of the brain where the putamen
structures are marked in white. First and second row: The mean shape (middle images)
of the left putamen and the principal deformations according to the first eigenvector
(v1) and second eigenvector (v2). The images show a deformation of −3

√
λivi (left)

and +3
√

λivi (right) respectively (with λi being the associated eigenvalues)

putamen, see figure 2. The data set consists of 24 right and left segmented in-
stances (approximately 20mm×20mm×40mm) which are represented by about
1000 points. The variance multi-scaling in the EM-ICP registration started with
σinitial = 6mm and ended with σfinal = 0.8mm. Figure 2 shows the resulting
mean shape and the deformations of the left putamen according to the variation
modes. We then employ the SSM algorithm for an automatical classification of
the putamen. The putamen data consist of 12 healthy and 12 pathological sub-
jects. We want to determine if the disease causes significant shape deformations
in the putamen. For the diseased and healthy data respectively, a mean shape
and variability model are calculated. Then, the mean shapes and the variations
of the shapes are compared. The results seem to show a shape difference be-
tween healthy and pathological putamen, but this needs to be confirmed by a
statistical test.

4 Discussion

We proposed in this paper an EM-ICP framework to compute statistical shape
models. We believe that our approach offers an advantageous method as it pro-
vides a resolution to the fundamental problem of homology identification between
shapes. We proved that the algorithm is flexible and stable as it comes to good
results for different types of organs. Currently, we are investigating the corre-
spondence matrix as an indicator of the quality of the point distribution in the
model with respect to the instances in the data set. This might help to choose an
appropriate initial model. Secondly, we work on the replacement of the ad-hoc
PCA as this approach is not coherent with the initial demand of inexact corre-
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spondences. At present, we are developing a proper probabilistic model including
the mean shape and the variation modes in a global criterion. In future work on
the applications, we will intensify our analysis of the putamen variability by ex-
tending the data set, conducting more experiments and implementing clustering
techniques in order to finally realize an automatic classification. Besides, we plan
to apply the algorithm on more complex shapes (e.g. ganglion data) with larger
variations. As we want to carefully evaluate our approach, we need to compare
its performance to state-of-the-art SSM algorithms.
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