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Abstract. We consider one of the models of information (or other substance) 

propagation in a spatially distributed multiphase environment, when the ex-

change rate between phases is much higher than the transfer rate, and the num-

ber of phases is large. The transfer is described by a singularly perturbed partial 

differential operator equation in the critical case. An asymptotic expansion for a 

small parameter of the initial problem solution is constructed. From the ob-

tained formulas, it follows that in the first approximation, the initial perturba-

tion propagates at a certain average speed with simultaneous diffusion spread-

ing.   Formulas for the average transfer rate and pseudodiffusion coefficient are 

obtained. The obtained formulas can be used both for qualitative analysis of 

problem solutions and for creating economical difference schemes that require 

significantly less (by orders of magnitude) computational resources. 

Keywords: multiphase media, distributed systems, differential operator equa-

tions, small parameter, singular perturbations, asymptotic decomposition of the 

solution. 

1 Introduction 

 In the description of a number of transport processes of various substances in a 

spatially-distributed multi-phase environments as mathematical models of phenomena 

described by systems of partial differential equations. In the case of one spatial varia-

ble x this system of equations has the form 

              

 Here     the vector-function, the dimension of which is determined by the 

number of phases,              are  the   trasfer rates of each component of the 

solution, the matrix A describes the exchange processes between phases, the elements 

of the matrix aij make sense of the exchange rate between the phases i and j . Spatial 

variable x can make sense of the real spatial variable or to describe some characteris-

tics of the environment, "along" which the transfer substance.  
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In some cases, the exchange processes between phases have significantly higher 

speeds than the transfer processes (which, for example, may correspond to the pro-

cesses of information transfer in a social environment, where the exchange "horizon-

tally" (between phases) occurs much faster than the exchange "vertically" - by the 

variable x).Then when  moving to dimensionless variables in the task   matrix A takes 

the form A=ΕA1  ,where Ε >>1 is a large positive parameter and A1  has elements of 

order O(1). It is convenient to rewrite A in A=A1/ ε where 0<ε<<1 is a small positive 

parameter. Below we denote a small positive parameter as ε
2
 (second degree is intro-

duced for convenience and to reduce the record below), and the lower index in the 

matrix A1 down. In this case the system of equations takes the form  

               

The presence of a small parameter at higher derivative makes the problem singular-

ly perturbed [16], numerical calculations solution of which is quite time consuming. 

However, to simplify numerical calculations of solutions and identify some of the 

hidden regularities of the behavior of the solution (and consequently, the simulated 

system), it is advisable to try to construct the asymptotic expansion (AE)  of the solu-

tion in powers of the small parameterter ε. If the number of phases is very large or 

tends to infinity ( in case n>>1 ), then the discrete index i, 1≤i≤n, becomes a continu-

ous parameter p, p1≤p≤ p2 . In this case the system of equations becomes one differen-

tial operator equation generalizing the above system to the case in which the matrix  A 

is replaced by a linear operator acting on the parameter p . In this case, the vector 

function      becomes a function          , depending on the parameter p, and 

the system of equations is transformed into a differential-operator partial differential 

equation 

 

                

Similar equations (possible, without a small parameter) appear when modeling  

various processes, for example, coagulation processes [1]-[4], (Boltzmann and 

Smolukhovsky equations), turbulence processes [5]-[7], modeling social processes 

[8]-[12], and others [13]-[14]. Differential-operator equations have been studied in 

many works, for example [19]-[23].  To construct an asymptotic expansion of the 

solution, the technique developed in the works [16]-[18] is used.  

 

2 Statement of the problem 

Consider the initial problem for a singularly perturbed differential operator equation  

                                      (1) 

           
 

 
     (2) 



 

here:         – solution ,                               
   ,       is a small positive parameter;         continuous function on  

         ;           is a linear operator acting in the space    of continuous by    

functions         with the scalar product          ; the initial condition         

satisfies the inequality               
 
 together with their derivatives at     up to 

order N+3 ,here N - some natural number . 

Let the operator     has a single eigenvalue      ,   - corresponding 

eigenfunction,   
  a  eigenfunction of the adjoint operator   

 ,  corresponding   
   .  

.  

It follows from the condition      that  in the evolution of the "generalized 

quantity" of a substance does not change. Indeed, multiplying (1) on    
    scalar and 

integrating the result  on x from -∞ to +∞, we get 

 

  
      

       

  

  

 

I. We require that the remaining eigenvalues    of the  operator     have negative 

real parts            . 

II.       
    .   In this condition it is possible to choose these functions so that  

      
    .  

3  Algorithm for  constructing an AE solution 

AE of solutions is constructed as the sum of the functions of the surge   , concen-

trated in the neighborhood of a line          – "Pseudocharacteristic" of equations 

and boundary layer  functions   concentrated in the neighborhood of the boundary 

     and the remainder term  : 

                              

                            
       (3) 

here    
    

 
             

   is a variable, which describes the function of the 

surg  ;   
 

 
      

 

  
   the stretched variables, which describe the boundary layer 

function  .  The algorithm for constructing a AE similar to the algorithm described in 

[3]. 

3.1  Building a surge function  

Function S must satisfy the original equation (1): 

                       (4) 

Move on to equation (1) from variables      to new variables       



                 (5) 

where  

                     
    (6) 

 

Function S is searched in the form: 

                     
 
     (7) 

Substituting (7) into (5), in a standard way  [4] we get the system of equations for 

the terms of the expansion : 

            , 

                , 

                     , 

… 

                         , 

    is: 

 

                              (8) 

 

where    - as yet unknown function. Write conditions for the solvability of the 

equations for    and     [4]: 

         
     (9) 

               
      (10) 

 

The condition (9) is  true due to the choice of the variable ζ, therefore,     can be 

written as: 

                  (11) 

where   – pseudo-inverse  to operator    . Substituting (8), (11) in (10), and elimi-

nating φ1 derived equation to determine   φ0: 

                          
                (12) 

The equation for finding the following approximations         are obtained sim-

ilarly. Omitting the calculations, we give only the result. 

The function     is: 



 

                          . 

A function    defined by the equation: 

 

                  (13) 

 where        is a linear combination of the functions           ,  and their 

derivatives. 

Thus, the obtained expression for finding and equations to determine the members 

in these expressions for all functions           . 

Apply the condition of parabolicity on equations (12), (13): 

III.             
     

3.2  The construction of boundary layer  functions 

A function        under any initial conditions for equations (12), (13) does not sat-

isfy initial conditions (2). To meet these conditions is constructed, the boundary layer 

function                 
    [4]. The boundary layer function P needs together 

with the function   to satisfy the initial conditions (2): 

                    
 

 
      (14) 

the original equation (1): 

                       (15) 

and the condition: 

          (16) 

The function  P is constructed as: 

                      
 
    (17) 

 

Substituting (17)  into (15)  [4],  we get the equations for determining pi 

             ,  (18) 

                            . 

Substituting the series (8), (17) in condition (14), given that  
 

 
  , we get  the re-

sulting equations for determining the initial conditions: 

                                (19) 

                                (20) 



 

Imposing some additional conditions on the eigenvalues of the operator     (IV-

VI,[3]) and omitting intermediate calculations, we give the result. The function     

has the form 

                       
     

     (21) 

Substituting (8), (21) in (19) we obtain the equation for determining the initial con-

ditions          for the equations (13) and functions       : 

                         
 
            (22) 

From (22) in the IV-VI [3] we get:  

                                                     

Thus, the obtained initial condition for equation (13) from which    is determined 

, as well as the function     itself . 

The construction of the subsequent functions     is similar [4].  

Thus, all members of the far solution (3) - functions          and        ,  clearly 

defined. 

3.3  The function evaluation of splash and border functions 

If the condition III (M<0)  is met, for any      all             exist, are unique 

and    for a  any fixed N and are valid estimates   

               
 
            . 

When the conditions are met I-VI all pi exist, are unique  and satisfy the estimate: 

                       .   

3.4 Evaluation of the residual term  

Write the solution of  the original problem (1)-(2) in the form: 

                                  
    (233) 

where          built above the AE of the solution, R - the residual term.  

Fair  

Theorem. Let the conditions I-IX [3]. 

Then the solution of problem (1)-(2)can be represented in the form        

where built above the AE     of the solution, the residual  term    satisfies the as-

ymptotic bound on the discrepancy: 

 

  
                      

         
  



 

 

A full proof is given in [3]. 

4 Discussion  

1. Built AE  solutions of singularly perturbed differential-operator equation (1) for 

t>t0 where t0 >0 is any positive, independent of the ε, taking into account the estimate 

(23), has the form 

                                 (244) 

Functions    is the solution of the initial problem for a parabolic equation: 

 

                                 ,     (25) 

                                                ,  (25) 

 

which is neither a small parameter nor a parameter p. 

2. The above result can be interpreted in terms of a qualitative description of the 

evolution of the solution. The main term in AE has the form                 ,  

there         is a solution to the parabolic equation (26) where   
    

 
      

       
  .    This suggests that the initial perturbation is transferred from the effective 

(average) speed, and the transfer is accompanied by a "pseudodiffusion"    blur. Aver-

aging the rate and "pseudodiffusion" the blur  is due to the fact that there is a "rapid 

mixing solution" for the variable  , and the speed of migration is different for differ-

ent     . 

3. For technical systems with well-defined inputs you can calculate  an approxi-

mate solution for t>t0 using the problem (26)-(27). For processes with poorly defined 

input data (social, economic, informational) in equation (26) can give a qualitative 

description of the process of moving a heterogeneous interactive information ( the 

dependence on a parameter p) along social strata ( variable x) with some "effective 

speed" while blur, that describes the slow the spread and diffusion of information 

thanks to the intensive exchange.  

4. The results obtained can be generalized to equations with a large number of spa-

tial variables, to equations with variable coefficients.  

5. The most interesting results are obtained if a weak  nonlinearity is added to the 

right side of the equation 

 

                         (26) 

 

 

The AE of the solution of the equation (26) with the initial condition (2) has the 

same form (3), but the equation for the determining         becomes nonlinear 

 



 

 

                                        ,     (267) 

                                                ,   
 

where              is determined through             and the problem data. For a 

different form of weak nonlinearity on the right side, the equation (27) can take the 

form of a generalized Burgers equation. 

 

6. The obtained asymptotic formulas make it possible to significantly (up to several 

orders of magnitude) reduce the computational resources required for numerical cal-

culation of the solution, since the solution of a singularly perturbed differential opera-

tor equation reduces to the solution of a parabolic equation (25) without a small pa-

rameter.  

 

5 Conclusion 

1. An asymptotic expansion of the solution of the initial problem for a singularly 

perturbed differential operator transfer equation is obtained. Under the conditions 

imposed on the problem, the main term of the asymptotics is described by a parabolic 

equation, linear or nonlinear, depending on the presence of a small nonlinearity in the 

original problem. The resulting formulas can be used to calculate the solution and for 

qualitative analysis of the solution behavior.  

2. We can figuratively say that "strong mixing generates irreversibility", since, de-

spite the reversibility of time in the original problem, the solution quickly begins to 

evolve as a solution of the parabolic equation, which is characterized by irreversibil-

ity. 
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