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Abstract. The development of the theory of best uniform approximations was 

started by the work of Pafnuty L. Chebyshev (1821-1894) who for the first time 

has found the existence of the best polynomial approximation and detected its 

unique feature [1]. This theory later received his name. The scientific prove for 

the existence and uniqueness of such a polynomial as well as the basis for de-

velopment of the classical analytical methods for its computing were given in 

the papers of P. Kirchberger, D. Jackson, S.-J. Valle-Poussin, E. Borel, S.N. 

Bernstein, N.I. Akhiezer and others. E.Y. Remez has proposed in 1933-1934 the 

method of successive Chebyshev interpolations and two based on it algorithms 

(I and II). They became the basis for numerical solution of the Best Chebyshev 

Approximation (BCA) problem. However because of the method computational 

complexity, implementation of the best approximants in practice became possi-

ble only in the late 1950s with the use of the computers developed then in Sovi-

et Union. It should be noted that the first computer algorithms and programs of 

the polynomial BCA have been developed at V.M. Clushkov Institute of Cy-

bernetics (GIC) of National Academy of Sciences of Ukraine (NASU) in the 

late 1950s with the direct assistance of E.Y. Remez. The results of specific 

problem solving were first reported by the authors in 1961 at the IV All-Union 

Mathematical Congress in Leningrad. The BCA technique development is tradi-

tionally held at GIC in the directions of the approximant class expansion and 

the BCA technique use to increase the accuracy of application problem solu-

tions. Besides, it inspirits such important areas of the computer technology (CT) 

scientific foundations as the processing and compression of big numerical ar-

rays, as the computational algorithm optimization for accuracy and speed by 

minimizing the total errors in their implementation. The related GIC results and 

some prospects for further development are described. 

Keywords: compression of data arrays; existence; uniqueness; Best Chebyshev 

Approximation (BCA); information processing; complicity; accuracy; perfor-

mance; total error. 

1 Introduction 

Improving the level and quality of information support for society is an increasingly 

important as a determining condition of its effective development. Information on the 

studied object states is usually represented by discrete form of functional dependen-
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cies which characterize the various nature processes in the form of information arrays 

of numerical data.  

Working with such big arrays is associated with serious difficulties in their use in 

mathematical modeling and forecasting problems, in solving the problems of econom-

ically storing large amounts of data, in their high-speed transmission through commu-

nication channels, etc. 

To overcome the above difficulties, mathematical processing of the arrays is ap-

plied using the interpolation, mean-square or uniform approximation methods to 

compress them by replacing the discrete representation with their analytical expres-

sion. 

The compression ratio is characterized by a compression coefficient C, which is 

determined by the formula 

    FbfbC  ,  

where b(f) and b(F) are accordingly the array size of the given discrete function f and 

the number of approximant parameters F. 

The most efficient and general way to solve such problem is provided by the best 

uniform approximation method based on the P.L. Chebyshev’s results [1]. 

A fundamental feature of Best Chebyshev Approximation (BCA) is that the ap-

proximation accuracy limit obtained for a function discrete representation remains 

guaranteed for any points of the function continuous interval. The feature makes BCA 

preferable over both interpolation and RMS approximation methods. The specified 

BCA advantage allows one high accuracy solving both the problem of high compres-

sion ratio approximation of numerical data arrays (the direct approximation problem), 

and the problem of recovering the missed or absent values of the original data (the 

inverse approximation problem). The second problem usually arises when the exper-

iment repeating is either difficult or impossible. Typical examples are analysis and 

synthesis of complex static or dynamic systems. The BCA feature is preserved when 

solving both direct and inverse approximation problems. 

Known methods for the Chebyshev problem solving can be subdivided by the 

spread of E.Y. Remez’ methods [2, 3], the linear and convex programming methods 

[4, 5], the spline approximation methods [6], the methods of sequential differential 

linearization by parameter coefficients (mainly for fractional rational approximation) 

[7]. Among them, a special attention is paid to the second E.Y. Remez’ method which 

provides relatively fast convergence rate (quadratic in some cases) with the ability of 

computation unification. The last is important for the efficiency of computer imple-

mentations. 

The first GIC results in the area of BCA algorithm and program development ad-

dressed the polynomial approximation of univariate functions and the approximate 

solving systems of incompatible equations. Both were based on the second method of 

successive Chebyshev interpolations (SCI) proposed by E.Y. Remez. They have start-

ed a series of successive developments [8 - 11]. 

Farther development of the BCA thematic at GIC went in the next main directions. 



1. Development of new BCA methods and algorithms for both analytically and 

discretely defined univariate functions by approximants of various nature (polynomi-

al, fractional rational, etc.) as well as for the multivariate functions by generalized 

polynomial approximants.  They apply the Remez’ SCI with reducing the problems to 

the linear programming problems. A branch of this direction is development of the 

best piecewise approximation algorithms and programs. They are applied to big ar-

rays (of the order of 10 million values and more) breaking them by parts (a segment 

approximation). 

2. Optimization of algorithms and programs for accuracy and speed by obtaining 

estimates of their total errors; development of methods, techniques and methods for 

modifying algorithms in order to further increase their computational efficiency; de-

velopment of the techniques for solving classes of applied problems, including those 

related to compressing the large arrays of numerical information. 

Increasing the information flows in society together with the raising acute problem 

of their compression when ensuring high accuracy and speed determine the growing 

demand and special relevance of BCA. 

The ongoing BCA development at GIC addresses mainly its wider and systemic 

use for various classes of applied problems as well as the computer algorithm optimi-

zation. 

Brief introduction to the BCA problems, algorithms and optimization methods is 

presented below. See [12 -15] for more detailed and specific information. 

2 Problem Statement and Algorithms 

The problem of best (uniform) Chebyshev’s approximation of a function  xf  on 

interval  ba,  in a general statement is based on the Chebyshev principle of mini-

mizing the measure of uniform approximation 

  
 
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It consists of finding such an approximate of degree n  with the coefficients 

 naaaA ,,, 10   from the whole set of approximants Hn of degree n  which 

satisfies the minimax condition 

   minnHL ,  

where  xf  is a function continuous on  ba,  and  n
H

HL
n

min  is the smallest 

measure of uniform approximation. 

As  AxHn ;  consider the classes nP  of all polynomials of degree no bigger than 

n of type 
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and the classes nr  of all fractional rational expressions of the degree n=l+m of type 

        BAxrxQxPxr nmln ;;/  ,  

where Pl(x) and Qm(x) are polynomials of the degrees l and m respectively with the 

coefficients   liaA i ,0,   and   mjbB j ,0,  . 

Then the statements of the problems of finding the best Chebyshev approximants 

are: 
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where Пn(x) and Rn(x) are target polynomial and fractional rational best Chebyshev 

approximants, when   and   are the values of their best approximations. 

The existence, uniqueness and properties of these approximants follow respectively 

from the classical theorems of E. Borel and P.L. Chebyshev for the polynomial state-

ment (1), and N.I. Akhiezer and P.L. Chebyshev for the fractional rational statement  

[16, 17]. Based on these theorems, the only solutions to problems (1) and (2) coin-

cide, respectively, with the solutions to next “elementary” problems: 
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on (n+2) point subsets  b,aX ,X 21   where the values   and   reach their max 

possible values  and  . 

Each of the (n+2) point problems is a Chebyshev interpolation problem of the 

function f (x) on the set of (n+2) points, which are called Chebyshev alternance for 

the polynomial problem (1) and extremal basis for the rational fractional problem (2) 

respectively. This remarkable property of Chebyshev alternance is the basis for find-

ing all the best Chebyshev approximations. 

E.Y. Remez method of solving the problems (1) and (2) is based on the idea of se-

quential Chebyshev interpolations (SCI), whose r steps are reduced to finding a se-

quence of (n+2) point S-sets 
   1,0,  nvxS r
vr . This sequence converges to 



the desired Chebyshev alternance or extreme basis if obtained by solving at each j-th 

step the next systems of algebraic equations for (1) and (2) respectively: 
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The equations (3) are linear with respect to the coefficients nkak ,0,   of the poly-

nomial  xP jn,  and the value j  when the equations (4) are non-linear with respect 

to the coefficients liai ,0,  , the coefficients mibi ,0,  and the value j  [2, 3, 8]. 

The main difficulty of all the numerical implementations of the Remez method is 

the choice of the (n+2) point sets at each step of. The subsets determine both the rate 

of convergence and the existence of the SCI convergence. 3 options are known for 

selection the (n+2) point sets: the optimal one, the semi-optimal one and the accepta-

ble one. The optimal option provides the quadratic convergence rate, which in prac-

tice leads to a few iterations needed (even 1-2 iterations only: [3], p. 79). 

The BCA algorithms for both the polynomial/fractional rational approximation of 

univariate functions and the generalized polynomial approximation of multivariate 

functions developed at GIC are based on the second method of E.Y. Remez’ SCI. The 

main advantage of the GIC algorithms in comparison with similar implementations 

known from other publications is their optimal method of the (n+2) point set re-

placement when moving to the next iteration [9 - 11]. 

 

2.1 Polynomial and Fractional Rational Approximation 

The initial function f(x) can be defined both analytically and discretely in the algo-

rithms for solving the problems (1) and (2). However, discrete calculated values are 

used always when replacing the (n+2) point sets (at each iteration) [14, 15].  

The replacement of current (n+2) point sets jS  by the next 1jS  is implemented 

according to the next rule. SCI selects the largest (n+2) deviations of the approximant 

from the initial function, taking into account the alternation (serial inversion) of the 

deviation value signs. Thus, the Chebyshev alternance for the problem (1) or the 

extremal basis for the problem (2) is approached, and the best approximants are com-

puted together with their best approximation value. The solution of problem (1) at 

each j-th step is reduced to solving the system of linear algebraic equations (3) by the 

Kraut method optimized for accuracy and speed [14, 15]. 

Two algorithms (“A” and “B”) have been developed for the problem (1). Their dif-

ference is correspondent to the difference of the next BCA polynomial forms:
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According to N.S. Bakhvalov, the algorithm “B” improves the algorithm “A” in 

the case of big variation of the polynomial coefficients, which can cause a big round-

ing error when calculating values by Horner scheme. The N.S. Bakhvalov’s algorithm 

for writing a polynomial in the form of a linear combination of Chebyshev polynomi-

als significantly reduces the indicated numeric error [14, 18]. 

The total error analysis of algorithms “A” and “B” has shown that the advantage of 

the algorithm “B” becomes noticeable at the polynomial degrees n>10. For n≤10, 

both the algorithms are approximately equivalent in precision. 

According to A. Ralston, convergence of the problem (2) is possible only for initial 

approximations in the near neighborhood of the best polynomials when convergence 

of the problem (1) is provided for any initial (n+2) point sets. However, A. Ralston of 

did not give any practical recommendations regarding the initial choice [19]. 

The drawback was eliminated in the Werner’s method able to converge from an 

arbitrary initial approximation. However, the algorithm complexity and its low (line-

ar) convergence rate (according to the author himself) do not allow this method to be 

efficiently used in practice [20]. 

The combined algorithm (CA) developed at GIC has proposed a method of choos-

ing the initial (n+2) point sets “close” enough to the target one. It ensures the SCI 

convergence for the problem (2). The CA uses Werner’s method at the first step to 

produce good initial (n+2) point set for SCI. It eliminates the theoretically possible 

cases of “degeneration” or “almost degeneration”. Then the SCI process continues 

until the desired is received. In contrast to the polynomial case (1), in the problem (2), 

the CA start is controlled by given accuracy, and the systems of algebraic equations 

(4) are nonlinear. The system (4) is linearised by eliminating unknowns using the 

iterative secant method [14]. 

Numerous examples of solving problem (2) by the CA algorithm never caused 

“degeneracy” or “almost degeneracy” confirming the stable convergence of the 

Remez’ SCI for the problem (2) as well as for the problem (1). 

 

2.2 Approximation of Functions of Many Variables 

The problem of multivariate function approximation    mxxxfXf ,,, 21   is 

solved by the generalized polynomials    

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 on a system of linear-

ly independent basis functions    X,,X n 1  : 
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where  nz,,zZ 1  is found as a solution to a special case of a uniformly best 

approximation problem reduced to solving the next systems of incompatible linear 

equations: 
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 the problem is reduced to the next problem 

of algebraic minimax: 
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The problems (5) - (6) and (7)  are equivalent to the next linear programming prob-

lem. 
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The algorithm implements the direct and dual linear programming problems. The 

leading one is dual which is solved by the modified simplex method (MSM) given 

that in practice the number of equations N is much greater than the number of un-

knowns n, and table of “extended basis” of size    42  nn  for MSM is signif-

icantly less than the reference table of direct simplex method   Nn  2 . Some used 

techniques allow reducing more than half the simplex table and transforming just the 

modified (compressed) simplex table with the reference table being unchanged  dur-

ing the dual MSM problem solution. (See [3, 10, 14] for more details.) 

The described MSM algorithm computes the desired parameters nzzz ,,, 21   of 

the problem (7) - (8). The found parameter values are then used to find the values 

 Zi1
 ,  Zi2

 , …,  Z
ni 1

 . Their smallest and largest modulo values A  



and L  are the lower and upper boundaries of the best approximation value  , i.e. 

LA  . 

The criterion for the algorithm stop is fulfillment of the condition ALL  . 

The techniques used in the algorithm can significantly reduce the number of calcu-

lations and increase the accuracy [14]. 

 

2.3 Algorithm Optimization 

At GIC, the optimization of computational algorithms for accuracy and speed is tradi-

tionally based on the developed general theory of total error estimation. 

The early results in this research direction have been obtained in Soviet Union in 

the 50-60s for estimating the approximation method errors and the fatal input data 

errors by S.M. Nikolsky, V.K. Dzyadyk, N.P. Korneychuk, S. B. Stechkin et al. The 

research was continued by A.N. Tikhonov, V.K. Ivanov, M.M. Lavrentiev. Since 

1960s, interesting results on the rounding error estimates for numerical implementa-

tions of algorithms were obtained by N.S. Bakhvalov, J.H. Wilkinson, V.V. 

Voyevodin, V.A. Morozov, I. Babushka, S.L. Sobolev and others. With the develop-

ment of approximate methods of computational mathematics, the need for a signifi-

cant increase in the accuracy of their computer implementations has grown. An im-

portant progress for the problem solution was obtained in 1970th within the general 

scientific theory of analysis and estimates of total errors (TE), including all kinds of 

computational errors of algorithms, together with the first works on optimization of 

approximate methods and algorithms for various areas of numerical analysis. 

GIC researchers were the first in Soviet Union who on the base of the theory esti-

mated TE for the methods and algorithms of operator and singular integral equation 

solving, Fourier transforms, BCA. The research was continued in [12, 13, 21-30]. 

The efforts lead to founding the All-Union School for the Optimization of Compu-

ting and to organizing the scientific international forum “Problems of Optimization of 

Computing” held by GIC since 1969 till now. 

Such TE estimates were developed at GIC for BCA of the problems (1) and (2). 

They include both a priori and a posteriori deterministic majorant TE estimates. For 

some function classes of specific structural properties the obtained TE estimates are 

unimprovable by order with respect to some parameters. Inclusion of TE estimates 

into the computational schemes of algorithms can significantly increase their accura-

cy. In some cases, an order of magnitude improvement is achieved. Numerous proce-

dures and techniques are used for additional optimization of the algorithm accuracy 

and speed. Among them, the input data preliminary processing is applied for eliminat-

ing random inaccuracies [12-14, 27]. 

Along with the basic BCA algorithms, using additional classes of approximants 

such as exponential, logarithmic and the root of the polynomial extends the classes of 

approximable functions. 

In order to increase the compression efficiency of big data arrays, an analysis of 

the comparative BCA accuracy characteristics for different classes of approximants 

have been examined, and a class of generalized polynomials 



     xzxzxQ nnn  11  for systems of basis functions     x,,x n 1  

using a special case of reducing the problem (5) to the univariate version has been 

defined. A complex of BCA algorithms and programs for such polynomials has been 

developed. 

A comparative analysis of the accuracy of approximations with different systems 

of basis functions is executed to determine the most suitable system in order to further 

improve the accuracy of solving the problem (5) in each specific case. 

In order to further increase the efficiency of BCA use for compressing big and ex-

tra-big data arrays, a method of segment approximation has been developed. It is 

based on selection of the optimal number of nodes for dividing the array into sub-

intervals with further applying BCA for each of them separately. Besides, the classes 

of approximants on the subintervals are selected taking into account the features of 

the interval dataset. This approach increases both the BCA accuracy at each sub-

interval and the total compression ratio. It should be noted that the segment approxi-

mation method for large arrays representing the functions with singularities common-

ly provides much better accuracy compared to the approximation on the whole inter-

val [31, 32]. 

The developed techniques for comprehensive BCA optimization provide benefits 

of the developed tools in comparison with similar implementations such as [33, 34]. 

3 Obtained Results 

The developed BCA algorithms and programs for many years were used as a compo-

nent of the built-in software of Soviet computers, including Macro Conveyor of MIR 

computer series where they implemented the system-level functions in the basic trans-

lator. In practice, their efficiency has been verified by many implementations in 

Ukraine, in other republics of Soviet Union, and abroad. The BCA toolkit was used 

for data array compression when solving various application problems in the fields of 

science and technology (including defense), when computing the complex systems 

characteristics in both static and dynamic mode of operations e.g. within the aircraft 

structural strength modeling for Soviet Tupolev Design Bureau, and Antonov Design 

Bureau (later Ukrainian Antonov Aeronautical Scientific-Technical Complex). The 

BCA toolkit was also used to calculate trajectories of planets and artificial satellites; 

transects and curves of transcontinental air pollution transport; profiles of highways 

and railways (including the famous Baikal–Amur Mainline); state analysis and fore-

casting for the Soviet Union energy system; the structural strength characteristics of 

beams and ceilings in earthquake-prone zones. 

In the framework of the Chernobyl disaster consequences liquidation, the BCA 

toolkit was used as a component of the current state calculation software used for 

simulation of the Kiev water reservoir, the whole water system of the Dnieper reser-

voir cascade, of Black Sea and all the lemans of North-Western Black Sea region and 

of several other water objects [35]. 

The BCA algorithms have been implemented in FORTRAN, Algol, Pascal and 

then in C++. The last implementation is used by Ukrainian cluster supercomputers of 



SCIT family as a component of its Basic Parallel Application Software (BPAS). The 

SCIT BPAS includes the next BCA libraries: libроlу_арх.а (for the polynomial 

approximation of univariate functions), libratfraction.a (for the fractional 

rational approximation of univariate functions), libmany_var.a (for approxima-

tion of multivariate functions by the systems of basis functions), icybmath.a (for 

high precision computing the elementary and special mathematical functions), 

many_var_interp.a (for interpolation of multivariate functions). 

It should be noted that accuracy of elementary and special functions provided by 

the library is not less than 10
-21

 with the number of coefficients not more than 10. It is 

much better than the accuracy of conventional approximations (of not more than 8 

exact decimal numbers). 

All the libraries have copyright certificates. 

The developed libraries can be used, inter alia, as reusable components for distrib-

uted solving problems in the EGI computational grid for high throughput computing. 

Despite the fact that the BCA algorithms and software libraries are not internally par-

allel, their use as an invariant BPAS component is supposed in a multitask mode 

when solving many sub-problems concurrently. The mode is common for parallel 

processing of big data arrays and this explains the libraries relevance for the High 

Performance Computing (HPC) domain. 

The BPAS libraries implementation was funded by several projects including the 

project of approximation subsystem development for compressing big arrays of nu-

meric data as a part of the Ukrainian Budget Committee Information and Analytical 

System, and the NASU scientific and technical project for development of soft-

ware/hardware complexes [36]. 

BCA by generalized polynomials together with algebraic ones is widely used in 

solving many application problems for compressing big and extra-big one-

dimensional arrays-vectors (with up to 10 million number elements) with compres-

sion coefficients ranging from 100 to 500. For example, 1897 measurements of water 

salinity at different depths of the Black Sea compressed by polynomials of degrees 

from 9 to 14 with the compression ratios from 126 to 190 were reconstructed with the 

error from 1.2% to 2.1%. 

Fig. 1 shows another example of BCA compression of a matrix by generalized pol-

ynomials. The matrix of size 17,339 KB (2 million 250 thousand numbers) have been 

compressed down to 52 KB providing the compression ratio C = 333. 

 

Fig. 1. The matrix data size before and after BCA compression by generalized polynomials 



 

BCA of multivariate functions by generalized polynomials and approximants of 

other classes was successfully applied for finding approximate solutions to systems of 

incompatible linear equations, for finding analytical approximate solutions of linear 

differential boundary value problems and initial boundary value problems of mathe-

matical physics, for solving linear Fredholm integral equations by minimizing the 

maximum integral residual, and in other problems [37]. 

It was also used in solving problems of calculating the structural strength charac-

teristics of reinforced concrete floors taking into account the conditions of precast 

slabs. The results of these works in 2017 were presented at two International scientific 

and practical conferences in Kharkov and Philadelphia (USA) and received positive 

assessments and certificates [38, 39]. 

 Current work focuses on extending the BCA toolkit use for solving new classes of 

application problems. 

4 Conclusion 

Obtaining for a number of applications more accurate solutions in comparison with 

other known methods confirms the relevance and efficiency of BCA tools. Thus, 

BCA can be reasonably recommended for solving other classes of application prob-

lems. 

BCA efficiency in compression of big and extra big arrays of numerical data with 

high accuracy and compression ratio provides several benefits such as storage re-

source saving, noise tolerance, high data delivery speed in communication networks, 

including the grid infrastructures of distributed computing, and guaranteed accuracy 

of data recovery. 

Multiple applications of the BCA toolkit both confirmed its high efficiency and 

helped in its further improvement and development. 

GIC work on solving complex optimization problems, computation accuracy and 

performance optimization for various classes of application problems including the 

algorithms and software of Best Chebyshev Approximation put important contribu-

tion to the computer technology progress. 
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