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Abstract. A trapdoor cipher is a cipher whose algorithm contains some hidden 

structure (a trapdoor) providing the existence of a subliminal information 

channel. In cryptographic practice, there could be situations when a constructed 

cipher may contain some critical defect (a trapdoor) whose identification can 

significantly weaken the cryptographic strength of this cipher. In this paper, we 

propose and analyze one of such defects in terms of automata-theoretic 

approach. An operation of the cipher with this defect is modeled by a finite 

automaton under the so-called effective observation. The existence of effective 

observation for a finite automaton qualitatively reflects the presence of a 

trapdoor which allows one to determine the information on automaton input 

words by observations over the corresponding output words. We prove the 

criterion of finding an automaton under effective observation and specify the 

classes of automata under effective observation and the classes of automata for 

which there is no effective observation. Possible applications of the results for 

protecting ciphers from side channel attacks are formulated. 

 

Keywords: Cryptography, Automata theory, Cipher models, Automata under 

effective observation. 

1 Introduction 

The analysis of ciphers in terms of automata theory is now becoming quite common. 

This approach allows one to formulate and solve cryptographic problems for different 

cipher classes. In cryptographic practice related to the synthesis (construction) of 

ciphers, there could be situations when one consciously builds a trapdoor cipher, i.e., a 

cipher whose algorithm contains some hidden structure (a trapdoor) providing the 

existence of a subliminal information channel. Except for this case, ciphers are 

usually  built  without such forethought defects. However, a constructed cipher may  
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contain some critical defect (a trapdoor) whose identification can significantly 

weaken the cryptographic strength of this cipher. One of such defects is proposed and 

analyzed in this paper in terms of automata-theoretic approach. This defect presents in 

a cipher whose operation is modeled by a finite automaton under the so-called 

effective observation. 

Let A=(X,S,Y,h,f) be a finite automaton with an input alphabet X, a set of states S, an 

output alphabet Y, a transition function h:SХS, and an output function 

f:SХY. Denote by A(s,P) an output word of the automaton A resulting from the 

initial state s when the input word is P=x1x2…xk. 

The problem. It is required to find functions Uk, Фk such that Uk(P)=Фk(A(s,P)) for 

any pair (s,P)∈SХk, Uk≠const, Фk≠const. An automaton that satisfies this 

condition for some k is called an automaton under effective observation. 

This paper is organized as follows. In section 2, we justify the need for the setting of 

the presented problem and list possible areas of cryptographic information security 

where this problem and the results of its solution are of interest. In Section 3, we 

introduce the basic notions and notations by which automata-theoretic model of the 

problem is formulated. In this model, the examples of possible problem formulations 

are presented. Then we prove the criterion of finding an automaton under effective 

observation, i.e., the criterion of possible determining the information on key 

elements of a cipher or the information on a plaintext by the given observable 

information. This section also contains some previous results on the subject obtained 

by the author. The main results are in Section 5. It is devoted to finding the classes of 

automata for which, within the given mathematical model, it is impossible to 

determine the information on an automaton input word by the corresponding output 

word. We also consider the question whether this problem is algorithmically 

solvable in the class of all automata. The paper is concluded in Section 6. 

2 Relevance of the problem 

Let us clarify in which areas of IT technologies it is useful to apply the description of 

automata under effective observation and the automata for which there is no 

effective observation. First of all, we are talking about devices and programs that are 

modeled by finite automata. 

2.1 Computer bugs 

An information channel is called covert if it is not specifically designed and was not 

originally supposed to transfer information in electronic data processing system. A 

covert channel is called subliminal if it can be used only by the holder of the 



corresponding secret information. The idea of subliminal information channels was 

first introduced in the works of Simmons [1-3], by the example of a covert channel in 

the digital signature system with a public key. In [4], there is the description of the 

covert channel performance for the digital signature algorithm (DSA) [3], and the 

papers [5], [6] describe the covert channel performance for the digital signature 

algorithm Ong-Schnorr-Shamir. 

The device embedded in a computer and modeled by a finite automaton under 

effective observation provides you with an automatic retrieval of the input device 

information. 

2.2 Trapdoor cipher 

A trapdoor cipher is a cipher whose algorithm contains some hidden structure 

(trapdoor) providing the existence of a subliminal information channel; knowledge 

of this structure allows one to obtain sensitive information (such as secret keys). 

Without the trapdoor knowledge, the cipher seems to be secure. 

One of the most important types of trapdoors that can be embedded in cryptographic 

algorithms is the so-called SETUP (Secretly Embedded Trapdoor with Universal 

Protection) mechanism [5], [6]. The SETUP mechanism modifies the given 

cryptographic algorithm in a way that allows the developer of the cryptosystem to 

obtain sensitive user information (often about their secret keys). At the same time, 

for any observer different from the developer, the performance of the modified 

algorithm is indistinguishable from the performance of the original algorithm. Such 

modified cryptosystems are sometimes referred as infected cryptosystems. 

In [5-7], it is shown that a number of well-established cryptographic primitives can 

be modified by including the SETUP mechanism in the body of the relevant 

program. For example, in [7], there is the description of the scheme for constructing a 

covert information channel in a block cipher. An embedded SETUP mechanism 

completely compromises the corresponding cryptosystems in relation to its 

developer (and only in relation to him). These attacks require a single tampering with 

a cryptosystem. A particular danger is posed by SETUP mechanisms for smart-cards 

because its key generation always takes place without user intervention. In the case 

of block ciphers, one can also employ the leakage channels running during the 

generation and transmission of the so-called Initial Vectors used in OFB, CFB, and 

CBC modes. 

The main known results for embedding trapdoors in ciphers are obtained for 

public-key cryptosystems, in particular, for the little-known public-key encryption 

algorithm based on finite automata and called FAPKC (Finite Automaton Public Key 

Cryptosystem). 



Our proposed method for constructing a trapdoor cipher is different from the known 

ones. It is based on the choice of the automata-theoretic model for the cipher under 

effective observation. Its principal features are described in the section 5 «On 

reconstruction of information on an automaton input word by the corresponding 

output word». 

2.3 Side-Channel Attacks 

Side-channel attacks (SCA) are a type of cryptographic attacks which exploit 

information leaked from side channels [8-17]. Let us list some methods to prevent 

side-channel attacks: masking; blinding; carrying out the computations whose 

performance time does not depend on data; refusing procedures that use secret 

intermediate values or keys for conditional transfers; preventing timing attacks by the 

alignment of performance time for various operations; balancing power consumption; 

adding a noise (one of the solutions proposed in [18] against Differential Power 

Analysis (DPA) with the use of a noise is to add random computations which increase 

the noise level so that it becomes impossible to determine the shift of DPA spikes); 

shielding; performing double encryption [19]. The approach proposed in the section 

5 allows one to put forward an idea of protecting a given automaton from 

cryptographic attacks using information leaked from side channels. The idea is to 

construct a new automaton with a large number of states that has the given 

automaton as a homomorphic image. In the said section, the homomorphic image of 

the new automaton is an automaton with one state. 

2.4 Ciphers 

In the works of Claude Shannon [20], there is the description of the so-called "perfect 

ciphers". In the modern terminology, they are sometimes referred as theoretically 

unbreakable ciphers. An example of such a cipher is the random gamma cipher. The 

input alphabet of such a cipher is the set of indexes I={0,1,...,N-1} which label the 

letters of the ordered alphabet used for plaintexts. Then the set IL is the set of all 

possible plaintexts of length L. At the same time, IL is the set of keys and the set of 

ciphertexts. The encryption process of the plaintext i=i1i2…iL by the randomly and 

equiprobably selected key γ=γ1γ2…γL is described by the equations 

ij+γj=zj mod N, j∈{0,1,…,N-1}, 

where z=z1z2…zL is a ciphertext. 

It is obvious that any plaintext i can be encrypted into the ciphertext z under the 

appropriate choice of the key γ. Thus the plaintext reconstruction based on the 



knowledge of a ciphertext is impossible. But if the cipher is not theoretically 

unbreakable, the known ciphertext sometimes allows one to reconstruct a subset Ii,z 

of the set IL that contains the desired plaintext. In this case, it is convenient to talk 

about the information on the plaintext i extracted from its corresponding ciphertext z. 

The smaller cardinality of this subset, the more extracted information on the desired 

plaintext. The subset Ii,z can be defined by its characteristic function F1. In 

cryptographic practice, there could be situations when the ciphertext z is fully 

unknown. In the introduced notation, this means we know a subset Zz of the 

ciphertext set Z that contains the given z, or equivalently the value of the 

characteristic function F2 of this subset. 

The cipher for which the desired plaintext can be uniquely determined by its 

ciphertext is obviously the worst cipher. Not the best cipher would be the cipher for 

which information on the desired plaintext can be extracted from the observed data 

of the ciphertext. The above gives rise to the following novel setting of a 

cryptographic problem. Is it possible, for a given cipher with a plaintext set W, a 

ciphertext set Z, a set of keys K, and an encryption equation f(w,k)=z, to find 

nonconstant functions F1 and F2 that satisfy the condition F1(w)=F2(f(w,k)) for any 

wϵW, kϵK. The conditions under which such functions do not exist are of value for 

the synthesis of ciphers. 

This problem will be solved below using the automata-theoretic approach. It should 

be noted that by now the automata-theoretic approach to the analysis and synthesis of 

ciphers has become the natural and traditional direction of cryptanalysis. This is 

because many encryption systems are mathematically modeled by finite automata. 

For example, one can imagine that a plaintext is supplied to an input of an encryption 

device, while the corresponding ciphertext is generated as an output, and the 

encryption device sequentially changes its state. Note that for a number of classical 

ciphers, one often imposes the requirement of reversibility which, in the case of 

decryption error detection, allows one to return to the previous decrypted text and 

correct the error. In terms of the automata-theoretic approach, the latter is achieved 

by the use of the so-called permutation automata. Block ciphers are usually also 

represented by permutation automata, for which reason it is interesting to solve the 

problem of extracting information on round keys (on an input automaton sequence) 

from the pairs of input and the corresponding output units (from the pairs of initial 

and final automaton states). 

3 Basic notions and notations 

3.1 The notion of an automaton under observation 



We will use the following notation: 

A=(X,S,Y,h,f) is a finite automaton with an input alphabet X, a set of states S, an 

output alphabet Y, a transition function h:SХS, and an output function 

f:SХY; 

hx:SS is a partial transition function corresponding to the input symbol xX, 

hxs=h(s,x); 

2 1
...

kP x x xh s h h h s
 is a final state of the automaton A resulting from the initial 

state s when the input word is P=x1x2…xk; 

A(s,P) is an output word of the automaton A resulting from the initial state s when 

the input word is P. 

The cardinality of a set M is denoted by |M|. 

For a finite automaton A=(X,S,Y,h,f) and a natural number k, denote by Rk, Тk some 

finite sets. Consider the surjective mappings 

Нk:SХ
k
Тk, 

Пk:SХ
k
Rk. 

Suppose that the automaton A with initial states s from S receives the input words 

РХk. The pairs (s,Р)SХk for which the automaton operates are unknown. 

However, for each pair (s,Р)SХk, we know the element t=Нk(s,P) called an 

observation element. 

The problem. Identify the information on the element r=Пk(s,P), where r is the value 

of the desired operation parameter of the automaton A with initial state s and input 

word P. By the information on the unknown element r, we mean the identification of 

a proper subset R` of the set Rk that contains r. Conventionally speaking, we suppose 

that some function Uk on Rk is given and its value Uk(r)=j defines the subset R`={r`: 

r`Rk, Uk(r`)=j} (lumped state). It is also supposed that j (or the subset R`) can be 

defined by the known observation element t=Нk(s,P). Formally, we mean that there 

is a function Фk whose value Фk(t) defines j. Thus we have (Fig.1): 

k is a natural number indicating the length of automaton input words; 

Пk:SХ
k
Rk is an objective function; 

r=Пk(s,Р) is the value of the parameter under study for the triple (k,А,(s,Р)), 

(s,Р)SХ
k
; 



Нk:SХ
k
Тk is an observation function; 

t=Нk(s,P) is an observation element for the triple (k,А,(s,Р)), (s,Р)SХ
k
; 

Фk is an observation information function; 

Uk is an objective information function. 

The family of introduced objects (k,Тk,Rk,Нk,Пk) is called the observation over the 

automaton A. 

 

Fig.1. The automaton under effective observation Uk(Пk(s,P))=Фk(Hk(s,P)). 

Definition 1. An automaton A=(X,S,Y,h,f) is said to be under the effective 

observation (k,Тk,Rk,Нk,Пk) if there exist nonconstant functions Фk on Тk and Uk 

on Rk such that 

Uk(Пk(s,P))=Фk(Hk(s,P))           (1) 

for any pair (s,P)SX
k
. 

The property of effective observation can be interpreted as the ability of automatic 

extraction of the information on the desired parameter r=Пk(s,Р) from the 

observation parameter t=Нk(s,P) during the automaton operation process. 

Note that if the functions Фk, Uk are constant, equation (1) does not provide any 

useful information on the value of the parameter r for the observation t. 

Definition 2. For the sequence of observations (k,Тk,Rk,Нk,Пk), k∈{1,2,…} over an 

automaton A, denote by D(A) the minimum k for which the automaton A is under 

effective observation. We call D(A) the depth of the automaton observation. If there 

P s A(s,P) 

Find Пk(s,Р) Observation 

Нk(s,P) 

 



is no such k, we set D(А)=. 

Definition 3. An automaton A is said to be under effective observation if the depth of 

its sequence of observations is finite. 

Definition 4. The functions Фk and Uk for k=D(А) are called the main functions for 

the automaton A under the observation (k,Тk,Rk,Нk,Пk). 

3.2 Examples of basic notions 

Example 1. Diagnostic experiment with the automaton A [21]. Consider the 

following observation (k,Тk,Rk,Нk,Пk), where Нk(s,P)=(P,A(s,P)), Тk is the image 

of the set SXk under the mapping Нk, Пk(s,P)=s, and Rk=S. The fulfillment of the 

condition Uk(Пk(s,P))=Фk(Hk(s,P)) for any pair (s,P)∈SXk can be written in the 

form Uk(s)=Фk(P,A(s,P)). In this case, the function value Uk(s) is determined by the 

input and the corresponding output automaton sequences. Suppose further that 

Uk(s)=s for any s∈S. Then the equalities s=Фk(P,A(s,P)), (s,P)∈SXk mean that 

each input word РХk is diagnostic for the automaton A [21]. If, instead of all the 

pairs (s,P)∈SXk, we consider only the pairs (s,P)∈S{Р}, where {P} is a singleton, 

then the condition s=Фk(P,A(s,P)), (s,P)∈S{Р} will imply that the word P is a 

diagnostic sequence for the automaton A. 

Homing experiment with the automaton A [21]. The homing experiment formulation 

in the introduced terms is analogous to that one of the diagnostic experiment. 

In [22-24], authors studied the problem of partial definition of an automaton input 

word by its initial state and the corresponding output word as well as the problem of 

partial definition of an automaton input word by its final state and the corresponding 

output word. A more systematic study of these issues was conducted by Sh. Iwen 

[25], A. A. Kurmit continued this study in his monograph [26]. 

4 Effective observation over an automaton 

4.1 The criterion of finding an automaton A under the effective 

observation (k,Тk,Rk,Нk,Пk) 

For brevity, we introduce the following notation:  means “if and only if”;  

means “then”;  means “exists”;  means “for all”; PQ is a concatenation of words P 

and Q (in particular, (P)k is a concatenation of k copies of the word P). 

Let M be a finite set, σ a reflexive (mσm mM) symmetric binary relation on M, 

σ* the transitive closure of σ, and rang σ* the number of equivalence classes under 

the binary relation σ*. The binary relation σ is said to be transitive if rang σ*=1. 

The functions Нk, Пk induce the partitions of the set SXk defined by the binary 



equivalence relations Н*=Н*k, П*=П*k on SXk. Namely, 

(s,P)Н*(s`,P`)  Нk(s,P)=Нk(s`,P`), 

(s,P)П*(s`,P`)  Пk(s,P)=Пk(s`,P`). 

The classes under the equivalence relations Н*k, П*k will be denoted by the letters t 

and r of the corresponding sets Тk, Rk, i.e, the letter t can also denote Нk-1(t), the 

preimage of t, and similarly for the letter r. The context will make it clear whether t 

and r stand for elements or classes. In particular, Тk, Rk will refer, if necessary, to the 

sets of the classes under the equivalence relations Н*k, П*k, respectively. 

Denote by t[s,P] the class comprising (s,P) under the equivalence relation Н*k and 

by r[s,P] the class comprising (s,P) under the equivalence relation П*k. 

Let us introduce the binary equivalence relations Тk/П*k on Тk and Rk/Н*k on Rk. 

For this purpose, we use the auxiliary binary relations ~ on Тk and ~ on Rk. The same 

symbol ~ is used for simplicity. The elements t, r of the sets Тk, Rk are 

simultaneously considered as the classes t[s,P], r[s,P], 

t~t`  (s,P)t, (s`,P`)t`, rRk: 

(s,P)r, (s`,P`)r. 

The equivalence relation Тk/П*k is the transitive closure of the binary relation ~, i.e., 

t1 Тk/П*k tL  t2,…,tL-1Tk: t1~t2~…~tL-1~tL. 

Similarly, 

r~r`  (s,P)r, (s`,P`)r`, tTk: 

(s,P)t, (s`,P`)t, 

and Rk/Н*k is the transitive closure of the binary relation ~ on Rk. 

Note that 



tTk, rRk: t~t, r~r, t Тk/П*k t, r Rk/Н*k r. 

Define the binary equivalence relation Н*kП*k on SXk by the auxiliary binary 

relation  on SXk, 

(s,P)  (s`,P`)  tTk, rRk: 

(s,P), (s`,P`)tr, 

i.e., (s,P), (s`,P`)t or (s,P), (s`,P`)r. To specify the relation 

(s,P)  (s`,P`), (s,P), (s`,P`)tr, 

we write 

(s,P) Н*k (s`,P`)  tTk: 

(s,P), (s`,P`)t 

and 

(s,P) П*k (s`,P`)  rRk: 

(s,P), (s`,P`)r. 

Denote by Н*kП*k the transitive closure of the binary relation . 

The equivalence relations Тk/П*k on Тk and Rk/Н*k on Rk induce the equivalence 

relations (Тk/Пk)*, (Rk/Нk)* on SXk, 

(s,P) (Тk/Пk)* (s`,P`)  

t[s,P] Тk/П*k t[s`,P`], 

(s,P) (Rk/Нk)* (s`,P`)  



r[s,P] Rk/Н*k r[s`,P`]. 

Denote by Н*kП*k[s,P], (Тk/Пk)*[s,P], (Rk/Нk)*[s,P] the classes comprising (s,P) 

under the equivalence relations Н*kП*k, (Тk/Пk)*, (Rk/Нk)* on SXk, 

respectively. 

Theorem 1. For the binary equivalence relations on SXk there holds the equality 

Н*kП*k=(Тk/Пk)*=(Rk/Нk)*. 

Proof. Let us show that (Тk/Пk)*=Н*kП*k. The equality (Rk/Нk)*=Н*kП*k can 

be proved similarly. Suppose (s,P) (Тk/Пk)* (s`,P`). Then 

(s,P) (Тk/Пk)* (s`,P`)  

t1[s,P] Тk/П*k tL[s`,P`]  

t2,…,tL-1Tk: 

t1[s,P]~t2~…~tL-1~tL[s`,P`]  

tj~tj+1, j{1,2,…,L-1}  

(sj,Pj)tj, (s`j,P`j)tj+1, rjRk: 

(sj,Pj), (s`j,P`j)rj  (s,P)Н*k(s1,P1)П*k(s`1,P`1)Н*k(s2, 

P2)П*k(s`2,P`2)…(s`,P`)  

(s,P) Н*kП*k (s`,P`). 

Conversely, suppose (s1,P1)Н*kП*k(sL,PL). Then 

(s1,P1) Н*kП*k (sL,PL)  (s2,P2),…,(sL-1,PL-1), (1),(2),…,(L-1){Н*k, П*k}: 

(s1,P1)(1)(s2,P2)(2),…, (sL-1,PL-1)(L-1)(sL,PL). 

In the above chain of binary relations, choose the chain of minimum length L. In this 

case, (j)(j+1) for any j{1,2,…,L-2} and we have 

t[sj,Pj]=t[sj+1,Pj+1] if (j)=Н*k, 



t[sj,Pj]~t[sj+1,Pj+1] if (j)=П*k. 

Hence, 

t2,…,tL`: t[s1,P1]~t2,~…~tL`~t[sL,PL]  

t[s1,P1] Тk/П*k t[sL,PL]  

(s1,P1) (Тk/Пk)* (sL,PL). 

□ 

Corollary 1. For the number of classes under the equivalence relations Н*kП*k on 

SXk, Тk/П*k on Тk, and Rk/Н*k on Rk, it follows that rang Н*kП*k=rang 

Тk/П*k =rang Rk/Н*k. 

Proof. In view of Theorem 1, it suffices to show that 

rang Тk/П*k=rang (Тk/Пk)*. 

By definition, 

(s,P) (Тk/Пk)* (s`,P`)  

t[s,P] Тk/П*k t[s`,P`], 

from whence it follows that 

(Тk/Пk)*[s,P]=tj[sj,Pj] 

for any (s,P)SXk, where the union is taken over all the classes tjТk/П*k[t[s,P]]. 

The required statement follows directly from the above equation. 

□ 

Theorem 2. The automaton А=(Х,S,Y,h,f) is under the effective observation 

(k,Тk,Rk,Нk,Пk) if and only if rang Н*kП*k2. Moreover, the values of the 

functions ФkHk, UkПk on SXk are the same and constant on the classes Н*kП*k, 

while the values of the functions Фk, Uk are constant on the classes Тk/П*k and 

Rk/Н*k, respectively. 



Proof. Suppose that some functions Фk, Uk satisfy the following: 

Фk(Hk(s,P))=Uk(Пk(s,P)) 

for any (s,P)SXk. 

Consider two elements (s1,P1), (sL,PL) from the same class under the equivalence 

relation Н*kП*k. Then 

(1), (2), …, (L-1){Н*k, П*k}, (s2,P2),…,(sL-1,PL-1)SX
k
: 

(s1,P1)(1)(s2,P2)(2)… (L-1)(sL,PL). 

For (j)=Н*k, we obtain Фk(Hk(sj,Pj))=Фk(Hk(sj+1,Pj+1)) and hence 

Uk(Пk(sj,Pj))=Uk(Пk(sj+1,Pj+1)). 

For (j)=П*k, we obtain Uk(Пk(sj,Pj))=Uk(Пk(sj+1,Pj+1)) and hence 

Фk(Hk(sj,Pj))=Фk(Hk(sj+1,Pj+1)). 

Thus the functions ФkHk, UkПk on SXk take the same and constant values on the 

classes Н*kП*k. By Theorem 1, 

Н*kП*k=(Тk/Пk)*=(Rk/Нk)*, 

and hence the functions ФkHk, UkПk are constant on the classes under the 

equivalence relations (Тk/Пk)*, (Rk/Нk)*. 

For any pair (s,P)SXk, 

(Тk/Пk)*[s,P]= [ , ]
j

j j j
t

t s P , 

where the union is taken over all tjTk/П*k[t[s,P]]. Similarly, 

(Rk/Hk)*[s,P]= [ , ]
j

j j j
r

r s P , 

where the union is taken over all rjRk/Н*k[r[s,P]]. Therefore, Фk and Uk are 

constant on the classes Тk/П*k and Rk/H*k, respectively. It is clear that Фk and Uk 

are nonconstant if and only if 

rang Н*kП*k=rang Тk/П*k= 

rang Rk/Н*k≥2. 



□ 

Corollary 2. The depth D(A) of the observation over the automaton А for the 

sequence of observations (k,Тk,Rk,Нk,Пk), k∈{1,2,…} coincides with the minimum 

k for which rang Н*kП*k=rang Тk/П*k=rang Rk/Н*k≥2. If there is no such k, then 

D(А)=. 

4.2 Previous results 

Reconstruction of information on the first input symbol of an automaton input word 

by the corresponding initial state and output sequence [27]:  Rk=Х, Тk=(SYk), 

k{1,2,…}; 

Пk(s,x1x2…xk)=x1, Нk(s,x1,x2,…,xk)=(s,А(s,x1,x2,…,xk)). 

Reconstruction of information on an input word in a permutation automaton by the 

corresponding initial state and output sequence [27]:.  

Rк=Х
к
, Пк:Х

к
SХ

к
, Пк(х1,х2,…,хк,s)=х1,х2,…,хк, Тк=SY

к
, Нк:Х

к
SSY

к
, 

Нк(х1,х2,…,хк,s)=(s,A(s,х1,х2,…,хк)). 

Reconstruction of information on an automaton input word by the corresponding 

final state and output sequence [27]: Rк=Хк, Пк:ХкSХк, 

Пк(х(1)х(2)…х(к),s)=(х(1)х(2)…х(к)), Тк=SYк, Нк:XкSSYк, 

Нк(х(1)х(2)…х(к),s)=(h(s,х(1)х(2)…х(к)), A(s,х(1)х(2)…х(к))). 

 

Reconstruction of information on an input word in a permutation automaton given 

initial and final states [28]. 

For a word Р=х(1)х(2)…х(k) in Хk, set hР=hх(k)hх(k-1)…hх(1). Denote by hРs the 

image of s under hР and by S(L) the set of all subsets of S with cardinality L, L≥1. 

Define the function Hk,L on Xk×S(L) as follows. For s(L)={sj(1),sj(2),…,sj(L)} in 

S(L) and P=x(1)x(2)…x(k) in Xk, set 

Hk,L(P,s
(L)

)=(s
(L)

;hPs
(L)

)= 

{(sj(1),hРsj(1)),(sj(2),hРsj(2)),…,(sj(L),hРsj(L))}. 

This expression can be considered as a partial permutation on S (L transitions are 

defined for the permutation hР). Denote by Hk,L(Xk×S(L)) the image of Hk,L. 



We say that k-length input words of an automaton A can be approximately 

reconstructed given L initial and final states if there exist nonconstant functions Φk,L 

and Uk,L, defined on Hk,L(Xk×S(L)) and Xk, respectively, such that for any PXk 

and s(L)S(L) we have 

Uk,L(P)=Φk,L(s
(L)

,hPs
(L)

). 

In what follows, we refer to this fact by saying that the automaton A possesses the 

(Хk,s,hPs,L)-reconstruction property. 

The problem of describing automata with the (Xk,s,hPs,L)-reconstruction property is 

close to the following problems: experimental designs for automata (see [24], [30]), 

where an unknown input word is used for testing, with initial and final states being 

observed as experimental results; local reconstruction of information on an input 

word (see [29], [30]) given initial and final states; description of information-lossless 

automata [24]. A number of results concerning the problem under consideration are 

presented by the author in [31-35].    

5 On reconstruction of information on an automaton input 

word by the corresponding output word 

5.1 Setting of the problem 

In what follows, Тk is the set of all k-length output words A(s,Р) of the 

automaton A corresponding to the input word PX
k
 and the initial state sS, Rk=X

k
, 

Нk(s,Р)=A(s,Р), Пk(s,Р)=Р. 

Such an observation depends on the parameter k. From a cryptographic point of 

view, this naturally gives rise to the question whether there exists a natural k for 

which the given automaton А=(Х,S,Y,h,f) is under the observation (k,Тk,Rk,Нk,Пk). 

In the case of positive answer to this question, one naturally comes to the further 

problem of the upper estimate for such a minimum k. If there is no such k, then the 

cipher that is modeled by such an automaton is particularly valuable. 

In order to describe the classes of automata under the effective observation 

(k,Тk,Rk,Нk,Пk)=(Rk=X
k
,Пk(s,Р)=Р, Нk(s,Р)=A(s,Р)) and the automata for which 

there is no effective observation, we introduce the following notions and notation. 



Denote by X* the set of all finite-length words over the alphabet X and by X
∞
 the set 

of all infinite words over the alphabet X. For the concatenation of words PX
n
, 

P”X
m
, we write РP”, where Р is an initial subword of РP”. If n=0, then any word 

from X
n
 is considered to be empty and РP”=P”. For the subwords of P=x1,x2,..., we 

use the notation: 

P
1
=P; P

n
=xnxn+1... P]m=x1x2...xm P

n
]m=xnxn+1...,xm  n≤m; (P)

k
=PP…P k times. 

Define a number of binary relations on the sets X
∞
 and X

L
, L{1,2,…}. 

The relation σL on X
L
 

PσLP”  s,s”S: A(s,P)=A(s”,P”). 

The relation σ∞ on X
∞
 

Pσ∞P”  s,s”S: A(s,P)=A(s”,P”). 

The relation σ∞]L on X
L
 induced by the binary relation σ∞ 

P1σ∞]LP2  P,P”X
∞
: Pσ∞P”, P]L=P1, P”]L=P2. 

Denote by (σ∞)*, (σ∞]L)*, (σL)* the transitive closures of the binary relations 

σ∞, σ∞]L, σL. For the binary relation τ{(σ∞), (σ∞]L), (σL)}, denote by rang τ the 

number of equivalence classes under the binary equivalence relation τ*and by t(τ) 

the minimum L for which 

rang(σL)*>1     (rang(σ∞]L)*>1). 

Otherwise, set t((σL)*)=∞ (t((σ∞]L)*)=∞). The introduced parameters are 



called the degrees of the transitive binary relations σL, σ∞]L, respectively. 

The next proposition follows from Theorem 2. 

Proposition 1. The automaton A is under the effective observation (k, Rk=X
k
, 

Пk(s,Р)=Р, Нk(s,Р)=A(s,Р)) if and only if rang(σk)>1. 

5.2 The class of automata without effective observation 

The class of automata with the loss of information (B1 type) and without 

effective observation. Now let us turn to the description of the automaton classes 

for which the observation (k, Rk=X
k
, Пk(s,Р)=Р, Нk(s,Р)=A(s,Р)) is not effective for 

any k. 

Definition 5. An automaton А=(Х,S,Y,h,f) is said to be an automaton with the 

loss of information B1 if for
| | (| | 1)

1
2

S S
L


   there exists a binary 

relation ε on the set X with the following properties: 

1) For each pair (x,x”) from ε there exist P,P” from X
L
 and sS such that 

A(s,xP)=A(s,x”P”); 

2) The binary relation ε is transitive on the set X. 

Theorem 3. If a permutation automaton A is an automaton with the loss of 

information (B1 type), then its observation (k, Rk=X
k
, Пk(s,Р)=Р, Нk(s,Р)=A(s,Р)) is 

not effective for any k. 

Proof. Suppose the conditions of the theorem are satisfied. Let us first prove 

that the theorem conditions imply the following: for any pair (x,x”)ε and any 



word PX* there exist Q, Q”X
∞
 such that PxQσ∞Px”Q”. Indeed, suppose there is 

a pair (x,x”)ε. Then there exist automaton input words P=p1p2…pL, 

P”=p”1p”2…p”L and an initial state sS such that A(s,xP)=A(s,x”P”). In the 

transition graph of the automaton, the words P, P” are represented as the paths from 

the initial state sS passing through the states 

1 2 1 2 1
, , ,..., ...

Lp p p p p ps h s h h s h h h s  and 

1 2 1 2 1" " " " " ", , ,..., ...
Lp p p p p ps h s h h s h h h s , respectively. The two following 

cases are possible: 1) there exists a pair of states 

2 1 2 1" " "( ... , ... )
j jp p p p p ph h h s h h h s  such that 

2 1 2 1" " "... ...
j jp p p p p ph h h s h h h s , 2) the states in each pair of states 

2 1 2 1" " "( ... , ... )
j jp p p p p ph h h s h h h s , j{1,2,…L} are different. By standard 

methods of graph theory, it can be shown that in each of the cases 1), 2) 

Pxσ∞]k+1Px” 

for any k{0,1,…}, PX
k
, and (x,x”)ε. 

In particular, xσ∞]1x”. Hence, rang(σ∞]1)*=1. Thus we obtain rang (σ1)*=1 on 

X
1
. Assume that for some K, rang(σ∞]K)*=1. Then let us prove that rang(σ∞]K+1)*=1. 

By the assumption, it follows that there exists a chain of binary relations 

P1σ∞]KP2σ∞]KP3…σ∞]KPN, N≥|X|
K
 

that contains all the words from X
K
. 

From the definition of the binary relation σ∞]K on X
K
 it follows that 



∃αj,βjX: Pjαj σ∞]K+1 Pj+1βj, j{1,2,…,N}.                      

To complete the proof of transitivity of the binary relation σ∞]K on X
K
 for any 

K, we introduce the binary relation ε(Q) on the set of words {Qx: xX}, where Q 

is an arbitrary finite word of length K over the alphabet X. Let ε(Q) be a subset of 

the set (X
K
)

2
 that consists of all the pairs (Qx,Qx”), where (x,x”)ε. 

Lemma 1. The binary relation ε(Q) on the set of words {Qx: xX}, where 

QX
K
, is transitive. 

Proof. For the automaton A, fix all the triples (s,x,x”) with the property: for 

each pair (x,x”) from ε there exist P, P” from X
∞
 and sS such that 

A(s,xP)=A(s,x”P”). Since the automaton A is a permutation automaton, it follows 

that for any triple (s,x,x”) and any automaton input word Q there exists a state sQ 

such that hQsQ=s. It is obvious that A(sQ,Qx)=A(sQ,Qx”). For this reason, and by 

virtue of transitivity of the binary relation ε, the binary relation ε(Q) is transitive. 

Thus Lemma 1 is proved. 

□ 

Since the set of words X
K+1

 is divided into disjoint subsets ε(Q), QX
K
, on 

each of which the binary relation ε is transitive, and the subsets are related by (2), 

the induction step is carried out. We now note that the transitivity of the binary 

relation σ∞]K+1 on X
K+1

 implies the transitivity of the binary relation σK+1 on X
K+1

. 

□ 

The class of automata with the loss of information (B2 type) and without 



effective observation. 

Definition 6. An automaton А=(Х,S,Y,h,f) is said to be an automaton with the 

loss of information (B2 type) if for 
| | (| | 1)

| |
2

S S
L S


   there exists a 

binary relation ε on the set X with the following properties: 

1) For each pair (x’,x”) from ε there exist P’,P” from X
L
 and s, s”S such that 

A(s,P’x)=A(s”,P”x”), 
' ' " " "P x P xh s h s . 

2) The binary relation ε is transitive on the set X. 

Theorem 4. If an automaton А=(Х,S,Y,h,f) is an automaton with the loss of 

information (B2 type), then its observation (k, Rk=X
k
, Пk(s,Р)=Р, Нk(s,Р)=A(s,Р)) is 

not effective for any k. 

Proof. Suppose that for L=0, X
L
 consists of an empty word. We will use the 

previously introduced notation σL of the binary relation on X
L
. Denote by ( )L  

the new binary relation on X
L
, 

P’ ( )L P”   words P1’, P1”
1NX , P2’, P2”

2NX , where 

N1=N1(P’,P”)≥1, N2=N2(P’,P”)≥0: k≥1 it follows that (P1’)
k
P2’P’

1 2kN N L  

(P1”)
k
P2”P”. 

Lemma 2. If А=(Х,S,Y,h,f) is an automaton with the loss of information (B2 

type), then 



 x’,x”ε, PX
L
, L{0,1,2,…}: x’P ( 1)L  x”P. 

A(s,P’x)=A(s”,P”x”), 
' ' " " "P x P xh s h s . 

2) The binary relation ε is transitive on the set X. 

6  Discussion 

We note the universality of the approach to the study of useful (key) 

information of a finite automaton based on its possible observation. In this 

connection, the range of topical problems of finding information about the 

automaton of interest to the researcher can be significantly expanded. The 

question of existence of an algorithm recognizing the effective observation 

(k, Rk=Xk, Пk(s,Р)=Р, Нk(s,Р)=A(s,Р)) in the class of all automata remains 

opened. 

7 Conclusion  

In this paper, we have introduced some novel notions of the 

automata-theoretic approach: observation over an automaton and an 

automaton under effective observation. The latter qualitatively reflects the 

presence of an automaton trapdoor for determining the information on an 

automaton input word by the observable information. For a given 

observation, we have proved the criterion of finding an automaton under 

effective observation. Also we have specified the classes of automata under 

effective observation and the classes of automata for which there is no 

effective observation. 
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