
Probing the SpanBERT Architecture to interpret Scientific Domain Adaptation
Challenges for Coreference Resolution

Hari Timmapathini, Anmol Nayak, Sarathchandra Mandadi, Siva Sangada, Vaibhav Kesri,
Karthikeyan Ponnalagu, Vijendran Venkoparao

ARiSE Labs at Bosch
{HariPrasad.Timmapathini, Anmol.Nayak, Mandadi.Sarathchandra, SivaChaitanya.Sangada, Vaibhav.Kesari,

Karthikeyan.Ponnalagu, GopalanVijendran.Venkoparao}@in.bosch.com

Abstract

Coreference Resolution is a challenging problem in Natural
Language Processing (NLP) that aims at clustering all refer-
ences of the same entity or event. This requires both syntac-
tic and semantic understanding of the text. A strong corefer-
ence resolution model is essential for achieving good perfor-
mance in several downstream NLP tasks such as Question-
Answering, Information Extraction etc. SpanBERT (Joshi
et al. 2020) has achieved state of the art performance in
coreference resolution on the OntoNotes dataset (Pradhan
et al. 2012). However it still has several challenges when
performing coreference resolution on documents involving
multiple domain specific entities and events. In this paper
we have highlighted these issues with SpanBERT-Base (pre-
trained coreference model) in scientific domain adaptation.
Our detailed experiments have been performed on the Sci-
ERC scientific abstract dataset (Luan et al. 2018), where we
analyse the encoder attention and probe the coarse-to-fine
head network to interpret the short comings of SpanBERT.
This has lead to interesting findings that showed: 1) While
we observed that the syntactic behaviour is captured appro-
priately, the self-attention mechanism in the encoder layers
of SpanBERT struggles to capture domain specific semantic
concepts, 2) Inferior mention spans are picked in the top men-
tion spans list due to poor mention scores even though better
candidate key mention spans exist, and 3) Even by increasing
the hyperparameter λ from 0.4 to 1 and 2, there is insignifi-
cant improvement in both Nkey∩response and response coref-
erence cluster scores across 5 different evaluation metrics.

Introduction
BERT (Devlin et al. 2019) has been a breakthrough in
language understanding by leveraging the multi-head self-
attention mechanism (Vaswani et al. 2017) in its architec-
ture. It is one of the prominent models used for a variety
of NLP tasks. With the Masked Language Model (MLM)
method, it has been successful at leveraging bidirectionality
while training the language model. SpanBERT-Base model
has 12 encoder layers, with each layer consisting of 12
self-attention heads. The word representations are context-
dependent 768 dimensional dynamic embeddings. The vo-
cabulary size is 28996 and contains 101 unused slots. The
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unused slots in the vocabulary can be used to include do-
main specific words, however the representations of these
will have to be fine-tuned with domain specific corpus.

While the BERT architecture relies on MLM at word level
and Next Sentence Prediction (NSP) during training, Span-
BERT has changed the learning mechanism to MLM at span
level and uses a Span Boundary Objective (SBO). SBO pre-
dicts a target masked token by using the representations of
the boundary tokens of a given span along with the posi-
tional embedding of the target masked token. This learn-
ing mechanism has enabled SpanBERT to outperform BERT
on almost all tasks with significant improvements. For the
coreference resolution task, SpanBERT leverages an inde-
pendent implementation of higher order coarse-to-fine span
ranking architecture (Lee, He, and Zettlemoyer 2018) that it-
eratively refines the mentions using an attention mechanism.

A strong coreference resolution model is essential
in domains which describe concepts that require long
range dependencies between mentions for applications like
Question-Answering systems, Information Extraction for
Domain Specific Knowledge Graphs (Lin et al. 2017; Ke-
jriwal 2019). Scientific domain adaptation within industries
is challenging due to the following reasons:

1. Typically there is a lack of sufficient data to fine-tune the
language model of such large pre-trained networks.

2. Unavailability of annotated data for task specific fine-
tuning, as it requires a domain expert’s understanding to
annotate the data correctly to encapsulate the nuances of
the domain.

We probe the model to analyse 5 different aspects of
the SpanBERT coreference resolution architecture: Encoder
attention, Identification of Mentions, Mention scores, An-
tecedent scores and Coreference Clusters. The Newswire
genre of OntoNotes was selected with SpanBERT. MUC,
B3, CEAFm, CEAFe and LEA (Pradhan et al. 2014;
Moosavi and Strube 2016) have been selected as the coref-
erence evaluation metrics. The experiments are performed
on the SciERC dataset along with motivating example sen-
tences, that depict the various kinds of sentence struc-
tures typically found in technical documents of AUTOSAR
(http://www.autosar.org/) compliant automotive domain sys-
tems. We discuss these challenges below by analysing Span-
BERT Encoder and Probing the Coarse-to-fine network.



Figure 1: SpanBERT Coreference Resolution Architecture. Sources: (Devlin et al. 2019), (Joshi et al. 2020), (Lee et al. 2017)

Background
SpanBERT Coreference Resolution architecture consists of
a SpanBERT Transformer Encoder with a Coarse-to-fine
head network (Figure 1). The input is tokenized with a
BERT variant of the WordPiece algorithm (Schuster and
Nakajima 2012) and passed into the encoder to generate con-
textualized representations for each token. Mention spans
are non-overlapping segments from the input text upto a pre-
defined length. The encoder representations are consumed
by the coarse-to-fine network and iteratively refined using
an attention mechanism to give the span representations g
which are used for computing the following Coreference res-
olution specific scores:

1. Mention score sm(i) for a mention span i, that is used to
further prune the mention spans list.

2. Fast antecedent score sc(i, j) between mention span i and
candidate antecedent span j, that uses a bi-linear scoring
function to pick the top K candidate antecedent spans for
each mention.

3. Antecedent distance score sd(i, j) that is computed using
10 semi-log scale buckets.

4. Slow antecedent score sa(i, j) that relies upon mention
span i and candidate antecedent span j representations,
element-wise similarity between i and j, and a feature vec-
tor encoding genre information, span distance etc.

5. Coreference resolution score s(i, j) that is used to decide
whether candidate antecedent span j is coreferent to men-
tion span i.
Further, the mention spans can be segregated into 3 cate-

gories:
• Key spans Mkey , which are the annotated gold standard

spans.

• Top spans Mtop, which are the final pruned set of can-
didate mention spans selected by the coarse-to-fine net-
work.

• Response spans Mresponse, which are the system gener-
ated output spans found in the predicted coreference clus-
ters. These are a subset of the Top spans.

We evaluated the overall coreference resolution perfor-
mance of SpanBERT using 5 standard metrics, each of
which compute the Precision, Recall and F1 scores with em-
phasis on different aspects of the coreference clusters (Cai
and Strube 2010):

• MUC: It is a link-based metric that computes the mini-
mum number of links between mentions to be inserted or
deleted when mapping a system generated response to a
gold standard key set.

• B3: It is a mention-based metric that computes the overall
Precision and Recall based on the Precision and Recall of
the individual mentions.

• CEAFm: It is a mention-based variant of the CEAF met-
ric, which indicates the percentage of mentions that are in
the correct entities.

• CEAFe: It is an entity-based variant of the CEAF metric,
which indicates the percentage of correctly recognized en-
tities.

• LEA: It is a link-based entity-aware metric that considers
how important the entity is and how well it is resolved.

We also performed a baseline comparison between the
independent variants of SpanBERT-Base and BERT-Base
(Joshi et al. 2019) pretrained coreference models on the Sci-
ERC dataset.



Figure 2: Attention scores heatmaps for SpanBERT encoder layers on the SciERC dataset.

Analysis of SpanBERT Encoder
BERT has been shown to learn surface level features in the
early layers, syntactic features in the middle layers and se-
mantic features in the higher layers (Jawahar, Sagot, and
Seddah 2019). Coreference resolution relies heavily on cap-
turing the syntactic behaviour to pick syntactically plausible
mention spans. BERT has been previously shown to capture
strong syntactic representations (Tenney et al. 2019).

We found that across the SciERC scientific abstracts, most
of the top spans selected by SpanBERT had the correct
boundaries. This strong syntactic understanding in Span-
BERT can be attributed to the SBO technique it utilizes
during training. While the SpanBERT training objectives
have improved the span boundaries, domain specific seman-
tic concepts are significantly more difficult to learn due to
the following reasons:

1. Events typically involve multiple entities interacting un-
der certain conditions.

2. Long range dependencies between coreferent mentions as
sentences tend to build upon concepts previously men-
tioned.

To see how SpanBERT handles this, we analyse the self-
attention in the encoder layers between two sets of mention
spans for each abstract in the SciERC dataset:

• Set 1: Pairwise attention scores amongst spans in Mkey ∩
Mresponse.

• Set 2: Pairwise attention scores between spans in Mkey ∩
Mresponse and Mkey - (Mkey ∩Mresponse).

A sample output for the different categories of mention
spans and clusters for an abstract from the SciERC coref-
erence resolution dataset can be seen in Table 1. For each

encoder layer, we extract the pairwise attention scores to
observe the difference in attention given by a clustered key
span to a co-occurring clustered key span in comparison to
a non-clustered key span. Across the 12 layers we observed
that the attention scores in Set 1 and Set 2 were extremely
small. While we observed that the dominant heads (shades
of yellow and green in Figure 2) in both Set 1 and Set 2 tend
to be the same, on average each pairwise attention score for
these heads was found to be less than 0.01, which is less than
1% of the total attention mass for the abstract. As the atten-
tion scores are computed from the Key and Query vectors
of a given word, these extremely low attention scores reflect
the weak semantic representations of the spans.

Further, this also highlights that no specific head across
the 12 encoder layers is exhibiting strong coreference be-
haviour in the case of scientific domain abstracts. Previously,
BERT showed that the different heads of each layer attend
to specific linguistic behaviours like coreference, syntax, de-
limiter tokens (Clark et al. 2019). This semantic loss leads
to cascading problems in the coarse-to-fine network due to
the Fast and Slow antecedent scores computation. The weak
semantic representations have also lead to lesser number of
key mention spans being picked up as candidates to be clus-
tered (Table 2). This shows that the self-attention mechanism
in the encoder layers of SpanBERT struggles to capture sci-
entific domain specific semantic concepts.

Probing the Coarse-to-fine network
SpanBERT uses a coarse-to-fine architecture in the head
network to perform coreference resolution. For a given
sentence, the network first generates the mention scores
for all possible candidate mentions. It then picks the top
M=min(3900,λT) non-crossing mentions based on the men-



Abstract ID C90-3007
Abstract Text This paper examines the properties of feature-based partial descriptions built on top of Halliday’s

systemic networks. We show that the crucial operation of consistency checking for such descriptions
is NP-complete, and therefore probably intractable, but proceed to develop algorithms which can
sometimes alleviate the unpleasant consequences of this intractability.

M key [feature-based partial descriptions; descriptions]
M top [This paper; feature-based partial descriptions built on top of Halliday’s systemic networks;

such descriptions; intractable; this intractability; ...]
M response [intractable; this intractability]
M key∩top []
Mkey∩response []
Key clusters [feature-based partial descriptions; descriptions]
Response clusters [intractable; this intractability]

Table 1: Sample output mention spans and clusters with SpanBERT-Base (λ = 0.4) for abstract ID C90-3007 of the SciERC
coreference resolution dataset.

λ N key N top N response N key∩top Nkey∩response Presponse Rresponse F1response

0.4 2686 32102/32729 3750/3136 788/888 381/356 10.16/11.35 14.18/13.25 11.84/12.23
1 2686 74509/74713 3730/3113 1076/1248 383/356 10.26/11.43 14.26/13.25 11.94/12.28
2 2686 126395/126332 3686/2994 2222/2295 381/353 10.33/11.79 14.18/13.14 11.96/12.43

Table 2: Identification of Mentions metrics with SpanBERT-Base/BERT-Base (λ = 0.4, 1, 2) on the SciERC coreference reso-
lution dataset.

P R F1
Metric λ=0.4 λ=1 λ=2 λ=0.4 λ=1 λ=2 λ=0.4 λ=1 λ=2
MUC 5.02 5.1 5.16 7 7.06 7.06 5.85 5.92 5.96

B3 6.16 6.3 6.34 7.89 7.94 7.9 6.92 7.02 7.04
CEAFm 9.8 9.91 9.97 13.7 13.77 13.7 11.43 11.53 11.54
CEAFe 8.83 8.97 9.01 12.4 12.54 12.45 10.32 10.46 10.46

LEA 3.78 3.89 3.93 4.7 4.74 4.73 4.19 4.27 4.29
Avg. 6.718 6.834 6.882 9.138 9.21 9.168 7.742 7.84 7.858

Table 3: Coreference Resolution metrics with SpanBERT-Base (λ = 0.4, 1, 2) on the SciERC coreference resolution dataset.

P R F1
Metric λ=0.4 λ=1 λ=2 λ=0.4 λ=1 λ=2 λ=0.4 λ=1 λ=2
MUC 5.54 5.59 5.69 6.22 6.22 6.1 5.86 5.89 5.89

B3 6.66 6.75 6.93 7.12 7.09 7.02 6.89 6.92 6.98
CEAFm 10.73 10.87 11.13 12.54 12.62 12.43 11.56 11.68 11.75
CEAFe 9.08 9.16 9.44 11.31 11.38 11.24 10.07 10.15 10.26

LEA 3.9 3.97 4.04 4.06 3.98 3.96 3.98 3.98 4
Avg. 7.182 7.268 7.446 8.25 8.258 8.15 7.672 7.724 7.776

Table 4: Coreference Resolution metrics with BERT-Base (λ = 0.4, 1, 2) on the SciERC coreference resolution dataset.

tion scores, where T is the number of words in the tokenized
sentence, and λ is a configurable parameter that decides the
number of spans per word and is set to 0.4 (default) in Span-
BERT coreference resolution.

We conducted our experiments with λ = 0.4, 1 and 2 to
make sure that the limited size of the top span list is not a
reason for key mentions to be discarded. It should be noted
that while λ = 1 and λ = 2 may increase the number of key
mention spans in the top span list, it comes at a performance
cost as it can be seen in Table 2, Ntop (λ = 2) ≈ 4 × Ntop (λ
= 0.4).

For each of the top M mentions, top K=min(50,λT)
antecedents are picked from the top mention span list
based on the score sm(i)+sm(j)+sc(i, j)+sd(i, j), where
sm(i) is the mention score of mention span i, sm(j)
is the mention score of antecedent span j, sc(i, j)
is the fast antecedent score between spans i and j,
and sd(i, j) is the antecedent distance score intro-
duced in the coarse-to-fine implementation of SpanBERT.
From this pruned set of antecedents, final coreference
score s(i, j)=sm(i)+sm(j)+sc(i, j)+sd(i, j)+sa(i, j) is cal-
culated between each pair of mention and its top an-



Sl. No. Sentences
1. When cruise control button is pressed for 2 seconds cruise control is activated1. After this2 happens,

the speed is maintained.
2. After this condition3 is satisfied, cruise control will be activated: Cruise control button is pressed

for 2 seconds4.
3. When the cruise control button is pressed for 2 seconds5, then6 cruise control is activated.
4. Adaptive Cruise control7, commonly known as Cruise control8, is a speed maintaining feature that

is often found in high-end cars.
5. Cruise control9 is a speed maintain feature. When the car is cruising10, a beep is triggered every 5

minutes.
6. When the minimum speed threshold11 of Cruise control12 is reached, the cruise activation lamp

turns green to signify cruise control activation is available.
7. Cruise control is usually available in high-end cars13. Such vehicles14 are typically 30% costlier than

mid-end cars.
8. When the vehicle speed15 is above 60kmph16, cruise control is activated.

Table 5: Automotive domain motivating example sentences (Sentence-wise coreference clusters in bold; Span ID in subscript).

SpanBERT Clusters Mention IDi Antecedent IDj sm(i) sm(j) sc(i, j) sa(i, j) sd(i, j) s(i, j)
(this,activated) 2 1 -15.409 -30.980 - - - -

None found 4 3 -25.474 -5.310 -25.678 -40.415 0.221 -96.656
None found 6 5 -29.705 -54.061 - - - -
None found 8 7 -17.818 -27.222 -5.451 -8.502 0.214 -58.779
None found 10 9 -28.193 -11.187 - - - -
None found 12 11 -7.134 -56.156 - - - -
None found 14 13 -18.432 -9.841 40.200 -15.273 -0.159 -3.505
None found 16 15 -32.280 -42.714 - - - -

Table 6: Clusters and Coarse-to-fine scores for the motivating example sentences (Spans not picked as top span by SpanBERT
with λ = 0.4 are indicated by scores in bold).

tecedents, where sa(i, j) is the slow antecedent score. The
top scoring antecedent j is then picked as a coreferent to the
mention i if s(i, j)>0. Antecedents that result in a positive
coreference score are only picked since a dummy antecedent
is introduced before the softmax layer, whose coreference
score with every mention is 0.

SpanBERT performance on the SciERC dataset
The SciERC dataset consists of 500 annotated scientific do-
main abstracts. The total number of key mention spans was
2686. We probed the coarse-to-fine head network to analyse
two aspects of the SpanBERT coreference resolution archi-
tecture:

1. Qualitative and Quantitative measures of the Mention
Spans (Table 2): Picking the top mention spans is the first
important task for the head network. We observed that
for λ = 0.4 and λ = 1, the recall of key mention spans
is around 30% and 40% respectively. The recall increased
to around 82% in the case of λ = 2. However that was
only possible because 126395 top spans had to be picked,
which is extremely large. The precision of the top spans
was found to be extremely low for all the values of λ.
We then checked the number of key mention spans that
were part of the response clusters (Nkey∩response). In this
case, for all the the values of λ the numbers turned out
to be roughly the same. This clearly indicated that while
increasing the value of λ increases the chances of a larger

number of key mention spans to be part of the top spans
list, it does not guarantee improvement in the number of
key mentions becoming part of the response clusters.
Across all the values of λ the Precision, Recall and F1
scores for the identification of mentions were found to be
roughly 10%, 14% and 11% respectively. We believe that
these low values are due to the weak SpanBERT repre-
sentations for the mention spans found in the scientific
domain abstracts which makes it difficult for the coarse-
to-fine head network to recover from.

2. Overall coreference resolution performance (Table 3): We
evaluated the SpanBERT coreference resolution perfor-
mance using 5 different metrics, each of which target dif-
ferent aspects of the coreference clusters. Another indi-
cation that increasing the λ did not have significant im-
provement to the coreference resolution was that the Pre-
cision, Recall and F1 scores for coreference resolution
were roughly the same being around 6%, 9% and 7% re-
spectively.

The low scores appearing consistently both in Identifica-
tion of Mentions and Overall coreference resolution across a
large number of abstracts clearly indicates the difficulty that
SpanBERT faces while adapting to the scientific domain cor-
pus coreference resolution task. We also observed a similar
performance in both Identification of Mentions (Table 2) and
Overall coreference resolution (Table 4) with BERT-Base.



SpanBERT performance on the Automotive
domain motivating example sentences
To get more granular insights into the coarse-to-fine net-
work, we further probed the head network on the automo-
tive domain motivating example sentences (Table 5) to ex-
tract the Mention scores, Fast Antecedent scores, Slow An-
tecedent scores, Antecedent distance scores and Final Coref-
erence scores. SpanBERT did not give a valid coreference
cluster for any of motivating example sentences (Table 6).
In the first motivating example sentence, a cluster was found
between this and activated, however it was still not the ex-
pected cluster. For the mentions which were not picked as
top spans, sc(i, j), sa(i, j), sd(i, j) and s(i, j) scores can-
not be computed. We observed that:

• Due to the limit on the number of top mentions that can be
picked, many expected mentions were eliminated due to
a lower mention score. This happened in 5 different mo-
tivating example sentences, each of which had a different
sentence structure.

• Even by increasing the λ to λ = 1 and λ = 2, the expected
antecedents were eliminated from being part of the top
span list by another irrelevant crossing mention that had a
better mention score.
For e.g. in the first motivating example sentence, the ex-
pected antecedent span cruise control is activated with a
mention score of -30.980 was not picked as a top span,
since a better scoring but irrelevant crossing mention is
activated . After this happens received a mention score of
-29.048.

• These different scores provide insights into the reasons
behind certain clusters not being formed by the network.

We believe that probing the coarse-to-fine network re-
veals the underlying issue of the mention spans having weak
semantic representations. Stronger semantic representations
would lead to better mention scores for the expected mention
spans, thereby ranking them higher to be selected as a top
mention. This would also positively impact the antecedent
scores as they rely heavily upon the mention and antecedent
representations.

Conclusion and Future Work
We presented an analysis on the challenges faced by Span-
BERT Coreference Resolution in tackling scientific domain
corpus. We performed detailed experiments analysing the at-
tention mechanism in the SpanBERT encoder layers along
with probing the coarse-to-fine head network to understand
how well the syntactic and semantic behaviours are being
captured. Our findings show that while SpanBERT has a
strong syntactic understanding, its semantic understanding
of scientific domain documents is weak which further leads
to cascading problems for the coreference resolution task.
We believe that some of the directions which could improve
the scientific domain adaptation of SpanBERT are:

1. As SpanBERT relies on the BERT variant of the Word-
Piece algorithm to tokenize an input text, which has previ-
ously been shown to give poorer performance in the case

of Out-of-Vocabulary (OOV) words (Nayak et al. 2020),
a frequency or likelihood based tokenization algorithm
such as BPE-Dropout (Provilkov, Emelianenko, and Voita
2019), SentencePiece (Kudo and Richardson 2018) could
lead to better sub-word choices and thereby better seman-
tic representations for OOV words.

2. In the case where sufficient data exists to fine-tune the
language model of SpanBERT, care should be taken to en-
sure that task specific catastrophic forgetting is avoided by
leveraging advanced fine-tuning techniques (Dodge et al.
2020; Howard and Ruder 2018).
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