
Dual Reinforcement-Based Specification Generation for Image De-Rendering

Ramakanth Pasunuru♣ David Rosenberg† Gideon Mann† Mohit Bansal♣
UNC Chapel Hill♣ Bloomberg LP†
{ram,mbansal}@cs.unc.edu

{drosenberg44,gmann16}@bloomberg.net

Abstract

Advances in deep learning have led to promising progress
in inferring graphics programs by de-rendering computer-
generated images. However, current methods do not explore
which decoding methods lead to better inductive bias for in-
ferring graphics programs. In our work, we first explore the
effectiveness of LSTM-RNN versus Transformer networks
as decoders for order-independent graphics programs. Since
these are sequence models, we must choose an ordering of
the objects in the graphics programs for likelihood training.
We found that the LSTM performance was highly sensitive
to the sequence ordering (random order vs. pattern-based or-
der), while Transformer performance was roughly indepen-
dent of the sequence ordering. Further, we present a policy
gradient based reinforcement learning approach for better in-
ductive bias in the decoder via multiple diverse rewards based
both on the graphics program specification and the rendered
image. We also explore the combination of these comple-
mentary rewards. We achieve state-of-the-art results on two
graphics program generation datasets.

1 Introduction
The large majority of computer vision work deals in the do-
main of natural images or video. However, there is tremen-
dous potential for applying computer vision techniques to
computer-generated images, such as plots, charts, schemat-
ics, complicated math formulas, and even a page of printed
text. For these domains, there is often a domain-specific
language for precisely specifying the image, such as mat-
plotlib code for a chart, PicTeX for a schematic1, and La-
TeX for math formulas and text. “De-rendering” a computer-
generated image back to the original (or a different) domain-
specific language specification can be a useful first step in
many tasks, such as changing the visual appearance of an
image (Huang et al. 2016; Wu, Tenenbaum, and Kohli 2017)
or extracting information contained in an image (Cliche et
al. 2017; Mishchenko and Vassilieva 2011).

The de-rendering problem is part of a larger class of
“image-to-text” problems, in which an input image is

Copyright c© 2021 for this paper by its authors. Use permitted un-
der Creative Commons License Attribution 4.0 International (CC
BY 4.0).

1https://ctan.org/pkg/pictex?lang=en

<object>
 <supercategory>C-1</supercategory>
 <category>CS-3<\category>
 <x-coordinate>120</x-coordinate>
 <y-coordinate>240</y-coordinate>
 <depth>1</depth>
 <flip>0</flip>
</object>
<object>....

<object>
 <category>Rectangle<\category>
 <x1-coordinate>7</x1-coordinate>
 <y1-coordinate>1</y1-coordinate>
 <x2-coordinate>11</x2-coordinate>
 <y2-coordinate>16</y2-coordinate>
</object>
<object>....

Figure 1: Example images from the abstract scene dataset
(left) and the Noisy Shapes dataset (right), along with por-
tions of their specifications.

mapped to some sequence of output tokens. The neural
encoder-decoder approach has proved to be very success-
ful for this class of problems, including image caption-
ing (Karpathy and Fei-Fei 2015; Xu et al. 2015), handwrit-
ing recognition (Bluche, Louradour, and Messina 2016), as
well as the de-rendering problem for math formulas (Deng et
al. 2017) and graphics images (Ellis et al. 2018; Wu, Tenen-
baum, and Kohli 2017). In this paper, we improve these
encoder-decoder models for the specific case of graphical
images, via methods based on Transformer models with both
cross-entropy training and reinforcement learning with up to
two “dual modality” reward functions. De-rendering graph-
ical images is a problem that differs in several interesting
ways from image captioning and OCR problems. Two ex-
amples of the de-rendering problem we consider are shown
in Fig. 1. Each image is an input, and a portion of the desired
output is displayed below each image. In de-rendering, every
object in the image must be described in the specification,
and typically many output tokens are required to describe
each object. Thus outputs from de-rendering are typically
much longer than those in image captioning datasets (Chen

et al. 2015), since caption labels (e.g., in COCO (Lin et al.
2014)) tend to focus on simple descriptions involving only
the most salient objects in the image. OCR and de-rendering
are similar in that they encode information about all ele-
ments of the image, but the order of the output sequence
in OCR is completely determined by the image, while in de-
rendering, the output sequences represent sets2, and as such
the final rendering is invariant to a large degree of reordering
in the output sequence (e.g., by shuffling the sub-sequences
of tokens that correspond to separate objects).

We start our investigation with a basic image captioning
model (similar to Wu, Tenenbaum, and Kohli (2017)) and
extend it with an attention mechanism. We then swap out the
LSTM-RNN decoder with a Transformer network (Vaswani
et al. 2017). Our original motivation for this replacement is
that we think that output generation requires long-term de-
pendencies to avoid representing the same object multiple
times. As mentioned above, de-rendered output sequences
can be quite long, and we thought the multi-head attention
mechanism of the Transformer would handle the long-range
dependencies better than the LSTM-RNN. Unexpectedly,
we found another advantage of Transformers over LSTM-
RNNs for handling output sequence that can be reordered
in many ways and still be correct. We expand on this in
Sec. 7.1. To our knowledge, we are the first ones to use
Transformer networks for de-rendering graphical images,
and we find this change is a significant source of our per-
formance improvement.

Another challenge with graphics de-rendering is that
changing one or a few tokens in the specification can cause
a significant change in many pixel values (e.g., by changing
the location or color of a large object). Conversely, one can
have two images that are very close visually, yet have com-
pletely different specifications. To this end, we explore the
error minimization in the image as well as the specification
space via a dual-modality, two-way reward reinforcement
learning approach (Williams 1992; Zaremba and Sutskever
2015). We train with non-differentiable reward functions
that reflect performance measures of interest in both the im-
age space and the specification space (the “dual modes”). We
further explore training a single model using rewards from
both modalities, with the hopes that we get complementary
feedback from each.

We empirically evaluate our methods on two image
de-rendering datasets: Noisy Shapes dataset (Ellis et al.
2018) and Abstract Scene dataset (Zitnick and Parikh 2013;
Wu, Tenenbaum, and Kohli 2017). Our Transformer mod-
els trained with cross-entropy loss achieve very significant
improvement over previous work on these datasets. We
show even more improvement when we train the Trans-
former models using policy gradients-based methods, both
via single-modality rewards and further improvements via
dual-modality joint rewards. Finally, in our analysis we find
evidence that the performance of Transformers is relatively
insensitive to the ordering of objects in the output sequence,
while the performance of LSTM-RNN’s can decay substan-

2We say sets, rather than sequences, because in our datasets ob-
ject ordering does not affect the rendering.

tially for a poorly chosen object ordering. This suggests that
the advantage of Transformers over LSTM-RNNs may be
particularly strong in tasks where we are using an output se-
quence to represent an unordered set of objects.

2 Related Work
De-rendering a computer-generated image to a domain-
specific language provides an abstraction that is easy to
change, store, compare and match to other images. As a
consequence, there has been recent interest and work in this
area. Huang et al. (2016) used CNNs to translate a hand-
drawn sketch of an object (e.g., jewellery) to a fixed set of
parameters for a procedural model. In a similar vein, Nishida
et al. (2016) proposed a simple procedural grammar as a
building block to turn sketches into realistic 3D models. El-
lis et al. (2018) proposed an automatic visual program in-
duction model to infer programs from hand-drawn images,
where the images are encoded via CNNs and a multi-layer
perceptron predicts a distribution over drawing commands.

Ha and Eck (2018) presented a recurrent neural network
based sketch-rnn to construct conditional and unconditional
sketch generation of common objects, constrained by a very
simple set of primitives. Their model describes images as
pen movements either in a drawing mode or in a non-
drawing mode. Unlike our approach, this program is highly
sequence dependent and non-compositional. While there are
different solutions to the problem by re-ordering, one can-
not arbitrarily shuffle the sequence of pen movements. Liu
et al. (2019) infer scene programs by exploiting hierarchi-
cal object-based scene representations. Sun et al. (2018)
proposed a neural program synthesizer that generates un-
derlying programs for behaviorally diverse demonstration
videos. In this work, we use Transformer networks (Vaswani
et al. 2017) for decoding the specification from the given
input image. Transformers have been used in other gener-
ation tasks such as image and video captioning (Sharma et
al. 2018; Zhou et al. 2018), however, we are the first ones
to use Transformer networks for the image de-rendering
problem. Vinyals, Bengio, and Kudlur (2015) shows that
an LSTM trained with shuffled targets (unordered) using
cross-entropy has a substantial drop in performance com-
pared to natural orderings. Our result supports their findings
and moreover we find that Transformers, by contrast, are rel-
atively insensitive to the ordering of the objects.

Recently, policy gradient-based reinforcement learning
(RL) methods have been widely used for sequence gener-
ation tasks: machine translation (Ranzato et al. 2016), im-
age captioning (Ranzato et al. 2016; Rennie et al. 2017),
and textual summarization (Paulus, Xiong, and Socher 2018;
Pasunuru and Bansal 2018). Daumé, Langford, and Marcu
(2009) proposed to improve sequence generation by allow-
ing a model to use its own prediction at training time, ex-
tending their work in structured prediction. In the context of
program synthesis, Bunel et al. (2018) used RL for generat-
ing semantically correct programs. In the context of image
de-rendering, Wu, Tenenbaum, and Kohli (2017) proposed
a neural scene de-rendering model (NSD) with a neural en-
coder and a graphics engine as a decoder. The encoder has an
object proposal generator that produces segment proposals,

and then it tries to interpret objects and their properties from
these segments. They use RL to better sample the proposals
and use the rendered image reconstruction error as reward.

Recently, Ganin et al. (2018) introduced an adversarially
trained agent that is trained via a reinforcement learning
setup without any supervision to generate a program that
is executed by a graphics engine to interpret and sample
images. In contrast, our work presents two complementary
rewards (one in image space and another in specification
space) in a reinforcement learning setup for the image de-
rendering problem.

3 Models
Task. For each task we consider, there is a simple graphics
specification language that can be used to specify a partic-
ular image. While differing in details, the overall scheme
of the specifications are the same for each. A specification
consists of a set of “objects”, and each object is specified
by a set of properties. Examples of an object specification
for each of our tasks can be seen in Fig. 1. Given an im-
age rendered from a specification, our task is to “de-render”
this image back to the original specification. We can eval-
uate a predicted specification by looking for exact matches
between the objects in the predicted specification and the
objects in the original specification. We can summarize the
object matches with standard measures, such as precision,
recall, F1, and intersection-over-union. While these mea-
sures describe performance on a single image, we can av-
erage these measures across a collection of images, to get a
performance measure of a method overall. We provide more
details in Sec. 5.2. Another approach to evaluation is to gen-
erate the image corresponding to a predicted specification,
and see how well it matches the original image, using some
reasonable metric on the space of images.
Reduction to sequence prediction. While each specifica-
tions is represented by a set of objects with specific proper-
ties, our models require sequences of tokens. We convert the
set of objects to a sequence of tokens via some ordering of
the objects. We investigate various approaches to ordering
(Sec. 7.1), and find that ordering by object type works best.
Once the model predicts a sequence of tokens, we can parse
it back into original structure to compute performance mea-
sures and our reward functions for reinforcement learning.

3.1 Image-to-LSTM Sequence Model
Our baseline model is similar to an image captioning model
with an attention mechanism (Xu et al. 2015). We use the
ResNet-18 architecture (He et al. 2016) for encoding the in-
put image, and we use an LSTM-RNN for predicting the
corresponding specification as a sequence of tokens.

We will denote the convolutional features from the
ResNet-18 as {fi}mi=1, where fi ∈ Rd. For any decoder out-
put token o, let Eo ∈ Rd′ denote its embedding, which will
be learned during training. Let st be the decoder state at step
t, ot be the output token at step t, and ct be the image context
vector at step t, which will be defined below. Then at step t,
the decoder state st is given by

st = F(ct, st−1, Eot−1
), (1)

ResNet
CNN

Masked
Multi-Head
Attention

Add & Norm

Multi-Head
Attention

Add & Norm

Add & Norm

Feed Forward

Linear

Softmax

Output

+

Output
Embedding

Outputs
(shifted right)

(or)

Positional
Embedding

Figure 2: Our Image-Transformer model.

where F is a trainable non-linear function. The context vec-
tor ct is a convex combination of the image features: ct =∑m
i=1 αt,ifi, where αt,i are “attention weights” defined as

αt,i =
exp(et,i)∑m
k=1 exp(et,k)

(2)

et,i = vT tanh(Wfi + Ust−1 + b), (3)

where v, W , U , and b are the trainable parameters.

3.2 Image-to-Transformer Sequence Model
Recently, there is an increasing amount of interest in Trans-
former networks (Vaswani et al. 2017), which are said to
train faster and to better capture long-term dependencies
than LSTM-based RNN models. In our specification predic-
tion problem, the length of the specification can be large,
and we need long-term dependencies to avoid generating ob-
jects that have already been generated. This suggests Trans-
former networks would be a better fit for our scenario. In
this work, we only use the decoder part of the Transformer
network (Vaswani et al. 2017). The Transformer encoder
is for use on sequences, and we replace it with ResNet-18
CNN described above. We give a high-level description of
the Transformer decoder below, and refer to Vaswani et al.
(2017) for full details.

The decoder of the Transformer has a stack of N iden-
tical layers containing self-attention modules, normaliza-
tion modules, and feed-forward modules, along with posi-

tional encoding module for output embeddings (see Fig. 2).
While the original model in Vaswani et al. (2017) tookN=6,
through hyperparameter tuning we found N=4 to work bet-
ter for our problem. Besides that, we used the hyperparame-
ter settings as in Vaswani et al. (2017). The decoder has two
attention modules: one for attending to the image convolu-
tion features and another self-attention module to attend to
different previous positions in the decoder state.

Attention in Transformer. As shown in Fig. 2, we have
two attention mechanisms in the model: one attending to the
CNN features, and another attending to different parts of the
decoder state. They all have the same structure, which we
describe below.

An attention mechanism in the Transformer can be
viewed as a mapping from a query (Q) and a key-value
(K,V) pair to an output. An attention weight is computed
using the query and key and those weights are used with
values to compute the output of the attention module. Em-
pirically, it has been proven that instead of performing a sin-
gle attention function, linearly projecting the queries, keys,
and values with different learned projection layers and then
performing the attention function in parallel and concatenat-
ing those outputs to get the final attention module output to
work better. This attention mechanism is called multi-head
attention mechanism (MH), which is defined as follows:

MH(Q,K, V) = Concat(head1, .., headh)WO (4)

headi = Attention(QWQ
i ,KW

K
i , V W

V
i) (5)

Attention(Q,K, V) = softmax
(
QKT

dk

)
V (6)

where, dk is the dimension of the queries and keys, WQ
i ,

WK
i , and WV

i are the parameters of the projection matrices.

Position-wise Feed-Forward Networks. In addition to
the attention sub-layers, each of the layers in the Trans-
former decoder contains a fully connected feed-forward net-
work that is applied to each position of the decoder sepa-
rately and identically. This network is defined as

FFN(x) = max(0, xW1 + b1)W2 + b2, (7)
where W1, W2, b1, and b2 are the linear projection parame-
ters which are same across different positions but are differ-
ent from layer to layer.

Positional Encoding. In the model described thus far, the
model is symmetric with respect to sequence position. For
example, at the bottom right of Fig. 2, the model has no
structural way to determine which output embeddings come
from which part of the output sequence. To remedy this is-
sue, we concatenate a “positional encoding” (PE) to the em-
bedding representation of the tokens. We use the sine and
cosine functions for positional encoding:

PE(pos, 2i) = sin(pos/100002i/dmodel)

PE(pos, 2i+ 1) = cos(pos/100002i/dmodel)
(8)

where pos is the position, i is the dimension, and dmodel is
the dimension of the embedding vector representation.

4 Dual-Modality Two-Way Reinforcement
Learning

Traditionally, sequence generation models are trained using
a cross-entropy loss. More recently, a policy gradient-based
reinforcement learning approach has been explored for se-
quence generation tasks (Ranzato et al. 2016; Rennie et al.
2017), which has two advantages over the cross-entropy loss
optimization approach: (1) avoiding the exposure bias issue,
which is about the imbalance in the output distributions cre-
ated by different train and test time decoding approaches
in cross-entropy loss optimization (Bengio et al. 2015;
Ranzato et al. 2016); (2) allows direct optimization of the
evaluation metric of interest, even if it is not differentiable.
To this end, we use a policy gradient-based approach via re-
wards in both the specification space and the image space.
Also, we explore joint rewards based on these two spaces
for better capturing feedback that is complementary between
these two modalities.

For this reward optimization, we use the REINFORCE
algorithm (Williams 1992; Zaremba and Sutskever 2015) to
learn a policy pθ that produces a distribution over sequences
os for any given input. We try to find a policy pθ such that
the expected reward for a label sequence os drawn according
to the predicted distribution has maximum expected reward.
Equivalently, we minimize the following loss function, in
average across all training inputs:

LRL = −Eos∼pθ [r(os)], (9)

where os is the sequence of sampled tokens with ost sampled
at time step t of the decoder. We can approximate the gradi-
ent of this loss function with respect to the parameter θ using
a single sample os drawn from pθ as:

∇θLRL = −(r(os)− be)∇θ log pθ(o
s), (10)

where the leading factor is included for variance reduction
using a baseline estimator (Zaremba and Sutskever 2015).
There are several ways to calculate the baseline estima-
tor; we employ the effective SCST approach (Rennie et al.
2017).

4.1 Rewards
In this work we consider three different reward functions.
Two of the rewards are based in “specification space”, which
make a direct comparison between the predicted specifica-
tion and the ground truth specification, and one of the re-
wards is based in “image space”, which compares the image
rendered from the predicted specification with original input
image. We also investigate using these rewards in combina-
tion, with the hope that there is complementary information
in the feedback based on the two spaces.

Intersection-Over-Union Reward (IOU) As mentioned
in Sec. 3, after the specification is predicted as a sequence
of tokens, we can parse the sequence into a set of object
specifications. The intersection-over-union (IOU) reward is
based in specification space. Roughly speaking, the IOU re-
ward gives credit for predicting objects that exactly match
objects in the ground truth specification, and penalizes both

Ground-truth Image (encoded)

G
round-truth

IOU Reward

T
ransform

er D
ecoder

S
am

pler

[Object(type(boy), 60, 240),
Object(type(tree), 100, 20),
Object(type(bear), 360, 220)]

Specs
from os

[Object(type(boy), 60, 240),
Object(type(tree), 440, 20),
Object(type(bear), 360, 220)]

Image Distance Reward

Graphics
Renderer

Masked
Multi-Head
Attention

Add & Norm

Multi-Head
Attention

Add & Norm

Add & Norm

Feed Forward

Linear

Softmax

Output

+

Output
Embedding

Outputs
(shifted right)

Positional
Embedding

Figure 3: Example showing the samples from our model based on abstract scene dataset and the corresponding rewards in
specification and image space. For simplicity, all object properties are not shown in specification space.

for predicting objects that do not match ground truth objects
and for failing to predict objects that are part of the ground
truth. More formally, let {oi}mi=1 and {o∗j}nj=1 represent the
objects in predicted and ground-truth specifications, respec-
tively. Then the IOU reward is defined as:

riou =
count({oi}mi=1 ∩ {o∗j}nj=1)

count({oi}mi=1 ∪ {o∗j}nj=1)
(11)

The object oi in the prediction specification is the same as
object o∗j in the ground-truth specification if and only if all
the properties of these objects match exactly.

Inference Reward Our second reward, which we call the
“inference reward”, is also a reward in specification space.
The name is based on the “inference error”, which is a per-
formance measure introduced in Wu, Tenenbaum, and Kohli
(2017) for the Abstract Scenes dataset. While IOU is based
on exact matches between predicted objects and ground-
truth objects, the inference error and inference reward are
based on the number of properties (within objects) that cor-
rectly match the corresponding properties in the ground-
truth. For those properties specifying location in pixel co-
ordinates, we follow Wu, Tenenbaum, and Kohli (2017) and
divide the space of each coordinate into 20 bins of equal
size, and we consider it a match if the predicted and ground-
truth locations are in the same bin. We define the inference
error as the fraction of predicted properties that fail to match
the corresponding ground-truth properties. The inference re-
ward is one minus the inference error.

Image Distance Reward Our third and final reward, the
“image distance reward”, is in image space. We define it
generically first, as it takes slightly different forms in our
two datasets. If we let I and IR represent vectorized ver-
sions of the input image and the image rendered from the
predicted specification, respectively, then we define the im-
age distance as

dimg = ||I 	Ψ(IR)||22, (12)

where || · ||2 is the `2-norm.
For Noisy Shapes dataset, we follow Ellis et al. (2018)

and take Ψ to be a Gaussian blurring function, as the objects

in the target image have noise (see Fig. 1). We take 	 to
be a simple subtraction operation. The image reward for this
dataset is:

rimg =
c

dimg
(13)

where c is a tunable parameter.
For the Abstract Scene dataset,	 is a logical operator that

takes the value 0 in every position where the pixel values
“match”, and 1 in every other position. The range of possible
pixel values is 0-255 and, similarly to the discretization of
position in the inference reward, we divide the pixel value
range into 20 equisized buckets and consider pixel values to
match if they are in the same bucket. We take Ψ to be the
identity function. The image reward for the Abstract Scenes
dataset is then defined as:

rimg = 1− dimg
w · h

(14)

where w and h are width and height of the image.

Joint Dual-Modality Reward Since we expect the re-
wards based in specification space to be complementary to
the reward based in image space, we want a way to combine
rewards on the two spaces. One way to combine two rewards
is to create a weighted combination of individual rewards to
formulate the joint reward. Another approach is to alternate
the reward used during the learning process (Pasunuru and
Bansal 2018). In this work, we follow the latter approach, as
the former approach requires expensive tuning for scale and
weight balancing. Let r1 and r2 be the two reward functions
that we want to optimize. In our approach, we first take a1
optimization steps to minimize the reinforcement learning
loss LRL1

(r1; θ) (i.e. we use a1 mini-batches). Then we take
a2 optimization steps to minimize the reinforcement learn-
ing loss LRL2(r2; θ). We then repeat this cycle of steps until
convergence. All other optimization parameters, such as step
size, remain the same for each set of steps. The values a1 and
a2 are tuning parameters.3 The two rewards r1 and r2 could
be based on different aspects of the output, such as IOU and
image distance reward.

3Pasunuru and Bansal (2018) set a1 and a2 to 1, without tuning.

Model Precision Recall F1 IOU IOU1.0 IOU0.8 IOU0.6

CROSS-ENTROPY LOSS

Image2LSTM+atten. 98.7 98.5 98.6 97.6 90.7 95.3 98.8
Image2Transformer 99.1 99.1 99.1 98.5 94.1 97.3 99.1

IMAGE2TRANSFORMER WITH REINFORCE LOSS

IOU Reward 99.4 99.3 99.3 98.8 95.0 98.0 99.4
Image-distance Reward 99.4 99.2 99.3 98.8 94.5 98.0 99.5
Image-distance + IOU Reward 99.4 99.3 99.3 98.8 95.0 98.1 99.4

Table 1: Performance of various models on Noisy Shapes dataset.

5 Experimental Setup
5.1 Dataset
Noisy Shapes Dataset. Ellis et al. (2018) provides a syn-
thetic dataset of images containing multiple simple objects
(lines, circles, and rectangles), each with various properties
that can be specified. The images are specified using a small
subset of LATEX drawing commands. Additional noise is in-
troduced into the rendered images by rescaling image in-
tensity, translating the image by a few pixels, rendering the
LATEX using the pencildraw style, and randomly perturbing
the position and sizes of these LATEX drawing commands.
The dataset was created by randomly sampling image speci-
fications with between 1 and 12 objects, excluding any spec-
ifications that lead to images with overlapping objects. The
size of each image is 256x256. The dataset contains 100,000
images paired with specifications, from which we use 1000
for testing and the rest for training.

Abstract Scene Dataset. The Abstract Scene dataset (Zit-
nick and Parikh 2013) contains 10,020 images, each of
which has 3-18 objects. There are over 100 types of objects,
each of which is specified by two integers, one indicating
a broad category (e.g. sky object, animal, boy, girl) and an-
other indicating a subcategory (e.g. girl pose, animal type,
etc.). Each object can be drawn at one of 3 scales, with or
without a horizontal flip, and at any pixel location in the
500x400 image. These properties are specified by 4 addi-
tional integers. Thus each object is specified by 6 integers.
There are often heavy occlusions among these objects when
rendered in an image (see input image in Fig. 2). However,
the objects are rendered in a deterministic order based on
the object types and other properties, and thus the image is
independent of the order of the objects in the specification.
Similar to Wu, Tenenbaum, and Kohli (2017), we randomly
sample 90% of the images for training and rest for testing.

5.2 Evaluation Metrics
Noisy Shapes Dataset. As described in the Task descrip-
tion of Sec. 3, we can summarize performance on a single
image with precision, recall, F1, and IOU (intersection over
union) at the object level. Following previous work (Ellis
et al. 2018), we summarize the performance of a method
by averaging these metrics across all test examples (i.e. a

macro average). Further, we also report IOUk, which is de-
fined as the percent of test examples for which the IOU score
is greater than or equal to k.

Abstract Scene Dataset. For the abstract scene dataset,
following previous work (Wu, Tenenbaum, and Kohli 2017),
we report specification inference error and image recon-
struction error based on a micro average across all test ex-
amples. As described in Sec. 4.1 and Sec. 4.1, inference er-
ror is based on the percentage of incorrectly inferred values
(i.e., how many properties of objects do not match with the
ground-truth) for the specification, and image reconstruction
error is based on percentage of incorrect pixel prediction.
During these evaluations, all the continuous variables (pixel
values, and x and y coordinates) are quantized into 20 bins.
Additionally, we report the macro average based IOU error
as described for the noisy shapes dataset.

5.3 Training Details
In all of our models, we encode the image information via
ResNet-18 (He et al. 2016), where we take the penultimate
layer’s features as outputs from this image encoder. For
LSTM-RNN, we use a hidden state size of 128, input token
embedding size of 128, and a batch size of 64. For Trans-
former networks, we use the same hidden and embedding
size, and use 4 layers at each time step. We use the Adam op-
timizer (Kingma and Ba 2015) with the default learning rate
of 0.001 for all the cross-entropy models, and a learning rate
of 0.0001 for all the reinforcement learning based models.
For the Noisy Shapes dataset, the maximum decoder length
is fixed to 80, and we use a vocabulary size of 27, which are
placeholders for object properties. For the Abstract Scene
dataset, the maximum decoder length is fixed to 100, and
we use a vocabulary size of 1078 which represents all the
object properties. For the joint reward optimization, we use
a mixing ratio of 1:1 for the Noisy Shapes dataset and 1:4
for the Abstract Scene dataset.

6 Results
6.1 Results on the Noisy Shapes Dataset
We first compare the performance of the LSTM-RNN model
(Image2LSTM+atten) to the Transformer-based model,
when both are trained with cross-entropy loss. We see in

Model Infer.
Error

Recons.
Error

Avg.
Error

IOU

PREVIOUS WORK

CNN+LSTM (2017) 45.31 41.38 43.84 -
NSD (full) (2017) 42.74 21.55 32.14 -

CROSS-ENTROPY LOSS

Image2LSTM+atten. 17.27 15.70 16.48 32.06
Image2Transformer 8.78 10.92 9.85 58.54

IMAGE2TRANSFORMER WITH REINFORCE LOSS

IOU Reward 7.91 10.50 9.20 61.29
Inference Reward 7.81 10.75 9.28 59.35
Recons. Reward 8.34 9.99 9.16 62.44
Inference + Recons. 8.21 10.12 9.16 61.54
IOU + Recons. 8.05 10.04 9.04 62.45

Table 2: Models performance on the abstract scene dataset.
Errors: lower is better; IOU: higher is better.

Table 1 that the Transformer model dominates on all mea-
sures. In particular, we highlight IOU1.0, which measures
the percent of examples on which the predicted specifica-
tion exactly matches the ground-truth specification. While
the LSTM-RNN model achieves a 90.7% IOU1.0, the Trans-
former model achieves 94.1%, which is an impressive
36.5% reduction in the number of errors. We have similar
performance improvements for the other metrics. We now
compare the Transformer model trained with reinforcement
learning, using various reward functions, to training using
cross-entropy loss. Table 1 shows that, although all three re-
ward variations have roughly the same performance, they
all show significant improvement over cross-entropy train-
ing, on all measures.4 For example, the model trained with
IOU reward achieved a 95.0% IOU1.0 measure, which is an
impressive 15.3% reduction in the number of errors com-
pared to the same model trained with cross-entropy loss, and
a 46.2% reduction compared to the original LSTM-RNN
model. Performance improvement in the other measures is
at least as good.

6.2 Results on Abstract Scene Dataset
In Table 2, we see the performance of various models on
the Abstract Scene dataset, for the metrics described in
Sec. 5.2. We first note that even our baseline LSTM-RNN
model (Image2LSTM+atten) shows a very large error reduc-
tion compared to the results presented in Wu, Tenenbaum,
and Kohli (2017) (first 4 rows of the table). This highlights
the importance of an attention mechanism in these tasks.
For the models trained with cross-entropy, the Transformer
model shows an additional remarkable improvement over
the LSTM-RNN model, across all measures.

For reinforcement learning with the Transformer model,

4The improvement of our Transformer models trained with re-
inforcement learning over the corresponding cross-entropy models
is statistically significant with p < 0.01, based on the bootstrap
test (Noreen 1989; Efron and Tibshirani 1994).

we tried three different reward functions, corresponding to
three of our performance metrics: inference error, recon-
struction error, and IOU. All the Transformer models trained
with REINFORCE out-performed the model trained with
cross-entropy loss for each of the error measures.5 For in-
ference error, the model trained with the inference reward
did the best, as one might hope and expect. Compared to
the cross-entropy trained Transformer, the inference error
measure was reduced by 11.0%. For reconstruction error
(image-based), the best performing model was the model
trained with the reconstruction reward, which reduced the
reconstruction error by 8.5% compared to the cross-entropy
trained version. When evaluating performance using the av-
erage of the inference and reconstruction error, one of our
joint-reward models performed best, though interestingly,
not the one that uses the corresponding inference and re-
construction rewards. The best performing model for this
performance measure used IOU and reconstruction rewards,
suggesting that IOU reward has more information that is
complementary to the reconstruction error than does the in-
ference reward. For IOU performance measure, the model
trained with IOU reward did well, but when trained jointly
with IOU and reconstruction reward, it performed the best.
This suggests that using image-based feedback during train-
ing (recons. error) can be beneficial even when the ultimate
goal (IOU) depends only on the specification output.

7 Analysis
7.1 LSTM vs. Transformer Networks
As noted above, for the Abstract Scene and the Noisy Shapes
datasets that we consider, the order of the objects in the
specification does not affect the final image. Nevertheless,
for training both the LSTM-RNN and the Transformer mod-
els, one must choose an ordering. We ran an experiment us-
ing the Noisy Shapes dataset, in which we tried ordering
the objects by shape size, shape type, and by shape posi-
tion in the rendered image. We found that ordering by shape
type worked best across our models, so that’s what we used
for our main results in Table 1. We also wanted to investi-
gate how important it is to have the objects in some sensible
order, compared to a random ordering. Table 3 shows the
results of our two models when trained with cross-entropy
on specification sequences where the objects are put in ran-
dom order. We find that the LSTM-RNN model perfor-
mance drops dramatically (e.g. IOU1.0 drops from 90.7% to
72.0%), while the drop with Transformer networks is quite
small (e.g. IOU1.0 drops from 94.1% to 93.2%.6 This is addi-

5For the IOU and inference reward models, this improve-
ment is statistically significant for all metrics except reconstruc-
tion error. For the reconstruction reward model, the improvement
is significant for all but the inference error metric. For the dual
(IOU+Recons.) reward model, the difference is significant for all
metrics (p < 0.01 for each test).

6Note that the number of model parameters is approximately
the same (11.8M for Transformer model and 11.5M for LSTM
model). Further, Transformer models are 2.5x faster to train in
comparison to the LSTM models. During inference, both models
take approximately the same time.

Model F1 IOU IOU1.0

Image2LSTM+atten. 95.2 92.0 72.0
Image2Transformer 99.0 98.3 93.2

Table 3: Performance of LSTM-RNN and Transformer net-
works on the Noisy Shapes dataset when specifications have
randomly ordered objects.

tional evidence for Transformers being the preferred model
for tasks of this type.

7.2 Performance vs. Data Size
We conduct an experiment where we vary the percentage of
Noisy Shapes data used during our models’ training from
10% to 100% by steps of 20%. We observe that with less
data (10%-40%), the RL-based model is approximately 2
points better (on the IOU1.0 metric) than its corresponding
cross-entropy baseline. As we use more data (>60%), the
gap decreases to 1 point between RL and cross-entropy mod-
els. This suggests that RL, which has the advantage of explo-
ration, is more powerful when the data is less.

7.3 Output Examples
Fig. 4 presents the output rendered images of the
predicted specifications from Image2Transformer cross-
entropy model and the corresponding RL-based model with
IOU+Image-distance as reward for noisy shapes dataset and
IOU+Recons. as reward for abstract scene dataset. In the
first example (top row in Fig. 4), the cross-entropy model
predicts an extra ‘line shape’ which is not present in the
ground-truth. Our RL model correctly predicts the exact
same shapes present in the ground-truth. However, neither
models getting the type of ‘line shape’ correct in couple of
instances. In the second example (second row in Fig. 4),
the cross-entropy model predicts an extra object (glasses),
which is not present in the ground-truth image, and is also
missing the cap on the snake. The RL model improves on the
cross-entropy model by not having any extra objects, but it is
also missing the cap. In the third example, both the rendered
images look very similar to the ground-truth, but the cross-
entropy model predicts one of the objects (glasses) slightly
off in position. Our RL model was able to accurately posi-
tion the glasses (bottom row in Fig. 4). The better perfor-
mance of RL model may be due to the image space compo-
nent of the error signal, which is more sensitive to position
errors, while the cross-entropy loss gives the same penalty
to all incorrect positions regardless of the error size.

8 Conclusion
We present various neural de-rendering models based on
LSTMs with attention mechanism and Transformer net-
works. Further, we introduce complimentary dual rewards
(one in specification space and another in image space) and
optimize them via reinforcement learning, and achieve state-
of-the-art results. Further, our results and analyses suggest

Ground-truth Images Transformer Baseline Rendered Images Transformer RL Rendered Images

Figure 4: Comparing the ground-truth images from noisy
shapes and abstract scene datasets with the rendered images
of predicted specifications.

that Transformers are a better choice than LSTMs for un-
ordered sequence prediction tasks.

Acknowledgments
We thank the reviewers for their helpful comments. This
work was partially supported by NSF-CAREER Award
1846185, ARO-YIP Award W911NF-18-1-0336, and a Mi-
crosoft PhD Fellowship. The views contained in this article
are those of the authors and not of the funding agency.

References
Bengio, S.; Vinyals, O.; Jaitly, N.; and Shazeer, N. 2015.
Scheduled sampling for sequence prediction with recurrent
neural networks. In Proceedings of the 28th International
Conference on Neural Information Processing Systems -
Volume 1, NeurIPS’15, 1171–1179. Cambridge, MA, USA:
MIT Press.
Bluche, T.; Louradour, J.; and Messina, R. O. 2016. Scan,
attend and read: End-to-end handwritten paragraph recogni-
tion with MDLSTM attention. CoRR abs/1604.03286.
Bunel, R.; Hausknecht, M.; Devlin, J.; Singh, R.; and Kohli,
P. 2018. Leveraging grammar and reinforcement learning
for neural program synthesis. In ICLR. OpenReview.net.
Chen, X.; Fang, H.; Lin, T.-Y.; Vedantam, R.; Gupta, S.;
Dollár, P.; and Zitnick, C. L. 2015. Microsoft COCO
captions: Data collection and evaluation server. CoRR
abs/1504.00325.
Cliche, M.; Rosenberg, D.; Madeka, D.; and Yee, C. 2017.
Scatteract: Automated extraction of data from scatter plots.
In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, 135–150. Springer.
Daumé, H.; Langford, J.; and Marcu, D. 2009. Search-based
structured prediction. Machine Learning 75(3):297–325.
Deng, Y.; Kanervisto, A.; Ling, J.; and Rush, A. M. 2017.
Image-to-markup generation with coarse-to-fine attention.

In Proceedings of the 34th International Conference on Ma-
chine Learning - Volume 70, ICML’17, 980–989. JMLR.org.
Efron, B., and Tibshirani, R. J. 1994. An introduction to
the bootstrap. Number 57 in Monographs on Statistics and
Applied Probability. Boca Raton, Florida, USA: Chapman
& Hall/CRC.
Ellis, K.; Ritchie, D.; Solar-Lezama, A.; and Tenenbaum,
J. B. 2018. Learning to infer graphics programs from
hand-drawn images. In Proceedings of the 32nd Interna-
tional Conference on Neural Information Processing Sys-
tems, NeurIPS’18, 6062–6071. Red Hook, NY, USA: Curran
Associates Inc.
Ganin, Y.; Kulkarni, T.; Babuschkin, I.; Eslami, S. M. A.;
and Vinyals, O. 2018. Synthesizing programs for images
using reinforced adversarial learning. In Proceedings of the
35th International Conference on Machine Learning.
Ha, D., and Eck, D. 2018. A neural representation of sketch
drawings. In 6th International Conference on Learning Rep-
resentations, ICLR 2018, Vancouver, BC, Canada, April 30
- May 3, 2018, Conference Track Proceedings. OpenRe-
view.net.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In CVPR, 770–778.
Huang, H.; Kalogerakis, E.; Yumer, E.; and Mech, R. 2016.
Shape synthesis from sketches via procedural models and
convolutional networks. IEEE Transactions on Visualization
and Computer Graphics 2.
Karpathy, A., and Fei-Fei, L. 2015. Deep visual-semantic
alignments for generating image descriptions. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 3128–3137.
Kingma, D. P., and Ba, J. 2015. Adam: A method for
stochastic optimization. In Bengio, Y., and LeCun, Y., eds.,
3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Confer-
ence Track Proceedings.
Lin, T.; Maire, M.; Belongie, S. J.; Bourdev, L. D.; Girshick,
R. B.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; and Zit-
nick, C. L. 2014. Microsoft COCO: common objects in
context. CoRR abs/1405.0312.
Liu, Y.; Wu, Z.; Ritchie, D.; Freeman, W. T.; Tenenbaum,
J. B.; and Wu, J. 2019. Learning to describe scenes with
programs. In ICLR.
Mishchenko, A., and Vassilieva, N. 2011. Chart image un-
derstanding and numerical data extraction. In 2011 Sixth
International Conference on Digital Information Manage-
ment, 115–120. IEEE.
Nishida, G.; Garcia-Dorado, I.; Aliaga, D. G.; Benes, B.;
and Bousseau, A. 2016. Interactive sketching of urban
procedural models. ACM Transactions on Graphics (TOG)
35(4):130.
Noreen, E. W. 1989. Computer-intensive methods for testing
hypotheses. Wiley New York.
Pasunuru, R., and Bansal, M. 2018. Multi-reward reinforced
summarization with saliency and entailment. In Proceedings

of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 2 (Short Papers), 646–653.
Paulus, R.; Xiong, C.; and Socher, R. 2018. A deep rein-
forced model for abstractive summarization. In 6th Interna-
tional Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net.
Ranzato, M.; Chopra, S.; Auli, M.; and Zaremba, W. 2016.
Sequence level training with recurrent neural networks. In
ICLR.
Rennie, S. J.; Marcheret, E.; Mroueh, Y.; Ross, J.; and Goel,
V. 2017. Self-critical sequence training for image caption-
ing. In IEEE Conference on Computer Vision and Pattern
Recognition, 1179–1195.
Sharma, P.; Ding, N.; Goodman, S.; and Soricut, R. 2018.
Conceptual captions: A cleaned, hypernymed, image alt-text
dataset for automatic image captioning. In Proceedings of
the 56th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), 2556–2565.
Sun, S.-H.; Noh, H.; Somasundaram, S.; and Lim, J.
2018. Neural program synthesis from diverse demonstration
videos. In International Conference on Machine Learning,
4797–4806.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. In NeurIPS, 5998–6008.
Vinyals, O.; Bengio, S.; and Kudlur, M. 2015. Order mat-
ters: Sequence to sequence for sets. In ICLR.
Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine learning 8(3-4):229–256.
Wu, J.; Tenenbaum, J. B.; and Kohli, P. 2017. Neural scene
de-rendering. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 699–707.
Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudi-
nov, R.; Zemel, R.; and Bengio, Y. 2015. Show, attend and
tell: Neural image caption generation with visual attention.
In ICML, 2048–2057.
Zaremba, W., and Sutskever, I. 2015. Reinforce-
ment learning neural turing machines. arXiv preprint
arXiv:1505.00521.
Zhou, L.; Zhou, Y.; Corso, J. J.; Socher, R.; and Xiong,
C. 2018. End-to-end dense video captioning with masked
transformer. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 8739–8748.
Zitnick, C. L., and Parikh, D. 2013. Bringing semantics into
focus using visual abstraction. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
3009–3016.

