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Abstract
We present approaches to estimate content-aware bibliomet-
rics to quantitatively measure the scholarly impact of a publi-
cation. Traditional measures to assess quality-related aspects
such as citation counts and h-index, do not take into account
the content of the publications, which limits their ability to
provide rigorous quality-related metrics and can significantly
skew the results. Our proposed metric, denoted by Content In-
formed Index (CII), uses the content of the paper as a source
of distant-supervision, to weight the edges of a citation net-
work. These content-aware weights quantify the information
in the citation i.e., these weights quantify the extent to which
the cited-node informs the citing-node. The weights convert
the original unweighted citation network to a weighted one.
Consequently, this weighted network can be used to derive
impact metrics for the various entities involved, like the pub-
lications, authors etc. We evaluate the weights estimated by
our approach on three manually annotated datasets, where
the annotations quantify the extent of information in the cita-
tion. Particularly, we evaluate how well the ranking imposed
by our approach associates with the ranking imposed by the
manual annotations. The proposed approach achieves up to
103% improvement in performance as compared to second
best performing approach.

1 Introduction
Scientific, engineering, and technological (SET) innovations
have been the drivers behind many of the significant pos-
itive advances in our modern economy, society, and life.
To measure various impact-related aspects of these innova-
tions various quantitative metrics have been developed and
deployed. These metrics play an important role as they are
used to influence how resources are allocated, assess the per-
formance of personnel, identify intellectual property (IP)-
related takeover targets, value a company’s intangible assets
(IP is such an asset), and identify strategic and/or emerging
competitors.

Citation networks of peered-reviewed scholarly publi-
cations (e.g., journal/conference articles and patents) have
widely been used and studied in order to derive such metrics
for the various entities involved (e.g., articles, researchers,
institutions, companies, journals, conferences, countries,
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etc. (Aguinis et al. 2012)). However, most of these tradi-
tional metrics, such as citation counts and h-index treat all
citations and publications equally, and do not take into ac-
count the content of the publications and the context in
which a prior scholarly work was cited. Another related
line of work, such as PageRank (Page et al. 1999) and
HITS (Kleinberg 1999) takes the node centrality into con-
sideration (as a proxy for publication influence), but still op-
erate in an content-agnostic manner. These content-agnostic
metrics fail to reliably measure the scholarly impact of an
article as they do not differentiate between the possible rea-
sons a scholarly work is being cited. Being content-agnostic,
these metrics can be easily manipulated by the presence of
malicious entities, such as publication venues indulging in
self-citations, which leads to high impact factor, or a group
of scholars citing each others’ work. For example, Journal
Citation Reports (JCR)1 routinely suppresses many journals
that indulge in citation stacking, a practice where the review-
ers and journal editors pressure authors to cite papers that ei-
ther they wrote or that are published in “their” journal. Thus,
there is a need to establish content-aware metrics to accu-
rately and quantitatively measure various innovation-related
aspects such as their significance, novelty, impact, and mar-
ket value. Such metrics are essential for ensuring that SET-
driven innovations will play an ever more significant role in
the future.

In this paper, we propose machine-learning-driven ap-
proaches, that automatically estimate the weights of the
edges in a citation network, such that edges with higher
weights correspond to higher-impact citations. There has
been considerable effort in the past to identify important
citations (Valenzuela, Ha, and Etzioni 2015; Jurgens et al.
2018; Cohan et al. 2019). These approaches treat this task
as a supervised text-classification problem, and thus, require
the availability of training data with ground truth annota-
tions. However, generating such labeled data is difficult and
time consuming, especially when the meaning of the labels
is user-defined. In contrast, our approaches are distant su-
pervised, that require no manual annotation. The proposed
approaches leverage the readily available content of the pa-
pers as a source of distant-supervision. Specifically, we for-

1http://help.incites.clarivate.com/incitesLiveJCR/JCRGroup/
titleSuppressions.html



mulate the problem as how well the linear combination of
the representations of the cited publication explains the rep-
resentation of the citing publication. The weights in this
linear-combination quantify the extent to which the cited-
publication informs the citing-publication. We evaluate the
weights estimated by our approach on three manually an-
notated datasets, where the annotations quantify the extent
of information in the citation. Particularly, we evaluate how
well the ranking imposed by our approach associates with
the ranking imposed by the manual annotations. The pro-
posed approach achieves up to 103% improvement in per-
formance as compared to second best performing approach.

While our discussion and evaluation focuses on iden-
tifying informing citations, our approach is not restricted
to this domain, and can be used to derive impact metrics
for the various involved entities. For example, the content-
aware weights estimated by the proposed approach convert
the original unweighted citation network to a weighted one.
Consequently, this weighted network can be used to derive
impact metrics for the various involved entities, like the pub-
lications, authors etc. For example, to find the impact of
a publication, the sum of weights outgoing from its corre-
sponding node can be used to quantify the impact of the
publication, instead of using vanilla citation count.

The reminder of the paper is organized as follows. Section
2 presents the related literature review. The paper discusses
the proposed method in Section 3 followed by the experi-
ments in Section 4. Section 5 discusses the results. Finally,
Section 6 corresponds to the conclusions.

2 Related Work
The research areas relevant to the work present in this paper
belong to citation indexing, citation recommendation, link
prediction approaches, distant-supervised credit attribution
approaches and citation-intent classification approaches. We
briefly discuss these areas below:

Citation Indexing
A citation index indexes the links between publications that
authors make when they cite other publications. Citation in-
dexes aim to improve the dissemination and retrieval of sci-
entific literature. CiteSeer (Giles, Bollacker, and Lawrence
1998; Li et al. 2006) is a first automated citation indexing
system that works by downloading publications from the
Web and converting them to text. It then parses the papers to
extract the citations and the context in which the citations are
made in the body of the paper, storing this information in a
database. Other examples of popular citation indices include
Google Scholar2, Web of Science3 by Clarivate Analytics,
Scopus4 by Elsevier and Semantic Scholar5. Some examples
of subject-specific citation indices include INSPIRE-HEP6

which covers high energy physics, PubMed7, which covers

2https://scholar.google.com/
3http://www.webofknowledge.com/
4https://www.scopus.com/
5https://www.semanticscholar.org/
6https://inspirehep.net/
7https://pubmed.ncbi.nlm.nih.gov/

life sciences and biomedical topics, and Astrophysics Data
System8 which covers astronomy and physics.

Citation recommendation
Citation recommendation describes the task of recommend-
ing citations for a given text. It is an essential task, as
all claims written by the authors need to be backed up
in order to ensure reliability and truthfulness. The ap-
proaches developed for citation recommendation can be
grouped into 4 groups as follows(Färber and Jatowt 2020):
hand-crafted feature based approaches, topic-modelling
based approaches, machine-translation based approaches,
and neural-network based approaches. Hand-crafted feature
based approaches are based on features are are manually
engineered by the developers. For example, text similarity
between the citation context and the candidate papers can
be used as one of the text-based features. Examples of pa-
pers that propose hand-crafted feature based approaches in-
clude (Färber and Jatowt 2020; He et al. 2011; LIU, YAN,
and YAN 2016; Livne et al. 2014; Rokach et al. 1978).
Topic modeling based approaches represent the candidate
papers’ text and the citation contexts by means of abstract
topics, and thereby exploiting the latent semantic structure
of texts. Examples of topic modeling based approaches in-
clude (He et al. 2010; Kataria, Mitra, and Bhatia 2010).
The machine-translation based approaches apply the idea
of translating the citation context into the cited document
to find the candidate-papers worth citing. Examples in this
category include (He et al. 2012; Huang et al. 2012). Fi-
nally, the popular examples of neural-network based mod-
els include (Ebesu and Fang 2017; Han et al. 2018; Huang
et al. 2015; Kobayashi, Shimbo, and Matsumoto 2018; Tang,
Wan, and Zhang 2014; Yin and Li 2017).

Link-prediction
A link is a connection between two nodes in a network.
As such, link-prediction is the problem of predicting the
existence of a link between two nodes in a network. A
good link-prediction model predicts the likelihood of a link
between two nodes, so it can not only be used to pre-
dict new links, but to also curate the graph by filtering
less-likely links that are already present. Thus, the link-
prediction can be a useful tool to find likely citations in
a citation network. The citation recommendation task de-
scribed previously can be thought of as a special case of link-
prediction. Following the taxonomy described in (Martı́nez,
Berzal, and Cubero 2016), link-prediction approaches can be
broadly categorized into three categories: similarity-based
approaches, probabilistic and statistical approaches and al-
gorithmic approaches. The similarity based approaches as-
sume that nodes tend to form links with other similar nodes,
and that two nodes are similar if they are connected to simi-
lar nodes or are near in the network according to a given sim-
ilarity function. Examples of popular similarity functions
include number of common neighbors (Liben-Nowell and
Kleinberg 2007), Adamic-Adar index (Adamic and Adar

8http://ads.harvard.edu/



2003), etc. The probabilistic and statistical approaches as-
sume that the network has a known structure. These ap-
proaches estimates the model parameters of the network
structure using statistical methods, and use these parame-
ters to calculate the likelihood of the presence of a link
between two nodes. Examples of probabilistic and statis-
tical approaches include (Guimerà and Sales-Pardo 2009;
Huang 2010; Wang, Satuluri, and Parthasarathy 2007). Al-
gorithmic approaches directly uses the link-prediction as su-
pervision to build the model. For example, link-prediction
task can be formulated as a binary classification task where
the positive instances are the pair of nodes which are con-
nected in the network, and negative instances are the uncon-
nected nodes. Examples include (Menon and Elkan 2011;
Bliss et al. 2014). Unsupervised or self-supervised node em-
bedding (such as DeepWalk (Perozzi, Al-Rfou, and Skiena
2014), node2vec (Grover and Leskovec 2016)), followed by
training a binary classifier and Graph Neural network ap-
proaches such as GraphSage (Hamilton, Ying, and Leskovec
2017) belong to this category.

Distant-supervised credit-attribution
Various distant-supervised approaches have been developed
for credit-attribution, but the prior have primarily focused on
text documents. A document may be associated with multi-
ple labels but all the labels do not apply with equal speci-
ficity to the individual parts of the documents. Credit at-
tribution problem refers to identifying the specificity of la-
bels to different parts of the document. Various probabilis-
tic and neural-network based approaches have been devel-
oped to address the credit-attribution problem, such as La-
beled Latent Dirichlet Allocation (LLDA) (Ramage et al.
2009), Partially Labeled Dirichlet Allocation (PLDA) (Ra-
mage, Manning, and Dumais 2011), Multi-Label Topic
Model (MLTM) (Soleimani and Miller 2017), Segmentation
with Refinement (SEG-REFINE) (Manchanda and Karypis
2018), and Credit Attribution with Attention (CAWA) (Man-
chanda and Karypis 2020).

Another line of work uses distant-supervised credit-
attribution for query-understanding in product search. Ex-
amples include, (i) using the reformulation logs as a source
of distant-supervision to estimate a weight for each term in
the query that indicates the importance of the term towards
expressing the query’s product intent (Manchanda, Sharma,
and Karypis 2019a,b); and (ii) annotating individual terms
in a query with the corresponding intended product charac-
teristics, using the characteristics of the engaged products
as a source of distant-supervision (Manchanda, Sharma, and
Karypis 2020).

Citation-intent classification
There is a large body of work studying the intent of cita-
tions and devising categorization systems. In general, these
approaches treat citation-intent classification as a text clas-
sification problem, and require the availability of training
data with ground truth annotations. Representative examples
include rule based approaches (Pham and Hoffmann 2003;
Garzone and Mercer 2000) as well as machine-learning
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Figure 1: Overview of Content-Informed Index. Paper P1

cites papers P2, P3 and P4. The weights w21, w31, and w41

quantifies the extent to which P2, P3 and P4 informs P1,
respectively. The function f is implemented as a Multilayer
Perceptron.

driven approaches (Valenzuela, Ha, and Etzioni 2015; Jur-
gens et al. 2018; Cohan et al. 2019). Generating labeled data
for for these supervised approaches is difficult and time con-
suming, especially when the meaning of the labels is user-
defined. In contrast, our approaches are distant supervised,
that require no manual annotation.

3 Content-Informed Index (CII)
In the absence of labels that define the impact, we assume
that the extent to which a cited paper informs the citing pa-
per is an indication of the citation’s impact. Specifically, we
assume that each paper Pi can be represented as a set of con-
cepts Ci. Further, we assume that each paper Pi is build on
top of a set of historical concepts Hi, and its novelty Ni is
the new set of concepts it proposes. The contribution of a
cited paper Pj towards the citing paper Pi is the set of con-
cepts Cji = Cj ∩Hi. In other terms, the set of concepts Ci

is given by:

Ci = Ni ∪Hi = Ni ∪ [∪PicitesPj
Cji].

The task at hand is to quantify the extent to which Cji con-
tributes towards Hi. To achieve this task, we look into the
following directions:
• How do we supervise the exercise? We minimize the

novelty of paper Pi, by trying to explain the concepts in
paper Pi (denoted by Ci) using the historical concepts,
i.e., the concepts of the papers it cites (Cj). We call the
loss associated with this minimization as the explanation
loss. This gives rise to the following optimization prob-
lem:

minimize
∑
i

Ni = minimize
∑
i

Ci −Hi.

To proceed in this direction, we need to answer two ques-
tions, (i) How to represent the the set of concepts associ-
ated with the paper Pi?, and (ii) How do we represent the
set of historical concepts Hi? As we show next, we use



the textual content of the papers to estimate the represen-
tations ofCi andHi. Thus, we formulate our problem as a
distant-supervised problem, and the content of the papers
acts as a source of distant-supervision.

• How to represent the set of concepts associated with
a paper? For simplicity, we represent the set of con-
cepts associated with a paper (Ci) as a pretrained vec-
tor representation (embedding) of its abstract, such as
Word2Vec (Mikolov et al. 2013), GloVe (Pennington,
Socher, and Manning 2014), BERT (Devlin et al. 2018),
ELMo (Peters et al. 2018), etc. In this paper, we use the
pretrained representations pretrained on scientific docu-
ments provided by ScispaCy (Neumann et al. 2019). The
representation of Ci is denoted by r(Ci).

• How do we represent the set of historical concepts Hi?
As the set of historical concepts Hi is a union of the bor-
rowed concepts from the cited papers (Cj), we simply
represent the set of historical concepts as a weighted lin-
ear combination of the representation of the concepts of
the cited papers, i.e.,

r(Hi) =
∑

Pi cites Pj

w̃jir(Cj)

subject to
∑

Pi cites Pj

w̃2
ji = 1

w̃ji ≥ 0;∀(i, j).

We have the constrained norm condition (
∑

Pi cites Pj

w̃2
ji =

1) to make the representation of r(Hi) agnostic to the
number of cited-papers (a paper can cite multiple papers
to reference the same borrowed concepts).
The weights w̃ji can be thought of as normalized simi-
larity measure between the concepts of the cited paper,
and the citation context. Thus, to estimate w̃ji, we first
estimate unnormalized w̃ji, denoted by wji, and then nor-
malize wji so as to have unit norm. The unnormalized
weight wji is precisely the extent to which Cj contributes
towardsHi (and henceCi), i.e., the weight that we wish to
estimate in this paper. We estimatewji as a multilayer per-
ceptron, that takes as input the representations of the cited
paper and the citation context. We use the representation
associated with the corresponding concepts as the repre-
sentations of the cited papers (r(Cj)). Similar to r(Cj),
we use the ScispaCy vector representation for the citation
context as the representation of the context, and denote it
by r(j → i).

The above discussion leads to the following formulation:

minimize
f

∑
i

||r(Ci)−
∑

Pi cites Pj

w̃jir(Cj)||2

subject to w̃ji =
wji√ ∑

Pi cites Pj

w2
ji

;∀(i, j),

wji = f(r(Cj), r(Cji));∀(i, j),
wji ≥ 0;∀(i, j),
wji ≤ b;∀(i, j).

(1)

The max-bound constraint (wji ≤ b) is introduced to limit
the projection space of the weights wji. This is because,
without this constraint, for a given citing paper Pi, if the
set of weights wji minimize Equation (1), then so will any
scalar multiplication of the weightswji. This can potentially
lead to the estimated weights being incomparable across
different citing papers. Having a max bound on the esti-
mated weights helps avoid this scenario. To take care of
the constraints, the function f(·) can be implemented as a
L2−regularized multilayer perceptron, with a single output
node, and a non-negative mapping at the output node. Not
that we do not explicitly set the max-bound b, but it is im-
plicitly set by the L2 regularization of the weights of the
function f . The L2 regularization parameter is treated as
a hyperparameter. Figure 1 shows an overview of Content-
Informed Index (CII).

4 Experimental methodology
Evaluation methodology and metrics
We need to evaluate how well the weights estimated by our
proposed approach quantifies the extent to which a cited
paper informs the citing paper. To this extent, we leverage
various manually annotated datasets (explained later in Sec-
tion 4), where the annotations quantify the extent of infor-
mation in the citation. The task inherently becomes an or-
dinal association, and we need to evaluate how well the
ranking imposed by our proposed method associates with
the ranking imposed by the manual annotations. As a mea-
sure of rank correlation, we use the non-parametric Somers’
Delta (Somers 1962) (denoted by ∆). Values of ∆ range
from −1(100% negative association, or perfect inversion)
to +1(100% positive association, or perfect agreement). A
value of zero indicates the absence of association. Formally,
given a dependent variable (i.e., the predicted weights by our
model) and an independent variable (i.e., the manually anno-
tated ground truth), ∆ is the difference between the number
of concordant and discordant pairs, divided by the number
of pairs with independent variable values in the pair being
unequal.

Relation of ∆ to other metrics: When the independent
variable has only two distinct classes (binary variable), the
area under the receiver operating characteristic curve (AUC
ROC) statistic is equivalent to ∆ (Newson 2002). Thus, ∆
can also be visualized as a generalization of AUC ROC to-
wards ordinal classification with multiple classes. Further,
as the dependent variable (the weights estimated by our pro-
posed approach) is real valued, having two tied values on the
independent variable is very difficult. Thus, for our case, ∆
is equivalent to Goodman and Kruskal’s Gamma (Goodman
and Kruskal 1959, 1963, 1972, 1979), and just a scaled vari-
ant of Kendall’s τ coefficient (Kendall 1938), with are other
popular measures of ordinal association.

Baselines
We choose representative baselines from diverse categories
as discussed below:



Link-prediction approaches: The citation weights that
we estimate in this paper can also looked from the link-
prediction perspective, i.e., assigning a score to every cita-
tion (link) in the citation graph, the score portraying the like-
lihood of the existence of a link. Thus, the citations that are
noisy, i.e., the edges that do not make sense with the respect
to underlying link-prediction model get smaller weights. We
compare against two link-prediction methods, one based on
classic network embedding approach, and other belonging
to recent Graph Neural Network (GNN) based approaches.
• DeepWalk (Perozzi, Al-Rfou, and Skiena 2014): Deep-

Walk is a popular method to learn node embeddings. Deep-
Walk borrows ideas from language modeling and incor-
porates them with network concepts. Its main proposition
is that linked nodes tend to be similar and they should
have similar embeddings as well. Once we have node
embeddings as the output of DeepWalk, we train a bi-
nary classifier, with the positive instances as the pairs of
nodes which are connected in the network, and negative in-
stances are the unconnected nodes (generated using nega-
tive sampling). We provide results using two different clas-
sifiers: Logistic Regression (denoted by DeepWalk+LR)
and Multilayer Perceptron (denoted by DeepWalk+MLP).
Note that Deepwalk is a transductive model, and only con-
siders the network topology, i.e., DeepWalk does not use
the content of the papers to estimate the model.

• GraphSage (Hamilton, Ying, and Leskovec 2017): Graph-
SAGE is a Graph Concolutional Network (GCN) based
framework for inductive representation learning on large
graphs. GraphSage is trained with the link-prediction loss,
so we do not use a second step (as in DeepWalk) to train
separate classifier. Note that, GraphSage is an inductive
model, so also considers the content of the papers in addi-
tion to topology of the network to estimate the model.

Text-similarity based baselines: We can think of the
function f as a similarity measure between the cited pa-
per and the citation context. Thus, we consider the following
similarity measures as our baselines: We use the same pre-
trained representations as we used as an input to CII, and
cosine similarity as the similarity measure, which is a popu-
lar similarity measure for text data.
• Similarity-Abstract-Context: Similarity between the cited

abstract and the citation context.
• Similarity-Context-Abstract: Similarity between the cit-

ing abstract and the citation context.
• Similarity-Abstract-Abstract: Similarity between the

cited abstract and citing abstract.
To calculate each of the above similarity measures, we use
the same pretrained representations as we used as an input to
CII, and cosine similarity as the similarity measure, which is
a popular similarity measure for text data. The baselines be-
longing to this category can also be thought of as similarity-
based link prediction approaches.

In addition, we also consider another simple baseline, re-
ferred to as Reference Frequency, where we assume that
more frequently the cited paper is referenced in the citing pa-
per, the higher the chances of the cited paper informing the

citing paper. This assumption has also been used as a feature
in prior supervised approaches (Valenzuela, Ha, and Etzioni
2015). The absolute frequency of referencing a cited-paper
may provide a good signal regarding the information bor-
rowed from the cited paper, when comparing with other pa-
pers being cited by the same citing paper. However, as the
citation-behavior differs between papers, the absolute fre-
quency may not be comparable across different citing pa-
pers. Thus, we also provide results after doing normaliza-
tion of the absolute frequency of the citation references for
each citing paper. We provide results for mean, max, and
min normalization. Specifically, given a citation and the cor-
responding citing paper, the information weight for a cita-
tion is calculated by dividing the number of references of
that citation, by the mean, max, and min of references of all
the citations in that citing paper, respectively.

Datasets
The Semantic Scholar Open Research Corpus (S2ORC):
The S2ORC (Lo et al. 2020) dataset is a citation graph of
81.1 million academic publications and 380.5 million cita-
tion edges. We only consider the publications for which full-
text is available and abstract contains at least 50 words. This
leaves us with a total of 5, 653, 297 papers, and 30, 533, 111
edges (citations).

ACL-2015: The ACL-2015 (Valenzuela, Ha, and Etzioni
2015) dataset contains 465 citations gathered from the ACL
anthology9, represented as tuples of (cited paper, citing pa-
per), with ordinal labels ranging from 0 to 3, in increasing
order of importance. The citations were annotated by one ex-
pert, followed by annotation by another expert on a subset of
the dataset, to verify the inter-annotator agreement. We only
use the citations for which we have the inter-annotator agree-
ment, and the citations are present in the S2ORC dataset we
described before. The selected dataset contains 300 citations
among 316 unique publications. The total number of unique
citing publications are 283 and the total number of unique
cited publications are 38.

ACL-ARC: The ACL-ARC (Jurgens et al. 2018) is a
dataset of citation intents based on a sample of papers from
the ACL Anthology Reference Corpus (Bird et al. 2008)
and includes 1,941 citation instances from 186 papers and
is annotated by domain experts. The dataset provides ACL
IDs for the papers in the ACL corpus, but does not provide
an identifier to the papers outside the ACL corpus, mak-
ing it difficult to map many citations to the S2ORC cor-
pus. However, it provided the titles of those papers, and
we used these titles to map these papers to the papers in
the S2ORC dataset, if we found matching titles. The an-
notations in ACL-ARC are provided at individual citation-
context level, leading to multiple annotations for some of the
(cited paper, citing paper) pair. If this is the case, we chose
the highest-informing annotation for such (cited paper, cit-
ing paper) pairs. The selected dataset contains 460 citations
among 547 unique publications. The total number of unique

9https://www.aclweb.org/anthology/



Table 1: Results on the Somers’ ∆ metric.

Model ACL-2015 ACL-ARC SciCite

Content-Informed Index (CII) 0.428± 0.013 0.308± 0.010 0.296± 0.006

Ref. Frequency (Absolute) 0.325± 0.000 0.308± 0.000 0.144± 0.000
Ref. Frequency (Mean-normalized) 0.351± 0.000 0.300± 0.000 0.120± 0.000
Ref. Frequency (Min-normalized) 0.321± 0.000 0.298± 0.000 0.145± 0.000
Ref. Frequency (Max-normalized) 0.270± 0.000 0.172± 0.000 0.035± 0.000

Similarity-Abstract-Abstract −0.041± 0.000 0.091± 0.000 −0.003± 0.000
Similarity-Abstract-Context −0.147± 0.000 0.090± 0.000 −0.125± 0.000
Similarity-Context-Abstract 0.013± 0.000 −0.062± 0.000 −0.202± 0.000

Deepwalk+LR −0.071± 0.016 0.190± 0.006 −0.037± 0.018
Deepwalk+MLP −0.026± 0.011 0.205± 0.024 −0.047± 0.015
GraphSage 0.023± 0.045 0.132± 0.024 0.049± 0.019

citing publications are 145 and the total number of unique
cited publications are 413.

SciCite (Cohan et al. 2019) SciCite is a dataset of cita-
tion intents based on a sample of papers from the Semantic
Scholar corpus10, consisting of papers in general computer
science and medicine domains. Citation intent was labeled
using crowdsourcing. The annotators were asked to identify
the intent of a citation, and were directed to select among
three citation intent options: Method, Result/Comparison
and Background. This resulted in a total 9, 159 crowd-
sourced instances. We use the citations that are present in
the S2ORC dataset we described before. Similar to ACL-
ARC, the annotations are provided at individual citation-
context level, leading to multiple annotations for some of the
(cited paper, citing paper) pair. For such cases, we chose the
highest-informing annotation for the (cited paper, citing pa-
per) pairs. The selected dataset contains 352 citations among
704 unique publications. There is no repeated citing or cited
publication in this dataset, thus, the total number of unique
citing publications as well as unique citing publications are
352 each.

Parameter selection
We treat one of the evaluation datasets (ACL-ARC) as the
validation set, and chose the hyperparameters of our ap-
proaches and baselines with respect to best performance
on this dataset. For DeepWalk, we use the implementation
provided here11, with the default parameters, except the di-
mensionality of the estimated representations, which is set
to 200 (for the sake of fairness, as the used 200 dimen-
sional text representations for CII). For the models that re-
quire learning, i.e., the logistic regression part of Deepwalk,
MLP part of Deepwalk, GraphSage, and CII, we used the
ADAM (Kingma and Ba 2015) optimizer, with initial learn-
ing rate of 0.0001, and further use step learning rate sched-
uler, by exponentially decaying the learning rate by a factor
of 0.2 every epoch. We use L2 regularization of 0.0001. The
function f in CII was implemented as a multilayer percep-
tron, with three hidden layers, with 256, 64, and 8 neurons,

10https://www.semanticscholar.org/
11https://github.com/xgfs/deepwalk-c

respectively. We use the same network architecture for the
MLP that we train on top of DeepWalk representations. We
train the logistic regression and MLP parts of Deepwalk,
GraphSage, and CII for a maximum of 50 epochs, and do
early-stopping if the validation performance does not im-
prove for 5 epochs. For GraphSage, we use the implemen-
tation provided by DGL12. We used mini-batch size of 1024
for training the models.

5 Results and discussion
Quantitative analysis
Table 1 shows the performance of the various approaches on
the Somers’ Delta (∆) for each of the datasets ACL-2015,
ACL-ARC and SciCite. For ACL-2015 and SciCite, the pro-
posed approach CII outperforms the competing approaches;
while for the ACL-ARC dataset, CII performs at par with
the best performing approach. The improvement of CII over
the second best performing approach is 22% and 103%, on
the ACL-2015 and SciCite datasets, respectively.

Interestingly, the simplest baseline, Reference-frequency
and its normalized forms are the second best performing ap-
proaches. While Reference-frequency performs at par with
the CII on the ACL-ARC dataset, it does not perform as
good on the other two datasets. This can be attributed to
the fact that the number of unique citing papers in ACL-
ARC dataset are relatively small. Thus, many citations in
ACL-ARC are shared by the same citing paper, which is not
the case with the other two datasets. Thus, as mentioned in
Section 4, absolute frequency of referencing a cited-paper
may provide a good signal regarding the information bor-
rowed from the cited paper, when comparing with other pa-
pers being cited by the same citing paper. Further, even the
normalized forms of the Reference-frequency lead to only
marginal increase in performance for the ACL-2015 and
SciCite datasets. Thus, the simple normalizations (such as
mean, max and min normalization used in this paper), are
not sufficient to address the difference in citation-behavior
that occurs between different papers.

12https://github.com/dmlc/dgl/blob/master/examples/pytorch/
graphsage



Furthermore, we observe that simple similarity based ap-
proaches, such as cosine-similarity between pairs of various
entities (each combination of citing abstract, citing abstract,
and citation-context) performs close to random scoring (∆
value of close to zero). This validates that the simple sim-
ilarity measures, like cosine similarity are not sufficient to
manifest the the information that a cited-paper lends to the
citing-paper; thus, showing the necessity of more expressive
approaches, like CII.

In addition, the other learning-based link-prediction-
based approaches perform considerably worse than the sim-
ple baseline reference-frequency. While on ACL-2015 and
SciCite datasets, they perform close to random scoring, the
performance on ACL-ARC dataset is better than the random
baseline.

Qualitative analysis

In order to understand the patterns that the proposed ap-
proach CII learns, we look into the data instances with the
highest and lowest predicted weights. As the function f
takes as input both the abstract of the cited paper and the ci-
tation context, the learnt patterns can be a complex function
of the cited paper abstract and the citation context. Thus, for
simplicity, we limit the discussion in this section to under-
stand the linguistic patterns in the citation context, and how
these patterns associate with the weights predicted for them.

In this direction, we select 10, 000 citation-contexts cor-
responding to citations with highest predicted weights, and
plot the word clouds for these contexts. We repeat the same
exercise for the citation-contexts with the lowest predicted
weights. Figures 2 and 3 shows the wordclouds for the high-
est weighted citations and lowest weighted citations, respec-
tively. These figures show some clear discriminatory pat-
ters between the highest-weighted and lowest-weighted ci-
tations, that relate well with the information carried by a ci-
tation. For example, the words such as ‘used’ and ‘using’ are
very frequent in the citation contexts of the highest weighted
citations. This is expected, as such verbs provide a strong
signal that the cited work was indeed employed by the citing
paper, and hence the cited paper informed the citing work.
Another interesting pattern in the highest weighted citations
is the presence of words like ‘fig’, ‘figure’ and ‘table’. Such
words are usually present when the authors present or de-
scribe important concepts, such as methods and results. As
such, citations in these important sections indicates that the
cited work is used or extended in the citing paper, which
signals importance.

On the other hand, the wordcloud for the least weighted
citations (Figure 3) is dominated by weasle words such as
‘may’, ‘many’, ‘however’, etc. The words such as ‘many’
commonly occur in the related work section of the paper,
where the paper presents some examples of other related
works to emphasize the problem that the citing paper is solv-
ing. The words like ‘may’, ‘however’, ‘but’ etc are com-
monly used to describe some limitation of the cited work.
Such citations are expected to be incidental, carrying less
information, as compared to other citations.

Figure 2: Word-cloud (Frequently occurring words) that ap-
pear in the citation context of the citations with the highest
predict importance weights.

Figure 3: Word-cloud (Frequently occurring words) that ap-
pear in the citation context of the citations with the least pre-
dict importance weights.

6 Conclusion
In this paper, we presented approaches to estimate content-
aware bibliometrics to accurately quantitatively measure the
scholarly impact of a publication. Our distant-supervised
approaches use the content of the publications to weight
the edges of a citation network, where the weights quantify
the extent to which the cited-publication informs the citing-
publication. Experiments on the three manually annotated
datasets show the advantage of using the proposed method
on the competing approaches. Our work makes a step to-
wards developing content-aware bibliometrics, and envision
that the proposed method will serve as a motivation to de-
velop other rigorous quality-related metrics.
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