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Abstract

A Systematic Review of a research domain provides a way
to understand and structure the state-of-art of a particular
research area. Extensive reading and intensive filtering of
large volumes of publications are required during that pro-
cess, while almost exclusively performed by human experts.
Automating sub-tasks from the well defined Systematic Map-
ping (SM) and Systematic Review (SR) methodologies is not
well explored in the literature, despite recent advances in
natural language processing techniques. Typical challenges
evolve around the inherent gaps in the semantic understand-
ing of text and the lack of domain knowledge necessary to
fill-in that gap. In this paper, we investigate possible ways of
automating common sub-tasks of the SM/SR process, i.e., ex-
tracting keywords and key-phrases from scientific documents
using unsupervised methods, which are then used as a basis to
construct the so-called classification scheme using semantic
clustering techniques. Specifically, we explore the effect of
ensemble scores in key-phrase extraction, semantic network-
based word embeddings as well as how clustering can be used
to group related key-phrases. We conducted an evaluation
on a dataset from publications on the domain of “Explain-
able AI” which we constructed from standard, publicly avail-
able digital libraries and sets of indexing terms (keywords).
Results show that ensemble ranking score does improve the
key-phrase extraction performance. Semantic network-based
word embeddings (ConceptNet) has similar performance as
contextualized word embeddings, while the former is more
efficient than the latter. Finally, semantic term clustering can
group similar terms, which can be suitable for classification
schemes.

1 Introduction
Systematic Mapping (SM) and Systematic Review (SR)
studies are standard methods for capturing the state-of-art
of a particular research field in a structured and organised
way, while at the same time provide significant insights and
knowledge around that research area (Petersen et al. 2008).
Traditionally, these methods are performed manually by hu-
man experts and researchers. With a growing number of pub-
lications in recent years as well as the literature expansion in
novel areas, the systematic mapping procedure of such vol-

Copyright c© 2021for this paper by its authors. Use permitted un-
der Creative Commons License Attribution 4.0 International (CC
BY 4.0).

umes of scientific documents becomes quite challenging and
time-consuming (Carver et al. 2013).

In the classical systematic mapping procedure, keyword
extraction & classification scheme are two essential steps
that help in classifying papers in different perspectives while
producing a group of categories from, typically, manual key-
wording and grouping of the descriptive terms. First, terms
extracted by intensively reading papers should be common
in regard each source document as well as the research do-
main. Existing keywords and key-phrase extraction systems
are usually independent, concerning downstream tasks and
types of documents. For document types, such as web pages
and social media documents, short and concise keywords are
required, while multi-word expressions (key-phrases) are
more common in scientific publications.

In this work we explore methods that can leverage the
identified and automatically extracted keywords for produc-
ing a classification scheme for the research domain of in-
terest. Furthermore, we evaluate methods suitable for ex-
tracting representative (as an attribute of each document)
and highly relevant (to a target research domain) keywords
drawn from the summary (abstract) of scientific publica-
tions. We are interested in getting keywords and key-phrases
that are precise yet informative as domain concepts or termi-
nologies.

Hence, we attempt to address whether automated key-
phrase extraction methods and term clustering techniques
can adequately extract and identify useful information, com-
parable to how they are performed in the context of SM
& SR. More specifically, we explore the effect of ensem-
ble score measures in key-phrase extraction (Q1), the effect
of semantic network-based word embedding techniques in
embedding representation of phrase semantics (Q2), as well
as the effect of clustering for grouping semantically related
key-phrases (Q3). Our code and data will be publicly avail-
able at: https://github.com/xiajing10/akec.

2 Related Work
With an increasing number of research publications, es-
pecially in artificial intelligence, current systematic map-
ping underlying procedures are time-consuming. The sur-
vey from Carver et al. discusses the barriers of manual work
in the systematic literature review process, especially in the
context of paper selection and data extraction (Carver et al.



2013). Recent text-mining algorithms and NLP techniques
can become particularly useful for automating (parts of)
this manual work within the systematic mapping studies
procedure. Several studies have investigated various tech-
niques to automate one or more sub-steps, such as paper
selection (Marshall and Wallace 2019). However, we find
that very few related works focus on automating the pro-
cess of keywording and categorization steps, which presume
background knowledge from domain experts. Extracted key-
words have to encode salient (essential and relevant) text
features and the aspect of human readability (as concepts).
Then, when grouping sets of keywords into different cate-
gories, human experts have an inherent ability to understand
the definition, background knowledge, and semantic related-
ness of keywords.

Keyword extraction generates highly representative and
relevant information from unstructured text, used as features
in many downstream tasks, such as summarization, cluster-
ing, knowledge graph generation, and taxonomies. Unsu-
pervised systems typically apply scoring and ranking meth-
ods on candidate words. TF-IDF is a simple but effective
scoring mechanism. Graph-based methods (e.g., TextRank
(Mihalcea and Tarau 2004)) rank the importance of words
based on word co-occurrence graph, which has shown its
effectiveness independently of domain and language. Se-
mantic information of words is rarely used in early meth-
ods, as it is usually difficult to measure. Word embed-
ding techniques provide a means to measure such seman-
tic similarity. Semantic similarity between each candidate
and its source document can be calculated by cosine simi-
larity of their embedding representation. Papagiannopoulou
and Tsoumakas utilize averaging GloVe word embedding as
phrase vector and “theme vector” (Papagiannopoulou and
Tsoumakas 2020). Bennani-Smires et al. applies Doc2Vec
and Sent2Vec for document representation and phrase repre-
sentation (Bennani-Smires et al. 2018). Sun et al. combined
various contextualized word embedding methods with SIF
weighted sentence embedding model (Sun et al. 2020). In
this paper, we further explore the performance of semantic
network based word embeddings building on the work of
SIFRank.

A pre-existing classification scheme, typically, does not
always fit more than one particular research domain. Updat-
ing or generating a new classification scheme from selected
papers is widely applied in most cases, with help from text-
mining techniques. Terko, Žunić, and Donko conducted con-
ference paper classification using traditional machine learn-
ing methods, with labels generated from topic modeling
(Terko, Žunić, and Donko 2019). Kim and Gil applied k-
means as an unsupervised clustering method for creating the
classification scheme at a document-level, during which they
extracted features from topic models, abstracts and author-
given keywords, followed by TF-IDF vectorization and doc-
ument clustering (Kim and Gil 2019). Different from cate-
gories in systematic mapping studies, document clustering
is single-faceted, where each article is assigned to only one
category. Osborne et al. proposed their semi-supervised sys-
tem for mapping studies, which starts with ontology learning
over large scholarly datasets, then refines the ontology with

the help of domain experts, and finally use knowledge bases
to select and classify the primary studies automatically (Os-
borne et al. 2019). Their classification scheme is generated
by selecting several ontologies from author-given keywords
as categories and identified equivalent ontologies (based on
relations learned in ontology learning) as they appeared in
abstracts, keywords, and titles. Their approach shows higher
precision compared to TF-IDF. However, it relies on an
extensive, extracted database of ontologies of author-given
keywords, which are sometimes missing in attributes. Un-
like the methods discussed above, our method is inspired by
taxonomy generation by term clustering, which focuses on
grouping words/terms similarity based on their representa-
tion. Using taxonomy as a classification scheme would be
more suitable in immature or evolving domains than clas-
sification with fixed classes (Usman et al. 2017). Liu et al.
construct taxonomy from keywords using hierarchical clus-
tering (Liu et al. 2012). Zhang et al. generates taxonomy
using spherical k-means to cluster terms extracted from a
large-scale set of publications from the domain of computer
science, with word embeddings learned from the text. Con-
sidering that a large corpus is not always obtainable, we
first apply keyword extraction to extract terms (Zhang et al.
2018).

3 Methodology
Our automation method follows the pipeline of classifica-
tion scheme generation (Franzago et al. 2016). It is com-
posed of two modules: (1) key-phrase extraction from titles
and abstracts; (2) term clustering to identify key-phrases cat-
egories. Our system’s overall framework is shown in Fig.
1, leveraging a semantic similarity measure and external
knowledge from pre-trained word embedding.

Figure 1: Framework of proposed automation method.



3.1 Key-phrase Extraction
The key-phrase extraction module is built based on SIFRank
(Sun et al. 2020), a state-of-art embedding-based method,
whose pipeline consists of (1) candidates selection by noun
phrase chunking and (2) candidates ranking by candidate-
document cosine similarity. We use the SIFRank score to
measure document relevance, together with two other scor-
ing functions for measuring domain relevance and phrase
quality. The three scores are combined for candidate key-
phrases ranking.

Document relevance score One keyword of a single doc-
ument should have a strong connection with this document.
Semantic distance with word embedding is based on the
principle that as closer a candidate vector is to the document
vector, the closest the distance is in regard to their mean-
ings. The effectiveness of the semantic distance measure has
been previously evaluated in benchmark datasets (Bennani-
Smires et al. 2018). SIFRank(Sun et al. 2020) reaches state-
of-art performance in key-phrase extraction for short docu-
ments, while utilizing auto-regressive pre-trained Language
Model ELMo to produce word embedding and SIF (Smooth
Inverse Frequency) (Arora, Liang, and Ma 2017) to gener-
ate unsupervised sentence embedding. In scientific publica-
tions, representative key-phrases frequently appear in titles.
Each candidate’s final document relevance score is the orig-
inal score weighted according to the candidates that appear
in the title. The weight is defined by the length of the tokens
of candidate phrases.

Domain Relevance Score Finding domain-specific terms
has been a challenge for novel domains with fewer re-
lated resources (publications). Terms with high frequency
in domain-specific corpus and low frequency in other do-
mains can be considered domain-specific terms. In contrast,
without a domain-specific corpus, dictionary-based valida-
tion can help to improve finding representative terms. Struc-
tured semantic resources (e.g., WordNet) can help in utiliz-
ing semantic relations, such as groups of synonyms or topic-
based clusters, assuming that related terms are more likely
to be critical than isolated ones (Firoozeh et al. 2020). In the
general systematic mapping studies process, glossary dic-
tionary and domain seed key-phrases are provided with the
help of human experts. Here we collect our domain glos-
sary terms from open knowledge graph databases: (1) artifi-
cial intelligence knowledge graph (Dessı et al. 2020) using
terms with direct link connections to “artificial intelligence”;
(2) machine learning taxonomy from Aminer (Tang 2016).
Semantic similarity between candidates and glossary terms
are calculated for relevance scoring. Detailed steps are de-
scribed below:

Step 1. Candidate key-phrases and domain glossaries
are transformed by pre-trained word embed-
ding.

Step 2. For each candidate phrase, scosine similarity
is calculated between itself and each domain
glossary.

Step 3. Domain relevance score of one candidate
phrase is the average of top N (50% in our ex-
periment) highest similarity scores.

Phrase Quality Score In scientific documents, high-
quality phrases are usually multi-word expressions or uni-
grams as an acronym, representing common or newly de-
fined scientific concepts. Therefore, our method considers
this fact and defines the quality score of a term according to
length penalty, point-wise mutual information (PMI), left-
right information entropy strategy, and acronym informa-
tion. The length penalty aims to reduce the score of uni-
grams and long phrases. Based on the analysis of the scien-
tific documents dataset, the majority of gold key-phrases are
bi-grams and tri-grams. Hence, we added length penalty to
multi-word expression t that contains more than three words
as length score(t) = −0.5 ∗ ‖length(t)− 3‖. However,
acronyms are extensively used as a shorter format (mostly
uni-grams) of long scientific terms. Since acronym usually
refers to a specific terminology or scientific concept in the
document, it is a good indicator of whether the term is im-
portant or not. Therefore, the length penalty does not ap-
ply to uni-grams that are identified as acronyms. The well-
known PMI and entropy strategies are used to extract multi-
word expressions that co-occur frequently and contain a col-
lective meaning. Generally, a high PMI score indicates a
high probability of co-occurrence. We calculated the min-
imum PMI score among all two segments of the expression
for expressions that contain more than two words. For ex-
ample, the score of “explainable artificial intelligence” is
equal to the minimum score of PMI(x=explainable machine,
y=learning) and PMI(x=explainable, y=machine learning).
Left-right information entropy (Eq. 1) shows the variety
of word context of a candidate phrase and adjacent words
will be widely distributed if the string (candidate phrase) is
meaningful, and they will be localized if the string is a sub-
string of a meaningful string (Shimohata, Sugio, and Nagata
1997).

H(t) = −
∑

wi∈wl

p(wi|t) log2 p(wi|t) (1)

where wl represent the list of adjacent words of candidate
phrase t. Both left and right sides of phrase t is calculated
and the lower one is selected as the final information entropy
score.

In detail, the quality score of a candidate term t is the sum
of PMI-entropy score and length penalty . To weaken PMI’s
bias towards low frequency words, we filter out candidate
terms with low PMI score (threshold at PMI = 2 in our ex-
periments) and use the normalized entropy score of the rest
candidate terms as PMI-entropy score.

3.2 Key-phrase Clustering
Clustering aims to identify distinct groups in a dataset and
assign a group label to each data point. This module fo-
cuses on clustering key-phrase based on their semantic sim-
ilarity (cosine similarity of their embedding representation).



For this module we tested two clustering algorithms: spheri-
cal k-means and hierarchical agglomerative clustering. As
bottom-up clustering, agglomerative clustering starts with
each data point as an individual cluster and then merges sub-
clusters into one super-cluster based on a certain distance
threshold. Spherical k-means is k-means on a unit hyper-
sphere, where (1) all vectors are normalized to unit-length
and (2) objective function is to minimize cosine distance be-
tween vectors. Studies have found the effectiveness of co-
sine similarity in quantifying the semantic similarities be-
tween high dimensional data such as word embedding, as the
direction of a vector is more important than the magnitude
(Strehl et al. 2000). Comparing to standard k-means, spher-
ical of k-means matches the distinct nature of cosine simi-
larity measure in words embedding high dimensional space.
Zhang et al. illustrates that when using spherical k-means for
topic detection, the center direction acts as a semantic focus
on the unit sphere, and the member terms of that topic fall
around the center direction to represent a coherent semantic
meaning (Zhang et al. 2018).

4 Experimental Evaluation
This section presents our experimental evaluation setup for
our proposed automation approach. We aim at answering the
following questions:

• Q1: Can our ensemble scoring measure improve perfor-
mance in domain-specific key-phrase extraction?

• Q2: How does semantic network based word embedding
techniques (ConceptNet) perform in embedding represen-
tation of phrase semantics?

• Q3: Does the clustering method group semantically re-
lated key-phrases for identifying categories?

4.1 Data
Data collection determines the quality and relevance of the
further steps of systematic mapping studies. As keyword-
ing follows after the step of paper selection, we assume
that the selected input articles under consideration for our
framework are considered to be already in-domain. How-
ever, common benchmark datasets for key-phrase extraction
from scientific articles do not focus on a specific research
domain. We collected a set of scientific articles from IEEE
Xplore under the domain of “Explainable Artificial Intelli-
gence”. In total, 286 scientific publications were extracted
together with their meta-data attributes, which we name XAI
dataset. “Title” and “abstract” of each article were combined
as input text. Also, IEEE Xplore provides INSPEC indexing
terms assigned by human experts to represent a publication’s
content. For the evaluation of the key-phrase extraction, we
use the “INSPEC Non-Controlled Indexing terms” attribute
as a gold standard, as its terms are primarily emerge from
text.

4.2 Implementation and Tools
Pre-processing The title and abstract of each document
are concatenated as input text. Initial experiments on candi-
dates selection recall found that lowercase and punctuation

total in text average #nums
of tokens

average #count
per paper

Non-Controlled terms 3200 88.84% 2.6181 11.1888
Controlled terms 1536 20.73% 2.1978 4.7727

Table 1: Comparative analysis of Non-Controlled indexing
terms and Controlled inxdexing terms.

removal would affect acronym extraction, tokenization, and
noun phrase chunking. Also, noun phrases with dash tag will
lead to a low recall of correct candidates. Thus, we remove
applied dash tags and use an extended set of common stop-
words1.

Candidate Selection Candidate selection is built under
the framework of SIFRank2 model, where tokenizer and
POS tagger have been changed to SpaCy. Noun phrase pat-
tern (defined as in Eq. 2) is captured by regular expressions
and parsed into constituency tree for pattern matching.

< NN. ∗ |JJ > ∗ < NN.∗ > (2)

Acronym Extraction is implemented directly using build-
in function in ScispaCy. Considering that acronym are case-
sensitive, we implemented acronym extraction before pre-
processing.

Candidate Ranking Details of the candidate scoring pro-
cess are illustrated above. The latest version of pre-trained
ConceptNet numberbatch (ConceptNet Numberbatch 19.08,
English version) is used as pre-trained word embedding for
embedding representation. Our domain glossary terms are
selected from the open resources knowledge graph database:
(1) artificial intelligence knowledge graph3 (Dessı et al.
2020): terms with direct link connection with the term “ar-
tificial intelligence” are extracted; (2) machine learning tax-
onomy from Aminer4 (Tang 2016).

Selection of Key-phrases Before moving forward to the
clustering module, post-processing controls the quality of
the extracted key-phrases to match the use case. We defined
a few rule-based steps for post-processing:

1. Lemmatize key-phrases to remove redundant key-phrase
due to language inflection. The higher score between the
two will be assigned.

2. Average rank of key-phrases among documents. Key-
phrases ranked above 15 are selected.

3. Replace key-phrase identified as an acronym by its origi-
nal definition in text.

4. Remove last 20% key-phrases based on TF-IDF scores.

1Stopwords list from https://www.ranks.nl/stopwords
2https://github.com/sunyilgdx/SIFRank
3http://scholkg.kmi.open.ac.uk/
4https://www.aminer.cn/data



Clustering Algorithms Clustering module is built on
scikit-learn (Pedregosa et al. 2011) and spherecluster5. Be-
fore clustering, each term will be transformed to embedding
representation from ConceptNet Numberbatch. We first ex-
plore the optimal k in range from 5 to 100 clusters.

4.3 Evaluation Metrics
We evaluated our automation method using two criteria: reli-
ability of extracted key-phrases and the quality of generated
categories based on key-phrases. Evaluation is conducted
separately on two modules. Evaluation of ranked key-phrase
list used traditional statistical measures of Precision, Recall,
and F1-score with the labeled gold standard. Morphologi-
cal variants of phrases have been removed before evalua-
tion. Evaluation of semantic term clustering lacked a ground
truth classification scheme. We utilized an internal evalua-
tion metric of the silhouette coefficient score to measure how
well the cluster is separated.

5 Results
To investigate the feasibility of our proposed automation
method, we conducted experiments on different settings:
(1) combined scoring and ranking for unsupervised key-
phrase extraction; (2) embedding representation; (3) cluster-
ing methods.

5.1 Combined Scoring in Key-phrase Extraction
(Q1)

For key-phrase extraction, we compared combined scoring
method with four base models. One is TextRank6 (Mi-
halcea and Tarau 2004), a graph-based keyword extrac-
tion module. The other two are SIFRank-ELMo, SIFRank-
Bert and SIFRank-ConceptNet, where the difference lies in
the underlying pre-trained word embedding representation.
Our key-phrase extraction method is the extension of base
models by combined scoring and ranking with two other
scores. We optimized the scores’ weights based on evalu-
ation and set weights to 0.1 for both domain relevance and
phrase quality. Experimental results form table 2 show that
combined scoring methods outperform their original base
models in three settings (TextRank, SIFRank-ELMo and
SIFRank-ConceptNet), where SIFRank-Bert only performs
better than baseline in Top10 and Top15 key-phrases. Table
3 also shows positive effect when adding two scores to base-
lines. Meanwhile, the quality score shows larger impact than
domain relevance. We think it is because domain relevance
score is sensitive to the quality of domain glossaries. Also,
good key-phrases in scientific literature usually contain sim-
ilar structure, e.g., multi-word expression. It also indicates
that filtering out ’poor’ candidate phrases can largely con-
tribute to better extracting performance.

From the example of top-15 extracted key-phrases (in Fig.
2, adding domain relevance and phrase quality could re-
duce the rank of uni-grams (“method”, “logic”, “explana-

5https://pypi.org/project/spherecluster/
6Implemented on pke python library (https://github.com/

boudinfl/pke)

tion”) as well as terms with abstract meanings (“explana-
tion method”). However, it still has limitation on nested key-
phrases with similar meanings (“black box decision mak-
ing” and “black box”) and wrong candidates from selection
(“method outperforms”).

Figure 2: Example from top-15 extracted key-phrases.

5.2 Word Embedding (Q2)
Pre-trained embeddings are utilized for sentence and phrase
representation in our method. For ConceptNet embedding,
each phrase is segmented by the longest matching terms
in the embedding index and encoded by average embed-
ding vectors. Since ELMo encodes phrases token by to-
ken, we take the mean vector of all tokens in the phrase.
Comparing the three settings of pre-trained word embed-
ding used in SIFRank model, both SIFRank-ELMo and
SIFRank-ConceptNet based models present similar perfor-
mance, while SIFRank-ELMo has slightly higher (Table 2).

However, contextualized models as ELMo and Bert re-
quire much more execution time than ConceptNet (Table 4).
Here it is worth noting that ELMo and Bert generate embed-
dings from large natural language text corpus, while Con-
ceptNet embeddings are generated from semantic network.
However, our previous key-phrase extraction results do not
show a large difference between ELMo based and Concept-
Net based methods. Therefore, the NumberBatch embed-
dings based on ConceptNet are more efficient for short term
extraction.

5.3 Clustering (Q3)
In the clustering module, each key-phrase is treated as an in-
dependent ontological concept term. Term-level clustering
group terms together based on cosine similarity of embed-
ding from ConceptNet NumberBatch. Spherical k-means
and hierarchical agglomerative clustering (HAC) are eval-
uated in our clustering module. HAC uses average linkage
and cosine distance. For clustering experiments on the XAI
dataset, terms are selected from the best model in key-phrase
extraction experiment, with key-phrases post-processing and
cleaning discussed above.

Silhouette score in Figure 3 shows that the curve of ag-
glomerative clustering does not reach a peak within range



Top5 Top10 Top15
P R F1 P R F1 P R F1

TextRank Baseline 0.4986 0.2228 0.3080 0.4411 0.3941 0.4162 0.3791 0.5066 0.4337
Combined Scoring 0.5203 0.2325 0.3214 0.4627 0.4134 0.4367 0.3793 0.5069 0.4339

SIFRank-ELMo Baseline 0.5105 0.2281 0.3153 0.4327 0.3866 0.4083 0.3803 0.5072 0.4347
Combined Scoring 0.5469 0.2444 0.3378 0.4834 0.4319 0.4562 0.4152 0.5538 0.4746

SIFRank-Bert Baseline 0.5266 0.2353 0.3253 0.4418 0.3947 0.4169 0.3796 0.5063 0.4339
Combined Scoring 0.5147 0.2300 0.3179 0.4530 0.4047 0.4275 0.3993 0.5325 0.4563

SIFRank-ConceptNet Baseline 0.5049 0.2256 0.3119 0.4257 0.3803 0.4017 0.3679 0.4906 0.4205
Combined Scoring 0.5510 0.2463 0.3404 0.4774 0.4266 0.4506 0.4103 0.5471 0.4689

Table 2: Comparison of key-phrase extraction results from ensemble methods with three base models.

Top10

SIFRank-ELMo

Baseline 0.4327 0.3866 0.4083
+ Domain Relevance 0.4446 0.3972 0.4195

+ Phrase Quality 0.4809 0.4297 0.4539
Combined Scoring 0.4834 0.4319 0.4562

SIFRank-Bert

Baseline 0.4418 0.3947 0.4169
+ Domain Relevance 0.4372 0.3906 0.4126

+ Phrase Quality 0.4425 0.3953 0.4176
Combined Scoring 0.4442 0.3969 0.4192

SIFRank-ConceptNet

Baseline 0.4257 0.3803 0.4017
+ Domain Relevance 0.4404 0.3934 0.4156

+ Phrase Quality 0.4823 0.4309 0.4552
Combined Scoring 0.4774 0.4266 0.4103

Table 3: Comparison of the impact of three different scores
to key-phrase performance.

Time
SIFRank-ELMo 1650.81

SIFRank-ConceptNet 258.13

Table 4: Execution time (in seconds) of two key-phrase ex-
traction methods, including loading embedding.

of 100 clusters, while Spherical k-means reach its highest
score at 89 clusters. Also, spherical k-means gets better clus-
ter quality than hierarchical agglomerative clustering, which
is also proved by results in Table 6.

Theoretically, silhouette score ranges from -1 to 1, where
1 indicates better separation among clusters and 0 means
overlapping between clusters. Even though both clustering
algorithms do not reach highly significant silhouette score,
analysis of clusters output proves semantic coherence of
terms within clusters (Fig. 4 and Table 5), which can be
identified as semantic categories of these key-phrases. Ta-
ble 5 selects four example clusters, where terms in table are
ranked by its distance to its cluster center. Clusters in the Ta-
ble shows categories of “visual analytic” (cluster 1), “object
detection” (cluster 2), “white box” (cluster 3) and “fuzzy
system” (cluster 4). By manually analyzing created clusters,
some observation can be made that:

• Terms within one cluster show high similarity in sub-
words, while sometimes the same sub-words indicate se-
mantic relatedness.

• Central meaning “word” represents the topic or category
found in the cluster, which further determines whether it
can be used as a part of classification scheme.

Figure 3: Results of silhouette coefficient score with n clus-
ters.

Figure 4: Example of Hierarchical Agglomerative Cluster-
ing Dendrogram.

Possible reasons for such results could be due to: (1)
we may encounter a limitation in regard to the embed-
ding representation of terms. Fine-tuning ConceptNet em-
beddings would require a network of domain-specific on-
tologies; thus, it is not applicable in our research. Pre-trained
embedding may have limited discriminative power in a spe-
cific domain; (2) a limitation is considered concerning the
clustering algorithms. Generic clustering algorithms assume
data points can be separated. Internal evaluations also mea-
sure the separation of clusters. We notice that clusters over-
lap in the embedding space; thus, clustering may not be able



1 2 3 4
visual analytics object detection white box fuzzy system

visual analytics workflow object detection system white box solution hierarchical fuzzy system
visual analytics tool object detection framework white box method fuzzy system complexity

visual analytics framework interpretable object detection black box decision making evolutionary fuzzy system
visual analytics researcher robust object detection equivalent white box solution neuro fuzzy system
visual analytics paradigm occlusion robust object detection black box nature interpretable fuzzy system
visual analytics solution semantic object part detector black box prediction fuzzy method

Table 5: Example of cluster-wise results on Spherical k-means clustering of XAI publications dataset.

silhouette score
spherical k-means 0.1615

HAC 0.0690

Table 6: Clustering analysis on XAI publications dataset.
Number of clusters is set to 74.

to separate clusters.

6 Conclusion
This paper proposes a joint framework of unsupervised key-
phrase extraction and semantic term clustering to automate
systematic mapping studies. Experiments are conducted us-
ing publications from the domain of Explanable Artificial
Intelligence (XAI)”. In detail, we examined the ensemble
ranking scores, ConceptNet word embedding, and cluster-
ing performance.

Results in key-phrase extraction demonstrate the effec-
tiveness of ensemble ranking scores from different perspec-
tives, where domain knowledge (in terms of glossaries and
domain corpus) finds highly relevant terms which can be
further considered as constraints and external resources for
weak supervision. ConceptNet based word embedding per-
forms as well as contextualized word embeddings, with
much less execution time. Findings are further useful to
guide the choice of a suitable word embedding method in
terms of tasks and use cases. Semantic term clustering can
group semantically similar terms within clusters, still we
suggest some minimal human involvement may help re-
fine and select high-quality keywords clusters based on use
cases, with the bulk of the work been primarily performed
by the algorithm.

Above all, we hope our research can give a new perspec-
tive of automating keywording and classification scheme
steps in systematic mapping studies towards faster and more
convenient solutions in an open research knowledge era. For
future work, the role of human involvement can be further
evaluated with having specific use cases in mind. Finally,
ontology-related techniques could be explored as means to
refining keywords.
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