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Abstract

Acronym disambiguation (AD) task aims to find the correct
expansions of an ambiguous ancronym in a given sentence.
Although it is convenient to use acronyms, sometimes they
could be difficult to understand. Identifying the appropriate
expansions of an acronym is a practical task in natural lan-
guage processing. Since few works have been done for AD
in scientific field, we propose a binary classification model
incorporating BERT and several training strategies including
dynamic negative sample selection, task adaptive pretraining,
adversarial training and pseudo labeling in this paper. Ex-
periments on SciAD show the effectiveness of our proposed
model and our score ranks 1stin SDU@AAAI-21 shared task
2: Acronym Disambiguation.

1 Introduction

An acronym is a word created from the initial components
of a phrase or name, called the expansion (Jacobs, Itai, and
Wintner 2020). In many literature and documents, especially
in scientific and medical fields, the amount of acrnomys is
increasing at an incredible rate. By using acronyms, people
can avoid repeating frequently used long phrases. For exam-
ple, CNN is an acronym with the expansion Convolutional
Neural Network, though it has additional expansion possi-
bilities depending on context, such as Condensed Nearest
Neighbor.

Understanding the correlation between acronyms and
their expansions is critical for several applications in natural
language processing, including text classification, question
answering and so on.

Despite the convenience of using acronyms, sometimes
they could be difficult to understand, especially for people
who are not familiar with the specific area, such as in scien-
tific or medical field. Therefore, it is necessary to develop a
system that can automatically resovle the appropriate mean-
ing of acronyms in different contextual information.

Given an acronym and several possible expansions,
acronym disambiguation(AD) task is to determine which
expansion is correct for a particular context. The scientific
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Input :
— Sentence : The model complexity for the SVM is
determined by the Gaussian kernel spread and the
penalty parameter.

— Dictionary : SVM : -- Support Vector Machine
-- State Vector Machine

Output : Support Vector Machine

Figure 1: An example of acronym disambiguation

acronym disambiguation task is challenging due to the high
ambiguity of acronyms. For example, as shown in Figure
1, SVM has two expansions in the dictionary. According to
the contextual information from the input sentence, the SVM
here represents for the Support Vetor Machine which is quite
smilar to State Vector Machine.

Consequently, AD is formulated as a classification prob-
lem, where given a sentence and an acronym, the goal is to
predict the expansion of the acronym in a given candidate
set. Over the past two decades, several kinds of approaches
have been proposed. At the begining, pattern-matching tech-
niques were popular. They (Taghva and Gilbreth 1999) de-
signed rules and patterns to find the corresponding expan-
sions of each acronym. However, as the pattern-matching
methods require more human efforts on designing and tun-
ing the rules and patterns, machine learning based methods
(i.e. CRF and SVM) (Liu, Liu, and Huang 2017) have been
preferred. More recently, deep learning methods (Charbon-
nier and Wartena 2018; Jin, Liu, and Lu 2019) are adopted
to solve this task.

Recently, pre-trained language models such as ELMo (Pe-
ters et al. 2018) and BERT (Devlin et al. 2018), have shown
their effectiveness in contextual representation. Inspired by
the pre-trained model, we propose a binary classification
model that is capable of handling acronym disambiguation.
We evaluate and verify the proposed method on the dataset
released by SDU@AAAI 2021 Shared Task: Acronym Dis-
ambiguation (Veyseh et al. 2020a). Experimental results
show that our model can effectively deal with the task and



we win the first place of the competition.

2 Related Work
Acronym Disambiguation

Acronym diambiguation has received a lot of attentions in
vertical domains especially in biomedical fields. Most of
the proposed methods (Schwartz and Hearst 2002) utilize
generic rules or text patterns to discover acronym expan-
sions. These methods are usually under circumstances where
acronyms are co-mentioned with the corresponding expan-
sions in the same document. However, in scientific papers,
this rarely happens. It is very common for people to define
the acronyms somewhere and use them elsewhere. Thus,
such methods cannot be used for acronym disambiguation
in scientific field.

There have been a few works (Nadeau and Turney 2005)
on automatically mining acronym expansions by leveraging
Web data (e.g. click logs, query sessions). However, we can-
not apply them directly to scientific data, since most data in
scientific are raw text and therefore logs of the query ses-
sions/clicks are rarely available.

Pre-trained Models

Substantial work has shown that pre-trained models (PTMs),
on the large unlabeled corpus can learn universal language
representations, which are beneficial for downstream NLP
tasks and can avoid training a new model from scratch.

The first-generation PTMs aim to learn good word em-
beddings. These models are usually very shallow for com-
putational efficiencies, such as Skip-Gram (Mikolov et al.
2013) and GloVe (Pennington, Socher, and Manning 2014),
because they themselves are no longer needed by down-
stream tasks. Although these pre-trained embeddings can
capture semantic meanings of words, they fail to caputre
higher-level concepts in context, such as polysemous disam-
biguation and semantic roles. The second-generation PTMs
focus on learning contextual word embeddings, such as
ELMo (Peters et al. 2018), OpenAl GPT (Radford et al.
2018) and BERT (Devlin et al. 2018). These learned en-
coders are still needed to generate word embeddings in con-
text when being used in downstream tasks.

Adversarial Training

Adversarial training (AT) (Goodfellow, Shlens, and Szegedy
2014) is a mean of regularizing classification algorithms by
generating adversarial noise to the training data. It was first
introduced in image classification tasks where the input data
is continuous.

Miyato, Dai, and Goodfellow (2017) extend adversarial
and virtual adversarial training to the text classification by
applying perturbation to the word embeddings and propose
an end-to-end way of data perturbation by utilizing the gra-
dient information. Zhu, Li, and Zhou (2019) propose an ad-
versarial attention network for the task of multi-dimensional
emotion regression, which automatically rates multiple emo-
tion dimension scores for an input text.
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Figure 3: Number of expansions per acronym

There are also other works for regularizing classifiers by
adding random noise to the data, such as dropout (Srivas-
tava et al. 2014) and its variant for NLP tasks, word dropout
(Iyyer et al. 2015). Xie et al. (2019) discusses various data
noising techniques for language models and provides em-
pirical analysis validating the relationship between nosing
and smoothing. Sggaard (2013) and Li, Cohn, and Baldwin
(2017) focus on linguistic adversaries.

Combining multiple advantages in above works, we pro-
pose a binary classification model utilizing BERT and sev-
eral training strategies such as adversarial training and so
on.

3 Data

In this paper, we use the AD dataset called SciAD re-
leased by Veyseh et al. (2020b). They collect a corpus of
6,786 English papers from arXiv and these papers consist of
2,031,592 sentences that could be used for data annotation.
The dataset contains 62,441 samples where each sample
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Figure 4: Acronym disambiguation based on binary classification model. For each sample, the model needs to predict whether
the given expansions matches the acronym or not, and find the expansion with the highest score as the correct one.

involves a sentence, an ambiguous acronym, and its correct
meaning (one of the meanings of the acronym recorded by
the dictionary , as shown in 1).

Figure 2 and Figure 3 demonstrate statistics of SciAD
dataset. More specifically, Figure 2 reveals the distribution
of number of acronyms per sentence. Each sentence could
have more than one acronym and most sentences have 1 or 2
acronyms. Figure 3 shows the distribution of number of ex-
pansions per acronym. The distribution shown in this figure
is consistent with the same distribution presented in the prior
work (Charbonnier and Wartena, 2018) in which in both dis-
tributions, acronyms with 2 or 3 meanings have the highest
number of samples in the dataset (Veyseh et al. 2020b).

4 Binary Classification Model

The input of the binary classification model is a sentence
with an ambiguous acronym and a possible expansion. The
model needs to predict whether the expansion is the cor-
responding expansion of the given acronym. Given an in-
put sentence, the model will assign a predicted score to
each candidate expansion. The candidate expansion with the
highest score will be the model output. Figure 4 shows an
example of the procedure.

Input Format

Since BERT can process multiple input sentences with seg-
ment embeddings, we use the candidate expansion as the
first input segment, and the given text as the second input
segment. We separat these two input segments with the spe-
cial token [CLS]. Furthermore, we add two special tokens
<start> and <end> to wrap the acronym in the text,
which enables that the acronym can get enough attention
from the model.

Binary Model Architecture

The model architecture is described in Figure 5 in detail.
First, we use a BERT encoder to get the representation of
input segments. Next, we calculate the mean of the start and
end positions of the acronym, and concatenate the represen-
tation with the [CLS] position vector. Then, we sent this

concatenated vector into a binary classifier for prediction.
The represenation first pass through a dropout layer (Srivas-
tava et al. 2014) and a feedforward layer. The output of these
layers is then feed into a ReLU (Glorot, Bordes, and Ben-
gio 2011) activation. After this, the calculated vector pass
through a dropout layer and a feedforward layer again. The
final prediction can be obtained through a sigmoid activa-
tion.

Training Strategies

Pretrained Models Experiments from previous work
have shown the effectiveness of pretrained models. Start-
ing from BERT model, there are many improved pretrained
models. Roberta uses dynamic masks and removes next
sentence prediction task. In our experiments, we compare
BERT and Roberta models trained on corpus from different
fields.

Dynamic Negative Sample Selection During training,
we dynamicly select a fixed number of negative samples for
each batch, which ensures that the model is trained on more
balanced positive and negative data, and all negative samples
are used in training at the same time.

Task Adaptive Pretraining Gururangan et al. (2020)
shows that task-adaptive pretraining (TAPT) can effectively
improve model performance. The task-specific dataset usu-
ally covers only a subset of data used for general pretraining,
thus we can achieve significant improvement by pretraining
the masked language model task on the given dataset.

Adversarial Training Adversarial training is a popular
approach to increasing robustness of neural networks. As
shown in Miyato, Dai, and Goodfellow (2017), adversar-
ial training has good regularization performance. By adding
perturbations to the embedding layer, we can get more stable
word representations and a more generalized model, which
significantly improves model performance on unseen data.

Pseudo-Labeling Pseudo labeling (Iscen et al. 2019;
Oliver et al. 2018; Shi et al. 2018) uses network predictions
with high confidence as labels. We mix these pseudo labels
and the training set together to generate a new dataset. We
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[SEP]
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[SEP]
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Figure 5: The binary classification model.

than use this new dataset to train a new binary classifica-
tion model. Pseudo-labeling has been proved an effective
approach to utilize unlabeled data for a better performance.

S Experiments
Hyper parameters

The batch size used in our experiments is 32. We train each
model for 15 epochs. The initial learning rate for the text
encoder is 1.0 x 102, and for other parameters, the initial
learning rate is set to 5.0 x 10~%. We evaluate our model
on the validation set at each epoch. If the macro F1 score
doesn’t increase, we then decay the learning rate by a factor
of 0.1. The minimum learning rate is 5.0 x 10~7. We use
Adam optimizer (Kingma and Ba 2017) in all our experi-
ments.

Pretrained Models

Since different pretrained models are trained using different
data, we do experiments on several pretrained models. Ta-
ble 1 shows our experimental results on different pretrained
models in validation set. The bert-base model gets the high-
est score in commonly used pretrained models (the top 3
lines in Table 1). Since a large ratio of texts in the given
dataset come from computer science field, the cs-roberta
model outperforms the bert-base model by 1.6 percents. The
best model in our experiments is the scibert model, which
achieves the F1 score of 89%.

Model | Precision  Recall F1

bert-base-uncased 0.9176 0.8160 0.8638
bert-large-uncased 0.9034  0.7693 0.8311
roberta-base 0.9008 0.7687 0.8295

cs-roberta-base 0.9216 0.8415 0.8797
scibert-scivocab-uncased 0.9263 0.8569 0.8902

Table 1: Results on validation set using different pretrained
models.

Training Procedure

We incorporate all the training strategies introduced above
to improve the performance of our proposed binary classifi-
cation model. According to the experiment result in Table 1,
we choose scibert as the fundamental pretrained model and
use the TAPT technique to train a new pretrained model.
Then we add the dynamic negative sample selection and ad-
versarial training strategies to train the binary classfication
model. After this, we utilize the pseudo-labeling technique
and obtain the final binary classification model.

Further Experiments

Combining training strategies We do some futher exper-
iments on validation set to verify the effectiveness of each
strategy mentioned above. The results are shown in Table
2. As shown in the table, F1 score increases by 4 percents
with dynamic sampling. TAPT and adversarial training fur-
ther improve the performance on validation set by 0.47 per-
cent. Finally, we use pseudo-labeling method. Samples from
the test set with a score higher than 0.95 are selected and
mixed with the training set. It still slightly improves the F1
score.

Model | Precision  Recall F1

scibert-scivocab-uncased 0.9263  0.8569 0.8902
+dynamic sampling 0.9575  0.9060 0.9310
+task adaptive pretraining | 0.9610  0.9055 0.9324
+adversarial training 0.9651 0.9082 0.9358
+pseudo-labeling 0.9629  0.9106 0.9360

Table 2: Results on validation set using different training ap-
proaches.

Error Analysis We gather a sample of 100 development
set examples that our model misclassified and look at these
examples manually to do the error analysis.

From these examples, we find that there are two main
cases where the model gives the wrong prediction. The first
one is that the candidate expansions are too similar, even
have the same meanings in different forms. For example, in
the sentence *'The SC is decreasing for increasing values of
..., the correct expansion for ’SC’ is ’sum capacities’ while
our prediction is ’sum capacity’ which has the same meaning
with the correct one but in the singular form.

The second one is that there is too little contextual infor-
mation in the given sentence for prediction. For instance, the
correct expansion for "ML’ in sentence "ML models are usu-
ally much more complex, see Figure.” is 'model logic’, the



predict expansion is *machine learning’. Even people can
hardly tell which one is right only based on the given sen-
tence.

Time complexity To analysis the time complexity of our
proposed method, we show measurements of the actual run-
ning time observed in our experiments. The discussions are
not that precise or exhaustive. However, we believe they are
enough to offer readers rough estimations of the time com-
plexity of our model.

We utilize TAPT strategy to further train the scibert model
by using eight NVIDIA TITAN V (12GB). It takes three
hours to train 100 epochs in total.

After getting the new pretrained model, we trained the
binary classification model on two NVIDIA TITAN V. On
average, each epoch of the training and inference time of
adding adversarial training and pseudo-labeling are shown
in Table 3 respectively. It begins to converge after five
epochs. It takes nearly the same time to do the inference
while the training time is twice as long after adversarial
training is added.

Model | Train Inference

1588s  150.42s
+adversarial training | 3021s  149.64s
+pseudo-labeling 3328s  149.36s

Table 3: Time complexity

Comparison Results We compared our results with sev-
eral other models. Precision, Recall and F1 of our proposed
model are computed on testing data via the cross-validation
method.

* MF & ADE Non-deep learning models that utilize rules
or hand crafted features (Li et al. 2018).

* NOA & UAD Language-model-based baselines that train
the word embeddings using the training corpus (Charbon-
nier and Wartena 2018; Ciosici and Assent 2019).

* BEM & DECBAE Models employ deep architectures
(e.g., LSTM) (Jin, Liu, and Lu 2019; Blevins and Zettle-
moyer 2020).

* GAD A deep learning model utilizes the syntactical struc-
ture of the sentence (Veyseh et al. 2020b).

Model Precision  Recall F1

MF 0.8903 0.4220 0.5726
ADE 0.8674 0.4325 0.5772
NOA 0.7814 0.3506 0.4840
UAD 0.8901 0.7008 0.7837
BEM 0.8675 0.3594 0.5082
DECBAE 0.8867 0.7432 0.8086
GAD 0.8927 0.7666 0.8190
Ours 0.9695 0.9132 0.9405
Human Performance 0.9782 0.9445 0.9610

Table 4: Results of different models on testing dataset

As shown in Table 4, rules/features fail to caputre all pat-
terns of expressing the meanings of the acronym, resulting
in poorer recall on expansions compared to acronyms. In
contrast, the deep learning model has comparable recall on
expansions and acronyms, showing the importance of pre-
trained word embeddings and deep architectures for AD.
However, they all fall far behind human level performance.
Among all the models, our proposed model achieves the best
results on the SciAD and is very close to the human perfor-
mance which shows the capability of the strategies we intro-
duced above.

SDU@AAALI 2021 Shared Task: Acronym Disambigua-
tion The competition results are shown in Table 5. We
show scores of the top 5 ranked models as well as the base-
line model. The baseline model is released by the provider
of the SciAD dataset (Veyseh et al. 2020b). Our model per-
forms best among all the ranking list and outperforms the
second place by 0.32%. In addition, our model outperforms
the baseline model by 12.15% which is a great improvement.

Model Precision Recall F1

Rank1 0.9695 0.9132 0.9405
Rank2 0.9694 0.9073 0.9373
Rank3 0.9652 0.9009 0.9319
Rank4 0.9595 0.8959  0.9266
Rank5 0.9548 0.8907 0.9216
Baseline 0.8927 0.7666 0.8190

Table 5: Leaderboard

6 Conclusion

In this paper, we introduce a binary classification model for
acronym disambiguation. We utilize the BERT encoder to
get the input representations and adopt several strategies in-
cluding dynamic negative sample selection, task adaptive
pretraining, adversarial training and pseudo-labeling. Exper-
iments on SciAD show the validity of our proposed model
and we win the first place of the SDU@AAAI-2021 Shared
task 2.
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