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Abstract

We present our systems submitted for the shared tasks of
Acronym Identification (AI) and Acronym Disambiguation
(AD) held under Workshop on SDU. We mainly experiment
with BERT and SciBERT. In addition, we assess the effec-
tiveness of “BlOless” tagging and blending along with the
prowess of ensembling in Al. For AD, we formulate the prob-
lem as a span prediction task, experiment with different train-
ing techniques and also leverage the use of external data. Our
systems rank 11" and 3™ in AT and AD tasks respectively.

1 Introduction

An acronym is an abbreviation formed from the initial let-
ters of other words and pronounced as a word. The usage of
acronyms in articles and speech has increased as it avoids the
effort of remembering long complex terms. However, this
increased usage of acronyms has also caused new issues of
Acronym Identification (AI) and of Acronym Disambigua-
tion (AD). Al is the process of identifying which parts of
a sentence constitute the acronyms and their corresponding
long forms, whereas AD is the process of correctly predict-
ing the long form expansion of an acronym given a context
of its usage. Al and AD are beneficial for applications like
question answering (Ackermann et al. 2020) and definition
extraction (Kumar et al. (2020), Singh, Kumar, and Sinha
(2020)). Since, both AI and AD tasks are benefited with do-
main knowledge, manual identification and disambiguation
of acronyms by domain experts is possible. However, it is
tiresome and expensive. Hence, there is a dire need to de-
velop intelligent systems that can mimic the role of domain
experts and can help us automate the task of Al and AD.

In this paper, we present our approach for the shared
tasks of Acronym Identification and Acronym Disambigua-
tion held under the workshop of Scientific Document Under-
standing (SDU). The problem of Al is treated as a sequence
tagging problem. For AD, we treat it as a span prediction
problem i.e. given a sentence containing an acronym and the
possible long forms of that acronym, we aim to extract the
span from the possible expansions, which is the most appro-
priate long form of the acronym as per the context in the
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sentence. We start the experimentation process for Al with
rule based models. The experiments on both tasks are then
extended to using Transformers (Vaswani et al. 2017) based
architecture, BERT (Devlin et al. 2018) as the backbone of
the model; followed by SciBERT (Beltagy, Lo, and Cohan
2019), which too is a BERT-based model, but is pretrained
on text from scientific research papers instead of Wikipedia
corpus. In addition, for AD, we experiment with different
training procedures, aiming to instill knowledge about vari-
ous topics into our models.

The rest of the paper is organized as follows : Related
works have been discussed in section 2, followed by a brief
description of the shared task datasets in section 3. The
methodology and experimental settings are covered in sec-
tions 4 and 5. Sections 6 and 7 contain the results and discus-
sion. Section 8 concludes the paper and also includes scope
of future work.

2 Related Work

Initial works on Al incorporate the use of rule-based meth-
ods. Park and Byrd (2001) present rule based methods for
finding acronyms in free text. They make use of various
patterns, text markers and linguistic cue words to detect
acronyms and also their definitions. Schwartz and Hearst
(2002) make use of the fact that majority acronyms and their
long forms are found in close vicinity in sentence, with one
of them enclosed between parentheses and thus extract short
and long pairs from sentences. They also propose an algo-
rithm for identifying correct long forms.

People have also tried to leverage the use of web-search
queries and logs to identify acronym-expansion pairs. A
framework for automatic acronym extraction on a large
scale was proposed by Jain, Cucerzan, and Azzam (2007).
They scrape the web for candidate sentences (those contain-
ing acronym-expansion pairs) and then identify acronyms-
expansion pairs using search query logs and search results.
They also try to rank acronym expansions by assigning
a score to expansions using various factors. Taneva et al.
(2013) target the problem of finding distinct expansions for
an acronym. They make use of query click logs and cluster-
ing techniques to extract candidate expansions of acronyms
and group them such that each group has a unique meaning.
They then assign scores to grouped expansions to find the
appropriate expansion.



A comprehensive comparative study between rule-based
and machine based methods for identifying and resolving
acronyms has been done by Harris and Srinivasan (2019).
They collect data from various resources and then experi-
ment with machine based algorithms, crowd-sourcing meth-
ods and a game based approach.

Liu, Liu, and Huang (2017) treat Al as a sequence la-
belling problem and propose Latent-state Neural Condi-
tional Random Fields model (LNCRF), which are superior
to CRFs in handling complex sentences by making use of
nonlinear hidden layers. The incorporation of neural net-
works with CRFs enable learning of better representations
from manually created features, which help in better perfor-
mance.

Many works solve AD task by creating word vectors
and then using them to rank the candidates of the acronym
with reference to its usage. McInnes et al. (2011) correlate
acronym disambiguation with word sense disambiguation.
They create 2" order vectors of all possible long forms and
the acronym with the help of word co-occurrences. The cor-
rect long form is then found out using cosine similarity be-
tween the vectors. Li et al. (2018) present an end-to-end
pipeline for acronym disambiguation in the domain of en-
terprise. Due to the lack of mapping of acronym to their
long forms, they first use data mining techniques to create
a knowledge base. Further, they treat acronym disambigua-
tion as a ranking problem and create ranking models using
some manually created features.

With the advent of deep learning, researchers have tried
to create more informative word vectors for the previous ap-
proach. Wu et al. (2015) first use deep learning to create neu-
ral word embedding from medical domain data. They com-
bine the word embeddings of a sample text in different ways
and then train a Support Vector Machine (SVM) classifier
for each acronym. Charbonnier and Wartena (2018) explore
acronym disambiguation in the scientific research domain.
They obtain word vectors from text of scientific research pa-
pers and create vector representations for the context of the
acronym. Distance minimisation between vector of context
and acronym expansion, gives the appropriate expansion.

Ciosici, Sommer, and Assent (2019) present an unsuper-
vised approach for acronym disambiguation by treating it
as a word prediction problem. They use word2vec (Mikolov
etal. 2013) to simultaneously learn word embeddings and by
learning to predict the correct special token (concatenation
of short and long form) of a sentence. The obtained word
embeddings are used to create representations of the context
of the short form and the best expansion of the short form
is obtained from the candidates by minimising distance be-
tween representations.

Many works also treat AD as a classification problem.
Jin, Liu, and Lu (2019) explore the usage of contextualised
BioELMO word embeddings for acronym disambiguation.
They train separate BiILSTM classifiers for each acronym
which outputs the appropriate expansion when a text is in-
put. They achieve state of the art performance on PubMed
dataset. Li et al. (2019) propose a novel neural topic at-
tention mechanism to learn better contextualised representa-
tions for medical term acronym disambiguation. They com-

pare the performance of LSTMs with ELMo embeddings
armed with different types of attention mechanisms.

An overview of the submissions made to the shared tasks
of Al and AD has been done by the organizers (Veyseh et al.
2020a).

3 Datasets

Veyseh et al. (2020b) provide the shared task participants
with a dataset for Al and AD tasks called SciAl and SciAD
respectively. SciAl contains 17,506 sentences from research
papers, in which the boundaries of acronyms and their long
forms are labelled using the BIO format. The tag set con-
sists of B-short, B-long, I-short, I-long and O, “short” rep-
resenting the acronym and “long” representing the expan-
sion respectively. SciAD contains 62,441 instances covering
acronyms used in the scientific domain. The dataset contains
the sentence, the acronym and the correct expansion of that
acronym as per its usage in the sentence. The dataset also
contains a dictionary which is a mapping of the acronyms
to candidate long forms. Both datasets are different from the
existing datasets for Al and AD as they are larger in size and
have instances belonging to scientific domain (majority Al
and AD datasets belong to the medical domain).

4 Methodology
4.1 Models

Since both the tasks are similar, we try out the following
models for both of them and then build upon them:

« BERT : BERT, based on the Transformer architecture
consists of multi-attention heads which apply a sequence-
to-sequence transformation on the input text sequence.
The training objectives of BERT make it unique. The
Masked Language Model (MLM) learns to predict a
masked token using the left and right context of the text
sequence. BERT also learns to predict whether two sen-
tences occur in continuation or not (Next Sentence Pre-
diction).

* SciBERT : Allen Institute for Artificial Intelligence (AI2)
pretrain the base version of BERT (SciBERT) on scien-
tific text from 1.14 million research papers from Seman-
tic Scholar. Owing to the similarity of the domain of the
shared task dataset and SciBERT training corpus, we be-
lieve the model will be beneficial for the tasks. We use
SciBERT with SciVocab in our experiments.

42 Al

Problem Formulation We can easily identify the Al task
as a NER (Named Entity Recognition) / BIO tagging task.
The tags used in the above methods were short-form and
long-form labels of the words in BIO format. One of the in-
teresting experiments that we perform is to make use of “BI-
Oless” tags. Keeping all factors constant, classifiers ought
to work better if the number of classes are less. Tagging
is a token classification task. Hence, the tagger should per-
form better if the number of tags are reduced. The following
changes are carried out in the training data to obtain “BIO-
less” tags :



1. B-short and I-short tags are changed to B-short
2. B-long and I-long tags are changed to B-long
3. O tags are unchanged.

The models are trained and once the results are obtained,
the definition of B, I and O tags viz. beginning, inside and
outside, are used to reconstruct the original tags. It is done
by changing the first tag in a cluster to B-short or B-long and
the rest of them to I-short or I-long.

Models We experiment with the following mod-
els/variations of the models already mentioned :

* Conditional Random Fields (CRFs) : Considering la-
belling of sentences with POS (Parts Of Speech) tags, it
is highly probable that a NOUN is followed by a VERB.
Therefore, these kinds of task fall under a category which
is essentially a combination of classification (classifying
a word to one of the POS tags) and graphical modelling
(one word influences the POS tag of other words). Thus,
these tasks involve predicting a large number of variables
that depend on each other as well as on other observed
variables.

CRFs are a popular probabilistic method suitable for tasks
such as this. They combine the ability of graphical models
to compactly model multivariate data with the ability of
classification methods to perform prediction using large
sets of input features. For the current data, we use the fol-
lowing features as input:

For the current word -

The lower cased version of the word

The last three letters of the word

If all characters of the word are upper case

If the word is title cased

The POS tag of the word

The first two characters of the POS tag of the word
If 60% of the word is uppercase

@ -0 a0 o

For neighbouring words -

The lower cased version of the word

If the word is title cased

If all characters of the word are upper case

The POS tag of the word

The first two characters of the POS tag of the word

o0 oW

e BERT base cased : We use the cased base version of
BERT as the backbone of our Transformer-CRF architec-
ture

¢ SciBERT cased : We use the cased version of SCiBERT
as the backbone of our Transformer-CRF architecture.

Post Modelling Experiments The process of ensembling
helped to get a major boost in the score of the base models.
We used two kinds of ensembling process:

¢ Majority Voting/Hard Voting (Wu et al. 2006): The idea
here is to simply go with what the majority of the mod-
els in the ensemble method are predicting. In the case of

classification, the final prediction is the mode of the pre-
dictions of the participating models; similarly, in a tagging
task or rather token classification, the final prediction for a
given sequence is the sequence of modes of the prediction
sequence of the participating models.

Assume y is label, z is the token, NV is the total number of
base taggers employed and T; is a function that returns 1
if the prediction of the i*" tagger is v, otherwise 0.

Then, W (y, x) is said to be the score and is defined as:

N
Wy.a) =3 Ti(y.a)
1=0

The y with the highest score is chosen as the label of x.

Blending (Sikdar and Gambick 2017) : Hereby, we de-
pict our process of blending models (Figure 1). The whole
process consists of the following 3 stages:

a. The base models are trained on the training data and
then predictions are made on the validation data using
these.

b. The predictions obtained in the previous stage are used
as the features for this stage. A CRF is fit on these fea-
tures using 5-fold cross validation.

c. The five trained models obtained in the previous stage
are then ensembled using majority voting to make the
final prediction.

43 AD

Problem Formulation Many existing works on AD solve
the problem as a text classification problem, i.e. given a text
and an acronym, classify the long form of the acronym or
by developing rich word vector representation to extract the
most suitable full form out of some candidate long forms.
We, instead, treat AD as a span prediction problem. The
model predicts the span containing the correct long form
from the concatenated text consisting of the acronym, the
candidate long forms of that acronym and the sentence (in
the same order). The predicted span is then compared with
the candidate long forms and the best match is chosen as per
Jaccard score.

Each approach has its own shortcomings. For the classifi-
cation approach, the size of the model increases with the in-
crease in dictionary size; training models for a large number
of classes is difficult. A solution to this problem is to build
individual models for acronyms, but the solution might not
be feasible if there are many acronyms. For the vector based
methods, achieving rich representations is difficult. As for
the span prediction approach, the handling of long inputs is
difficult and time-consuming. We may have to compromise
on the context of the acronym in order to adjust for long
sequences.

To prepare our input text for the model, we take advan-
tage of the fact that BERT can encode a pair of sequences
together. Therefore, the first sequence is the acronym con-
catenated with all possible expansions from the dictionary
and the second sequence is the input text. Since, some of the
input sentences are quite long, we sample tokens from the
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Figure 1: Blending for Al

sentences. In order to input sufficient context of the acronym
into the models, we take n/2 space delimited tokens to the
left of the acronym and n/2 space delimited tokens to the
right of it, where n is a hyperparameter. We find in our ex-
periments that taking n to be sufficiently large gives almost
consistent performance. We fix n to 120 in our experiments.

We experiment with different training approaches and
pretrained weights keeping the architecture of our model
constant in all cases. The backbone of the architecture is
the base version of BERT. The sequence outputs of the
last layer of BERT (shape = (batch_size, maz_len, 768))
is passed through a dense layer to reduce its shape to
(batch_size, max_len,2). The output is splitted into 2 parts
at the 2" axis to get our token level logits for start position
and end position. A pictorial representation of the model can
be found in Figure 2.
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Figure 2: Model Architecture for AD; SP and EP stand for
Start Probability and End Probability .

Models We experiment with the following models:

 BERT base uncased : We use the uncased base version
of BERT as the backbone of our model.

¢ SciBERT uncased : We use the uncased version of SciB-
ERT as the backbone of our model.

* SciBERT uncased with fine tuned LM : The dataset
does not contain samples for all acronym expansions.
Hence, models trained only on the provided dataset may
suffer when it comes to predicting unseen acronym expan-
sions. We try to instill some knowledge of the acronym
expansions in our model by fine tuning the MLM. We

scrape Wikipedia for articles (using Wikipedia API https:
/Ipypi.org/project/wikipedia/ ) related to the long forms
of acronyms present in the dictionary and fine tuned the
LM of SciBERT using the data. We then use the new fine
tuned model weights for the SciBERT backbone and train
it for span prediction.

* SciBERT uncased with 2 stage training : We train the
model in 2 stages using different data. We prepare our
own dataset using the articles scrapped from Wikipedia;
occurrences of long forms of acronyms are replaced by
the acronym. We first train our model on this data and then
on the shared task data. This is a supervised approach to
help models learn for acronyms and expansions under rep-
resented in the shared task data as compared to the above
approach which is unsupervised.

Post Modelling Experiments

* Ensemble : Since our approach outputs start and end
probability distribution over the entire sequence of tokens,
we cannot average probabilities from models using differ-
ent tokenizers. Keeping the above fact in mind, we aver-
age the probabilities from the two best models (as per CV)
i.e. SciBERT uncased and SciBERT uncased with 2 stage
training. The appropriate acronym expansion is then ex-
tracted with the help of this averaged probability, which
provides robustness in our predictions.

* Ensemble with post-processing : We also devise a post
processing that can help us rectify some of the mistakes of
our models to some extent. All the post-processing does is
that if a candidate expansion of an acronym is present in
the sentence and the acronym is enclosed within parenthe-
sis in the sentence, then that candidate expansion is pre-
dicted as the expansion of the acronym. The motivation
for devising this post-processing is discussed in Section
7.

5 Experimental Settings

For Al task, there are three kinds of experimental settings:



a. The base models were trained on the training data and
evaluated on the validation data.

b. For the better performing base models, we concatenate the
training and validation data and perform a 5 fold cross-
validation on the concatenated dataset.

c. For blending, we perform a 5 fold cross-validation on the
validation data.

For each one of the above settings, training was done for
20 epochs using early stopping with patience of 10. Model
optimisation was done using BertAdam with a learning rate
of le-3, a batch size of 16 and gradient accumulation batch
size of 32.

For the AD task, we concatenate the training and valida-
tion data and perform a 5 fold stratified cross-validation on
the joined dataset (stratified with respect to acronym). The
folds are trained for 5 epochs using early stopping with pa-
tience of 2 and tolerance of 1e-3. Model optimisation is done
using AdamW (Loshchilov and Hutter 2018) with a learning
rate of 2e-5 and a batch size of 32.

6 Results
6.1 Al

The macro F1 scores of our approaches are listed in Table 1.
For, the base models, validation is done using the validation
data. Only the promising models, in our case SciBERT mod-
els, are taken through the arduous cross validation process.

It should also be noted that the folds for the process of
cross validation on the modified blending technique are ex-
tracted out of the validation data unlike SciBERT models
which are cross validated on the combined data (train + val-
idation), and hence the two CV scores are not comparable.
The other observations are enumerated as follows:

a. The official baseline, though rulebased, surpasses CRF.
b. As expected, SCiBERT performs better than BERT.
c. As for the BIOless variants:

* CRFs see a considerably big difference (0.026) be-
tween the BIOless and BIO variants. The hypothesis
that “the tagger should perform better if the number of
tags are reduced” seems to fail here. The present task of
Al seems a bit complex for CRFs as they do not even
surpass the baseline score of 0.84. Hence, it would only
be justifiable to treat CRFs as an exception with respect
to the hypothesis.

e For all the other models/variations, BIOless is pretty
close (a difference of 0.0008 or 0.0002 ) or sur-
passes the BIO variant(with a relatively larger differ-
ence 0.0084 or 0.0013).

d. Based on the test score, BIOless variants perform better
than their corresponding BIO counterparts.

e. The test score undoubtedly shows the eminence of the
modified blending technique.

Table 2 shows a comparison of our results with the top
scoring submissions of Al task.

Model Val CvV Test
Baseline 0.8546 - 0.8409
CRF 0.8254 - -
CRF BIOless 0.7994 - -
BERT cased 0.9145 - -
BERT cased BIOless | 0.9163 - -
SciBERT cased 0.9173 - 0.8921
SciBERT cased BIO- | 0.9165 - 0.9005
less

SciBERT cased - 0.9075 | 0.9023
SciBERT cased BIO- - 0.9073 | 0.9036
less

Blending with mode - 0.8962 | 0.9090
ensembling

Table 1: Results of Al task.

User / Team Name | Test Score
zdq 0.9330
ginpersevere 0.9311
Mobius 0.9281
SciDr (Us) 0.9090

Table 2: Comparison of Al results

6.2 AD

We tabulate the macro F1 score of the models in the cross-
validation and test setting (in Table 3). The performance of
SciBERT is superior to BERT owing to the similarity of
pretraining corpus and task dataset. We also observe that
the performance of SciBERT uncased and SciBERT un-
cased with 2 stage training is almost similar in both cross-
validation and test, with the latter performing a bit better
than former, whereas the performance of the one with fine-
tuned LM is lower. A possible reason for this observation
can be attributed to the difference between the source of the
data used for fine tuning (Wikipedia) and the shared task
data (scientific papers). The usage of extra data created us-
ing Wikipedia is beneficial for the model since it contains
samples for some acronyms under-represented in the task
dataset.

Model Cv Test
Baseline - 0.6097
BERT uncased 0.7549 0.8980
SciBERT uncased 0.8423 0.9244
SciBERT  uncased | 0.8278 0.9194
with fine tuned LM

SciBERT  uncased | 0.8424 0.9292
with 2 stage training

Ensemble - 0.9303
Ensemble with post- | - 0.9319
processing

Table 3: Results of AD task.

Table 4 lists the scores of the top submissions for AD task.



ID Labels

DEV-297 HMMIM is a first order Hidden Markov Model with both Gaussian and labels

emission and 5 hidden states .

DEV-42 Therefore , more [cumpllcated neural networks -I ,e.g., CNN [sHoAT

and RNN | were adopted for indoor WiFi localization .

DEV-1313 | Aspnes and Waarts -] As\Wa [SHoRT | IBracha and Rachman -l

BR [8H0RT | and [Aspnes , Attiya and Censor -I AAC [sH0RT | gave

solutions with work per process .

DEV-583

image denoising[C]//Image Processing -l ( |ICIP [sHgRT | ), 2015

|EEE [=H0RT | International Conference an .

PMPA [shoaT| | - A [patch - based multiscale products algorithm -] for

Predictions

HMIM [=HORT | is a first order IHidden Markov Model -l with both Gaussian

and labels emission and 5 hidden states .

Therefore , more complicated neural networks , e.g., | CNN [888RT | and

RNN [sH08T | were adopted for indoor | WiFi 2H0RT | localization .

Aspnes and Waarts As\Wa , Bracha and Rachman | BR [sH0RT | and Aspnes |

Attiya and Censor | AAC [8HORT gave solutions with work per process .

PIMPA [sscRT | A patch - based multiscale products algerithm for image
denoising[C]//Image Processing ( ICIP ), 2015 IEEE International

Conference on [SHORT .

Figure 3: A few erroneously tagged instances for AL

User / Team Name | Test Score
DeepBlueAl 0.9405
qwzhong 0.9373
SciDr (Us) 0.9319
del2z 0.9266

Table 4: Comparison of AD results

7 Discussion
71 Al

The best proposed method for the Al task involves the use
of the following three main building blocks:

¢ SciBERT as the base model
¢ BIOless variant

* Modified blending technique or the blending method cou-
pled with hard voting.

The reason for SCciBERT performing better than the BERT
model lies in the fact that the pretraining corpus is simi-
lar to our dataset. The hypothesis for using BIOless vari-
ants instead of the conventional technique seems to hold true
(points c, d and e in Subsection 6.1).

Model F1 Precision | Recall
Baseline 0.8409 | 0.9131 0.7793
SciBERT cased BIO- | 0.9036 | 0.8987 | 0.9086
less with hard voting

Blending with mode | 0.9090 | 0.9097 0.9083
ensembling

Table 5: F1, Precision and Recall of some models used in Al
Task

Ensembling has always helped in the domain of Machine
Learning. The third block viz. modified blending technique
is a combination of two propitious methods - blending and
hard voting, and ultimately went about to give the best re-
sults. The baseline method used by the organizers had a low

F1 but the precision obtained was quite good compared to
the precision of the SCciBERT cased BIOless model with hard
voting. The only way to employ the adroitness of the base-
line model was to stack it (and some other better performing
models) with the SCIBERT cased BIOless model. And as is
visible in Table 5, the Blended model improved considerably
especially with respect to precision.

Figure 3 represents some of sentences tagged incorrectly
by the SciBERT model. Ideally the analysis should have
been done on the best model, but it is too complex to in-
terpret it. Having a look at the DEV-297 and DEV-42, it is
clear that the gold truths have some annotation flaws. HMM
is clearly an acronym for Hidden Markov Models and still is
not labelled. Similarly, RNN, CNN and WiFi are acronyms
for Recurrent Neural Network, Convolutional Neural Net-
work and Wireless Fidelity respectively but only CNN is
marked in the ground truth. Also, complicated neural net-
work is no full form but is used to show the complications
of RNN and CNN neural networks. Our base model does
good in predicting the right tags for there samples.

On the other hand, we find that in DEV-1313 and DEV-
593, the model has completely failed to identify the long
forms, and also misidentified a few short forms. Two likely
causes could be as follows:

* improper tokenization of the dataset

e “and”, “-”, “of” etc. in between long forms

7.2 AD

The formulation of AD as a span prediction problem is quite
efficient from the performance and computational expense
point of view. A complete cross-validation run under the ex-
perimental settings can be performed in 6 hours on an aver-
age on a NVIDIA Tesla P100.

Speaking about the results, for the out-of-fold predictions
of SciBERT uncased, we observe that the model is incorrect
mainly for acronyms which do not have many occurrences
in the task dataset. This motivated us to attempt instilling
knowledge into our models via external data.



Id Acronym | Text

Normal Stage Ensemble

TS-633 FM Ultimately , once we select an FM ,
the Chl becomes a specific operator

feature map fuzzy measure | factorization machines

TS-811 GS Additionally , using WSE ( GS
search ) we obtained 84.4 accuracy
with an FPR of 0.157 and AUC
value of 0.918 .

genetic search | google scholar ’s gold standard

TS-5682 EL Thus , with EL system () , only two
structures are possible for: (i), and

(i), .

external links | euler - lagrange entity linking

Table 6: Mismatch of predictions between SciBERT uncased, SciBERT uncased with 2 stage training and their soft ensemble.

We first examine the differences between the test set pre-
dictions of SciBERT uncased, SciBERT uncased with 2
stage training and their ensemble (represented as Normal,
Stage and Ensemble respectively) to understand the differ-
ence between the models and to find out which model is
exhibiting more confidence in its prediction.

Id Acronym | Text
TS-5572 LPP The LPP can be briefly de-
scribed as follows .
TS-5830 GCN Effect of both kernels added
at end to get actual GCN
output .

Table 7: Instances lacking sufficient context for AD.

We examine those samples where all of the three pre-
dictions are different (Table 6). It can be observed that the
predictions of SciBERT uncased seem pretty appropriate as
per the context and the contributions from the Stage model
changes the final prediction. However, there are 92 instances
in the test predictions where any of the three predictions are
different. These are the instances where the ensemble sub-
mission gets the test score boost.

We observe that some of the samples in the test set do not
contain sufficient context which can help in acronym disam-
biguation. This can be an issue and it is difficult to say how
the models will behave in such situations. Some of the sam-
ples are shown in Table 7. For the text with id TS-5572, the
possible long forms of LPP are “locality preserving projec-
tions” and “load planning problem”. Both the models predict
one of the expansions and both the expansions seem rele-
vant in the given context. Similar arguments can be given
for the text with id TS-5830, where the models get confused
between “global convolution networks” and “graph convo-
lution networks”.

Many of the instances in the test set are such that the long
form expansion of the acronym is present in the text and the
acronym is present within parentheses. Our models correctly
predict the long form for most of these instances, but miss
out on a few occasions. This motivated us to devise a post-
processing for such instances, where we can directly check
for such conditions and predict accordingly, overwriting the
model predictions.

8 Conclusion

We present our approach for Acronym Identification and
Acronym Disambiguation in scientific domain. The usage
of SciBERT in both tasks is beneficial because of domain
and training corpus similarity. We addressed Al as a tag-
ging problem. Our experiments prove the usefulness of data
transformation using BIOless tags, and the adroitness of
blending incorporated with hard voting. We approached AD
as span prediction problem. Our experimental work demon-
strates the effect of pretrained weights, external data, ensem-
bling and post-processing. Our analysis provides some inter-
esting insights into some of the shortcomings of the models
and also some of the flaws in the dataset annotation. For fu-
ture work, we can experiment with data augmentation and
observe the behaviour of the models for both Al and AD.

9 Appendix

The source code of our approaches for Al and AD can be
found at :

e Al : https://github.com/aadarshsingh191198/AAAI-21-
SDU-shared-task-1-Al

* AD : https://github.com/aadarshsingh191198/AAAI-21-
SDU-shared-task-2-AD
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