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Abstract

In order to properly determine which of several possible
meanings an acronym A in sentence s has, any system that
aims to find the correct meaning for A must understand the
context of s.
This paper describes the techniques we use for that problem
for the SDU@AAAI benchmark in which context was pro-
vided in the form of sentences in which acronym A is present
and defined.
As a capsule summary of our results, Support Vector Ma-
chines with Doc2Vec techniques achieves a higher Macro F1-
Measure score than Cosine similarity with Classic Context
Vector techniques. Although these techniques usually work
better with documents (i.e., many sentences rather than the
one sentence offered in this benchmark), they achieved scores
of Macro F1-Measure 86-89%.
While these results were 5.65% worse than the best in the
benchmark experiment, the high speed of our approach (max
0.6 seconds on average per sentence on a virtual machine al-
located with 4 CPU cores and 32GB of RAM in a shared
server) and the possibility that our methods are complemen-
tary to those of other groups may lead to high performance
hybrid systems.

Introduction

The proper expansion of an acronym depends on context.
For example, ”HD” can mean Harmonic Distortion in a sig-
nal context, High Definition in a video context, and Hunt-
ington ’s Disease in a medical context. Thus, any system that
hopes to help readers understand the intended meaning of an
undefined acronym in a sentence must expand that acronym
using its context.

An acronym expander system comprises the following
steps: (i) Extraction of both acronym and (when present) its
expansion within a text. For example, if a given text has ”HD
(High Definition)” then HD would be the acronym and High
Definition would be the expansion. We call this in-expansion
because it can be done for a particular article on its own.
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(ii) In the case that an acronym is not expanded in a text,
out-expansion chooses an expansion from a previously large
parsed corpus (training corpus) like Wikipedia1. The choice
of which of several possible expansions to choose is based
on some notion of article domain similarity between the text
with a non-expanded acronym A and the articles contain-
ing expansions for A. We participated in the SDU@AAAI
benchmark presented in Veyseh et al. (2020) that tests out-
expansion only (i.e., acronym disambiguation).

Our system includes two techniques for out-expansion:
Cosine similarity of Classic Context Vectors (Abdalgader
and Skabar 2012; Prokofyev et al. 2013; Li, Ji, and Yan
2015) and Doc2Vec (Le and Mikolov 2014) whose outputs
are used as features for Support Vector Machines (SVMs)
to create a new out-expansion technique. Moreover, we used
Wikipedia articles to enrich the training data for these tech-
niques. Our results show that Doc2Vec together with Sup-
port Vector Machines (SVMs) gives the best prediction re-
sults when using Wikipedia data. Without extra data, context
vector works best.

Related Work
To our knowledge, systems that expand abbreviations
and/or acronyms use a pre-defined dictionary of acronym-
expansions (Gooch 2012; ABBREX2) as opposed to trying
to discover the proper expansion based on context.

Ciosici and Assent (2018) proposed an abbrevia-
tion/acronym expansion system architecture that performs
out-expansion. Unfortunately, their demo paper does not
provide enough technical details and their code is propri-
etary.

The remaining part of this section describes previous
work on out-expansion.

Li, Ji, and Yan (2015) proposed two approaches to
out-expansion based on word embeddings from Word2Vec
(Mikolov et al. 2013a) to address the out-expansion prob-
lem. Their best approach, called Surrounding Based Em-
bedding (SBE), combines the Word2Vec embeddings of
the words surrounding the acronym or the expansion. Sim-

1https://www.wikipedia.org/
2http://abbrex.com/



ilarly to SBE, Ciosici, Sommer, and Assent (2019) pro-
posed Unsupervised Acronym Disambiguation (UAD) that
replaces each expansion occurrence in the text collection by
a normalized token and retrains the Word2Vec google news
model (Mikolov et al. 2013a) on that collection. The result-
ing model produces an embedding for each normalized to-
ken, i.e., an expansion embedding.

Thakker, Barot, and Bagul (2017) creates document vec-
tor embeddings using Doc2Vec for each document. For each
set of documents D containing an expansion for an acronym
A, the system trains a Doc2Vec model on D which is used
to infer the embedding for an input document i containing
an undefined acronym A.

Charbonnier and Wartena (2018) proposed an out-
expansion approach based on Word2Vec embeddings
weighted by Term Frequency-Inverse Document Frequency
(TF-IDF) scores to find out-expansions for acronyms in sci-
entific article captions.

More recently, Pouran Ben Veyseh et al. (2020) com-
pare previous works in a new dataset (i.e., the Acronym
Disambiguation dataset used in SDU@AAAI competition).
The authors also propose a new model called Graph-based
Acronym Disambiguation (GAD). GAD uses word and
sentence representations obtained from Bidirectional Long
Short-Term Memory (BiLSTM) neural network. Those rep-
resentations are complemented by using syntactic structure
from a dependency tree graph to model far but important
dependencies between words using a Graph Convolutional
Neural networks (GCN) (Kipf and Welling 2017). Finally,
a two layer feedforward neural network classifier is used to
guess the expansion.

A related line of work explored the expansion of
acronyms in enterprise texts (Feng et al. 2009; Li et al.
2018). For instance, in Li et al. (2018), enterprise textual
documents are used as training data as well as Wikipedia ar-
ticles and a set of features like statistics based on word fre-
quencies, words co-occurrences, and TF-IDF. Other works
explored acronym disambiguation in biomedical domains
(Pustejovsky et al. 2001; Pakhomov, Pedersen, and Chute
2005; Yu et al. 2006; Stevenson et al. 2009; Moon, Pakho-
mov, and Melton 2012; Moon, McInnes, and Melton 2015;
Wu et al. 2015; 2017).

Less directly related, but insightful, is the literature on
Word Sense Disambiguation (WSD) (Navigli 2009; Moro
and Navigli 2015) because that work also must make use of
the context around a token (in our case, an acronym; in the
word sense literature, a word).

Out-Expansion Strategy

Our out-expansion strategy consists of: (i) a Representa-
tor to map an input sentence to a document representation
that holds contextual information and (ii) an Out-Expansion
Predictor to choose a context-appropriate out-expansion for
each acronym found in the input sentence.

Representator
Representors summarize text (documents or sentences) in
order to capture information signals about their semantics.

For the competition, we tested two representator tech-
niques: Classic Context Vector and Doc2Vec.

Classic Context Vector The context vector technique is
an unsupervised method used as a baseline in Word Sense
Disambiguation problems (Abdalgader and Skabar 2012)
and also in acronym disambiguation problems (Prokofyev
et al. 2013)(Li, Ji, and Yan 2015). We denote it as classic
to distinguish it from variants or other techniques that also
provide vectors to contexts.

A Context vector represents a term (e.g, an acronym or
expansion) by a vector based on the words that co-occur
with the term in each document of the corpus containing
that term. Thus, a context vector is a sparse vector where
each position corresponds to a word in any document in the
corpus, if the word is in a document that contains the term,
then the vector position has some positive value, otherwise
the value is zero. In the classic approach, the value at each
vector position corresponds to the number of co-occurrences
of the term and the co-occurring words in all the documents
of the corpus.

In acronym disambiguation, the acronym in a particular
sentence yields a context vector (which we call the ”target
context vector”) which contains the words occurring in that
sentence and their number of occurrences.

Each possible expansion for the acronym will have a con-
text vector as well (”potential context vector”). Classic con-
text vector chooses the expansion associated with the poten-
tial context vector that is most similar to the target context
vector. The simplest similarity metric is cosine similarity.
Figure 1 presents an example of a context vector for Portable
Document Format expansion using two documents. For in-
stance, words ”the” and ”file” occur one time in each docu-
ment and so the positions reserved to these two words in the
vector contains value 2 while the others contain 1.

Doc2Vec Doc2Vec (Le and Mikolov 2014) is a document
embedding and an unsupervised learning technique that adds
the capability of automatically learning document (or para-
graph) vectors to Word2Vec (Mikolov et al. 2013a). Given a
list of words (e.g., a text document) as input, the output of
Doc2Vec is a dense vector of real numbers (i.e., an embed-
ding).

Just as Word2Vec assigns a vector to a word, Doc2Vec as-
signs a vector of N dimensions called a document vector to
a document (or in the case of this benchmark to a sentence).

The training problem consists of finding the best set
of embedding values for each word and document (i.e.,
Doc2Vec model parameters) that, given a document, pre-
dicts the set of words in that document. For example, con-
sider a document consisting on a list containing the countries
in Figure 2. If the document is known to the Doc2Vec model
(i.e., it was included in the training data) then we have a doc-
ument embedding available, otherwise, a document embed-
ding d is computed by finding the best values that maximize
the prediction of the country names given d.

In contrast to Word2Vec which averages word vectors to
represent a particular document, Doc2Vec creates a trained
vector for each document in the corpus (Dai, Olah, and Le
2015). By comparing those document vectors through co-
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Figure 1: Classic context vector example for portable document format expansion.

sine similarity, Doc2Vec can infer semantically similar doc-
uments.

Out-Expansion Predictor
Out-expansion predictors select an out-expansion for a given
acronym A in an input sentence ins. For this purpose, a pre-
dictor considers each sentence containing a valid expansion
E for A. Sentences are characterized by the representator
output explained in the previous section.

In the case of the Classic Context Vector, we compare the
input sentence context vector with the vector resulting from
summing the context vectors of the sentences for E. In this
classical approach, because we have only a context vector
per expansion E, we use cosine similarity to evaluate simi-
larity.

We consider the use of machine learning classifiers as al-
ternatives to cosine similarity when more than one training
sample is possible for an expansion (i.e., label). This is the
case of Doc2Vec whose embeddings represent a set of words
(e.g., document or sentence) so we will have as many sam-
ples per expansion as set of words (e.g., sentences) where it
occurs. However, for Classic Context Vector, it is not pos-
sible to use such machine learning approach because we
have a context vector per expansion and so only one sam-
ple per expansion. Specifically, for the competition we used
Support Vector Machines (SVMs) where non-binary classi-
fication was performed by a ”one-vs-all” approach where a
binary SVM classifier predicts with a certain probability if
a sample belongs to a particular class. The class with high-
est probability is selected. We used the LibLinear (Fan et
al. 2008) implementation included in sckit-learn toolkit (Pe-
dregosa et al. 2011).

SDU@AAAI Benchmark of Out-expansion
Techniques

This section describes the SDU@AAAI benchmark used to
evaluate the out-expansion techniques described in the pre-
vious section.

Datasets
The datasets that we use in this benchmark are:

SciAD contains sentences from human annotated scientific
articles extracted from ArXiv 3. Each sentence contains an
acronym to disambiguate. This is the dataset provided for
the SDU@AAAI Acronym Disambiguation (AD) com-
petition and it was proposed in (Pouran Ben Veyseh
et al. 2020). There are three data splits: (i) Train with
50,033 sentences, (ii) Dev with 6,188 sentences, and (iii)
Test with 6,217 sentences where acronym expansion is
unknown. This dataset also contains a dictionary with
acronyms and their possible expansions.

Wikipedia contains all English articles of Wikipedia.org
taken from the Wikipedia dump of March 1, 20204. We
used the WikiExtractor5 software to obtain the articles in
plain text, and we used the Schwartz and Hearst (2003)
algorithm to extract acronyms and expansions from each
Wikipedia article.

Data Preparation
We process the datasets by removing punctuation and nor-
malizing tokens in order to create a better textual represen-
tation. That is, we perform the following operations on each
dataset:

SciAD We remove non alphanumeric tokens, punctuation
characters, and stop-words. Then, we transform each to-
ken to its stem, e.g. expander, expanding, and expanded
all map to expand. We use the Porter Stemmer algorithm
from the Natural Language Toolkit (NLTK) (Bird, Klein,
and Loper 2009) for that purpose.

Wikipedia Because expansions in Wikipedia may be writ-
ten in different formats and with plurals, we normalize
the expansions found against the dictionary of acronym

3https://arxiv.org/
4https://dumps.wikimedia.org/enwiki
5http://medialab.di.unipi.it/wiki/Wikipedia Extractor



Figure 2: Countries and Capitals vectors. Modified from (Mikolov et al. 2013b).

expansions shared with SciAD. So, each expansion in the
Wikipedia documents is replaced by the closest expansion
in the SciAD dictionary. Distance is given by comparing
the expansion in Wikipedia against a SciAD expansion,
if the first 4 characters of each word are equal we con-
sider the expansions to be equal (distance=0); distance
is given by the edit-distance between both expansions, if
the edit-distance is below 3 then the expansions are close
enough, otherwise they are considered two distinct expan-
sions. Wikipedia expansions not close to any expansion in
the SciAD dictionary and their corresponding documents
are not considered for prediction because only the expan-
sions in the dictionary are valid for the SciAD evaluation
set. Furthermore, while keeping the expansions in text,
we apply the tokenizer from NLTK and remove the non
alphanumeric tokens, punctuation characters, and stop-
words. Finally, we transform each token to its stem as we
did for the SciAD dataset.

Out-expansion Techniques
For the SDU@AAAI AD competition, we test the following
out-expansion techniques: we use (i) the Cosine similarity
(Cossim) with the Classic Context Vector (Li, Ji, and Yan
2015) and (ii) the outputs of Doc2Vec as features for Support
Vector Machines (SVMs).

Prediction and Performance Metrics
For the SDU@AAAI competition, we use the following
metrics:

Out-expansion Macro Averages: the average of the Preci-
sion, Recall and F1-Measure for each expansion. These
are the official metrics used in the SDU@AAAI competi-
tion, being the Macro F1-Measure used to rank the com-
petitors based on expansion prediction quality.

Training execution times: the execution time to create the
representator model based on the training sentences
and/or documents.

Average execution times per sentence: the average exe-
cution time to predict the expansions for the acronym in a
sentence.

Experimental Evaluation
This section reports on the out-expansion experiments.

We run the experiments on a machine with the follow-
ing specifications: Virtual Machine (VM) with 4 CPU cores
from an Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz,
32GiB of RAM (Random Access Memory), and Ubuntu
18.04.3 LTS.

Out-Expansions on the AAAI Benchmark
In this section, we report the results obtained using the
SciAD dataset. We used the Train set and Dev set as test
data to tune the hyperparameters of Doc2Vec and SVMs.
Then, we used the Train and Dev sets as training data and the
Test set as evaluation. Evaluation quality measures were pro-
vided by the Codelab competition evaluation system6. We
have submitted two combinations of out-expander predic-
tors and representators: (i) cosine similarity (Cossim) as pre-
dictor with Classic Context Vector as representator, and (ii)
Support Vector Machine (SVM) as predictor with Doc2Vec
as representator.

In Table 1, we report the out-expansion macro averages
for predicting expansions for acronyms in sentences: Pre-
cision (P), Recall (R), and F1-measure (F1). Macro F1-
measure is the official measure for ranking competitors in

6https://competitions.codalab.org/competitions/26611



Acronym out-expansion technique Dev macro avg. Test macro avg. Execution times
Predictor Representator P (%) R (%) F1 (%) P (%) R (%) F1 (%) Training (s) Avg. per sentence (s)
Cossim Classic Context Vector 90.00% 84.68% 87.26% 92.13% 84.16% 87.96% 1.24 0.18
SVM Doc2Vec 90.49% 81.01% 85.48% 91.95% 80.15% 85.65% 92.79 0.09

Table 1: Out-expansion macro averages and execution times for training and average per sentence for SciAD dataset.

Acronym out-expansion technique Dev macro avg. Test macro avg. Execution times
Predictor Representator P (%) R (%) F1 (%) P (%) R (%) F1 (%) Training (s) Avg. per sentence (s)
Cossim Classic Context Vector 88.24% 82.79% 85.43% 90.27% 83.73% 86.88% 504.52 0.61
SVM Doc2Vec 91.54% 81.50% 86.23% 93.57% 83.77% 88.40% 7367.32 0.12

Table 2: Out-expansion macro averages and execution times for training and average per sentence for SciAD dataset with also
Wikipedia as training data.

the SDU@AAAI competition. We also report the best re-
sults obtained for both the Dev set used for hyperparmeter
selection and the Test set as testing data. In addition, we re-
port the execution times for training and the average per pre-
dicted acronym in a sentence (note that each sentence con-
tains only one acronym to expand).

We can see that Cossim with Classic Context Vector
achieved the best results. In general, both techniques have
slightly lower recall (less than 1%) in the Test set than in
the Dev test but higher macro precisions (1-2%). Since the
gains in macro precisions are higher than the losses in macro
recalls for the Test set, the harmonic means of both macros
(i.e., macro F1-measures) are higher in the Test set. Differ-
ences among the techniques are consistent across various
test sets. Regarding execution times, Cossim with Classic
Context Vector is faster in training (91s) and SVM with
Doc2Vec is faster on average per sentence (0.09s). Clas-
sic Context Vector counts word occurrences at training time
while Doc2Vec trains a neural network for word and docu-
ment embeddings with several iterations over the training
corpus (e.g., 200). Both training and sentence processing
times are low given that they are executed on a regular ma-
chine (4 CPU cores and 32GB of RAM). Both techniques
are lightweight solutions for this problem.

Cross-Training and Additional Data for the SDU@AAAI
Competition For our next set of experiments for the
SDU@AAAI competition, we increase the training data
provided by the competition sets with documents obtained
from Wikipedia, i.e., the Wikipedia dataset. We wanted to
test whether additional data and cross-training data helps to
solve this problem and which techniques can benefit from
such a data increment.

Table 2 shows the macro averages on the SciAD Dev
set using SciAD train and Wikipedia documents as train-
ing data; and the macro averages and execution times on the
SciAD test set using the above training sets plus the Dev set
as training data.

In contrast to previous results where Wikipedia data was
not used, after adding Wikipedia documents to the training
data, SVM with Doc2Vec obtains the best results. That com-
bination also benefits from using Wikipedia data. The three
macro averages are lower when applied to the Dev set than
when applied to the Test set.

Consistent with the experimental results without

Wikipedia, Cossim with Classic Context Vector is faster
in training than SVM with Doc2Vec, while slower in
per-sentence processing. Training both techniques is much
slower with the addition of Wikipedia data, yet fast enough
for a regular machine (e.g., 2 hours to train the Doc2Vec
model). On average, to process a sentence, the incorporation
of Wikipedia slows down Cossim with Classic Context
Vector by 0.43 seconds and slows down SVM with Doc2Vec
by 0.03 seconds.

Most of the excellent efforts by other research groups
submitted to the competition are transformer-based models
that use pretrained models like BERT (Devlin et al. 2018),
ROBERTA (Liu et al. 2019), and SciBERT (Beltagy, Lo,
and Cohan 2019). Those works mostly distinguish them-
selves on how they adapt such transformers models to out-
expansion (Veyseh et al. 2020). The three leaderboard works
use transformers and their macro F1-measures range from
93.19% to 94.05%. In our understanding, only three works
including ours explored alternative techniques to transform-
ers, no other work explored Doc2Vec or SVMs. Although
our best technique scores are 6% less than the best in compe-
tition, we believe that our techniques are distinct enough to
be complements to transformer-based techniques or may in-
troduce a lighter/faster approach to this problem since trans-
former models even using GPUs (Graphics processing units)
or TPUs (Tensor Processing Unit (TPU)) usually take more
time to train and to process data than Doc2Vec and SVMs.
Further, our approaches could work better when the context
consists of entire documents rather than single sentences,
which is our core use case.

Conclusions and Future Work
We have evaluated two rapid techniques for acronym dis-
ambiguation using the SDU@AAAI benchmarks. We have
found that Cosine similarity with Classic Context Vector
works best when no Wikipedia data is used. SVM with
Doc2Vec outperforms Cosine similarity with Classic Con-
text Vector when using Wikipedia data. Our overall re-
sults, as measured by F1-measure score, are within 5.7% of
the best system in competition. By analyzing the execution
times of each phase (training and evaluation of sentences),
we showed that our approach is lightweight even on a stan-
dard computer.

We believe we could have improved performance if we



had used data sources in addition to Wikipedia such as ab-
stracts from articles in web repositories to make the domain
closer to the SDU@AAAI competition data.
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