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Abstract

Even for domain experts, it is a non-trivial task to verify a sci-
entific claim by providing supporting or refuting evidence ra-
tionales. The situation worsens as misinformation is prolifer-
ated on social media or news websites, manually or program-
matically, at every moment. As a result, an automatic fact-
verification tool becomes crucial for combating the spread of
misinformation. In this work, we propose a novel, paragraph-
level, multi-task learning model for the SCIFACT task by di-
rectly computing a sequence of contextualized sentence em-
beddings from a BERT model and jointly training the model
on rationale selection and stance prediction.

1 Introduction
Many seemingly convincing rumors such as “Most humans
only use 10 percent of their brain” are widely spread, but
ordinary people are not able to rigorously verify them by
searching for scientific literature. In fact, it is not a trivial
task to verify a scientific claim by providing supporting or
refuting evidence rationales, even for domain experts. The
situation worsens as misinformation is proliferated on so-
cial media or news websites, manually or programmatically,
at every moment. As a result, an automatic fact-verification
tool becomes more and more crucial for combating the
spread of misinformation.

The existing fact-verification tasks usually consist of three
sub-tasks: document retrieval, rationale sentence extraction,
and fact-verification. However, due to the nature of scientific
literature that requires domain knowledge, it is challenging
to collect a large scale scientific fact-verification dataset, and
further, to perform fact-verification under a low-resource
setting with limited training data. Wadden et al. (2020) col-
lected a scientific claim-verification dataset, SCIFACT, and
proposed a scientific claim-verification task: given a scien-
tific claim, find evidence sentences that support or refute the
claim in a corpus of scientific paper abstracts. Wadden et al.
(2020) also proposed a simple, pipeline-based, sentence-
level model, VERISCI, as a baseline solution based on DeY-
oung et al. (2019).
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VERISCI is a pipeline model that runs modules for ab-
stract retrieval, rationale sentence selection, and stance pre-
diction sequentially, and thus the error generated from an
upstream module may propagate to the downstream mod-
ules. To overcome this drawback, we hypothesize that a
module jointly optimized on multiple sub-tasks may miti-
gate the error-propagation problem to improve the overall
performance. In addition, we observe that a complete set
of rationale sentences usually contains multiple inter-related
sentences from the same paragraph. Therefore, we propose
a novel, paragraph-level, multi-task learning model for the
SCIFACT task.

In this work, we employ compact paragraph encoding, a
novel strategy of computing sentence representations using
BERT-family models. We directly feed an entire paragraph
as a single sequence to BERT, so that the encoded sentence
representations are already contextualized on the neighbor
sentences by taking advantage of the attention mechanisms
in BERT. In addition, we jointly train the modules for ratio-
nale selection and stance prediction as multi-task learning
(Caruana 1997) by leveraging the confidence score of ratio-
nale selection as the attention weight of the stance prediction
module. Furthermore, we compare two methods of transfer
learning that mitigate the low-resource issue: pre-training
and domain adaptation (Peng and Dredze 2017). Our exper-
iments show that:

• The compact paragraph encoding method is beneficial
over separately computing sentence embeddings.

• With negative sampling, the joint training of rationale se-
lection and stance prediction is beneficial over the pipeline
solution.

2 SCIFACT Task Formulation
Given a scientific claim c and a corpus of scientific
paper abstracts A, the SCIFACT (Wadden et al. 2020)
task retrieves all abstracts Ê(c) that either SUPPORTS
or REFUTES c. Specifically, the stance prediction (a.k.a.
label prediction) task classifies each abstract a ∈ A
into y(c, a) ∈ {SUPPORT,REFUTES,NOINFO} with re-
spect to each claim c; the rationale selection (a.k.a.
sentence selection) task retrieves all rationale sentences
Ŝ(c, a) = {ŝ1(c, a), ..., ŝl(c, a)} of each a that SUP-
PORTS or REFUTES c. The performance of both tasks



are evaluated with F1 measure at both abstract-level and
sentence-level, as defined by Wadden et al. (2020), where
{SUPPORTS,REFUTES} are considered as the positive la-
bels and NOINFO is the negative label for stance prediction.

3 Approach
We formulate the SCIFACT task (Wadden et al. 2020) as a
sentence-level sequence-tagging problem. We first apply an
abstract retrieval module to filter out negative candidate ab-
stracts that do not contain sufficient information with respect
to each given claim. Then we propose a novel model for
joint rationale selection and stance prediction using multi-
task learning (Caruana 1997).

3.1 Abstract Retrieval
In contrast to the TF-IDF similarity used by Wadden et al.
(2020), we leverage BioSentVec (Chen, Peng, and Lu 2019)
embedding, which is the biomedical version of Sent2Vec
(Pagliardini, Gupta, and Jaggi 2018), for a fast and scalable
sentence-level similarity computation. We first compute the
BioSentVec (Chen, Peng, and Lu 2019) embedding of each
abstract in the corpus by treating the concatenation of each
title and abstract as a single sentence. Then for each given
claim, we compute the cosine similarities of the claim em-
bedding against the pre-computed abstract embeddings, and
choose the top kretrieval similar abstracts as the candidate
abstracts for the next module.

3.2 Joint Rationale Selection and Stance
Prediction Model

Compact Paragraph Encoding A major usage of BERT-
family models (Devlin et al. 2018; Liu et al. 2019) for
sentence-level sequence tagging computes each sentence
embedding in a paragraph with batches. Since each batch is
independent, such method leaves the contextualization of the
sentences to the subsequent modules. Instead, we propose
a novel method of encoding paragraphs by directly feeding
the concatenation of the claim c and the whole paragraph
P to a BERT model BERT as a single sequence Seq. By
separating each sentence s using the BERT model’s [SEP ]

token, we fully leverage the multi-head attention (Vaswani
et al. 2017) within the BERT model to compute the contex-
tualized word representations hSeq with respect to the claim
sentence and the whole paragraph.

c = [cw1, cw2, . . . , cwn]

si = [w1,w2, . . . ,wm]

P = [s1, s2, . . . , sl]

Seq = [c[SEP ]s1[SEP ]s2[SEP ] . . . [SEP ]sl]

hSeq = BERT (Seq) ∈ Rlen(Seq)×dBERT

hSeq = [hCLS , hcw1, . . . , hcwn,

hSEP , hw1, . . . , hwm, hSEP , . . .]

(1)

Sentence Representations via Word-level Attention
Next, we apply a weighted sum to the contextualized word

representations of each sentence hsent to compute the sen-
tence representations hs

i

. The weights are obtained by apply-
ing a self-attention SelfAttnword with a two-layer multi-
layer perceptron on the word representations in the scope of
each sentence, as separated by the [SEP ] tokens.

hs
i

= SelfAttnword([hSEP , hw1, ..., hwm]) ∈ Rd
BERT (2)

Dynamic Rationale Representations We use a two-layer
multi-layer perceptron MLPrationale to compute the ratio-
nale score and use the softmax function to compute the
probability of each candidate sentence being a rationale sen-
tence pr or not pnot r with respect to the claim sentence c.
Then we only feed rationale sentences r into the next stance
prediction module.

pnot r
i , pri = softmax(MLPrationale(hsi)) ∈ (0,1)

hri ← hsi if pnot r
i < pri

(3)

Stance Prediction We use two variants for stance predic-
tion: a simple sentence-level attention and the Kernel Graph
Attention Network (KGAT) (Liu et al. 2020).
• Simple Attention. We apply another weighted summa-

tion on the predicted rationale sentence representations
hr

i

to compute the whole paragraph’s rationale represen-
tation, where the attention weights are obtained by apply-
ing another self-attention SelfAttnsentence on the ratio-
nale sentence representations hr. Finally, we apply an-
other two-layer multi-layer perceptron MLPstance and
the softmax function to compute the probability of the
paragraph serving the role of {SUPPORTS, REFUTES,
NOINFO} with respect to the claim c.

hr = SelfAttnsentence([hr1, hr2, ..., hrl]) ∈ R
d

BERT

pstance
= softmax(MLPstance(hr)) ∈ (0,1)3

(4)

• Kernel Graph Attention Network. Liu et al. (2020)
proposed KGAT as a stance prediction module for their
pipeline solution on the FEVER (Thorne et al. 2018) task.
In addition to the Graph Attention Network (Veličković
et al. 2017), which applies attention mechanisms on each
word pair and sentence pair in the input paragraph, KGAT
applies a kernel pooling mechanism (Xiong et al. 2017) to
extract better features for stance prediction. We integrate
KGAT (Liu et al. 2020) into our multi-task learning model
for stance prediction on SCIFACT (Wadden et al. 2020).
The KGAT module KGAT takes the word representation
of the claim hc and the predicted rationale sentence rep-
resentations hR as inputs, and outputs the probability of
the paragraph serving the role of {SUPPORTS, REFUTES,
NOINFO} with respect to the claim c.

hc = [hCLS , hcw1, . . . , hcwn]

hRi = [hSEP , hrw1, . . . , hrwm] where pnot r
i < pri

hR = [hR1, hR2, . . . , hRl]

pstance
=KGAT (hc, hR) ∈ (0,1)3

(5)



3.3 Model Training

Multi-task Learning We train our model on rationale se-
lection and stance prediction using multi-task learning ap-
proach (Caruana 1997). We use cross-entropy loss as the
training objective for both tasks. We introduce a coefficient
γ to adjust the proportion of two loss values Lrationale and
Lstance in the joint loss L.

L = γLrationale +Lstance (6)

Scheduled Sampling Because the stance prediction mod-
ule takes the predicted rationale sentences as the input, er-
rors in rationale selection may propagate to the stance pre-
diction module, especially during the early stage of train-
ing. To mitigate this issue, we apply scheduled sampling
(Bengio et al. 2015), which starts by feeding the ground
truth rationale sentences to the stance prediction module,
and gradually increasing the proportion of the predicted ra-
tionale sentences, until eventually all input sentences are
the predicted rationale sentences. We use a sin function to
compute the probability of sampling predicted rationale sen-
tences psample as a function of the progress of the training:

progress =
current epoch − 1

total epoch − 1

psample = sin(
π

2
× progress)

(7)

Negative Sampling and Down-sampling Although the
abstract retrieval module filters out the majority of the neg-
ative candidate abstracts, the false-positive rate is still in-
evitably high, in order to ensure the retrieval of most of the
positive abstracts. As a result, the input to the joint pre-
diction model is highly biased towards negative samples.
Therefore, in addition to the positive samples from the SCI-
FACT dataset (Wadden et al. 2020), we perform negative
sampling (Mikolov et al. 2013) to sample the top ktrain sim-
ilar negative abstracts using our abstract retrieval module as
an augmented dataset for training and validation to increase
the downstream model’s tolerance to false positive abstracts.
Furthermore, in order to increase the diversity of the dataset,
we augment the dataset by down-sampling sentences within
each paragraph.

FEVER Pre-training As Wadden et al. (2020) proposed,
due to the similar task structure of FEVER (Thorne et al.
2018) and SCIFACT (Wadden et al. 2020), we first pre-train
our model on the FEVER dataset, then fine-tune on the SCI-
FACT dataset by partially re-initializing the rationale selec-
tion and stance prediction attention modules.

Domain Adaptation Instead of pre-training, we also ex-
plore domain adaptation (Peng and Dredze 2017) from
FEVER (Thorne et al. 2018) to SCIFACT (Wadden et al.
2020). We use shared representations for the compact
paragraph encoding and word-level attention, while using
domain-specific representations for the rationale selection
and stance prediction modules.

Parameter Explored Used
kretrieval 3 ∼ 100 30
kFEV ER 1 ∼ 15 5
ktrain 0 ∼ 50 12
γ 0.1 ∼ 10 6

drop out 0 ∼ 0.6 0
learning rate 1 × 10−6 ∼ 1 × 10−4 5 × 10−6

BERT learning rate 1 × 10−6 ∼ 1 × 10−4 1 × 10−5

batch size 1,2 1

Table 1: Hyper-parameters explored and used.

TF-IDF BioSentVec
kretrieval P R F1 P R F1

3 16.2 69.9 26.3 15.6 67.0 25.3
10 5.83 83.6 10.9 5.86 84.2 11.0
100 0.67 96.7 1.33 0.68 98.1 1.35
150 0.45 96.7 0.90 0.46 98.1 0.92

Table 2: Abstract retrieval performance on dev set in %.

3.4 Implementation Details
BERT Encoding. We follow Wadden et al. (2020) in us-
ing Roberta-large (Liu et al. 2019) as our BERT-family
model.

Dummy Rationale Sentence. We dynamically feed only
the predicted rationale sentence representations to the stance
prediction module. To address the special case when an ab-
stract contains no rationale sentences, we append a fixed
dummy sentence (e.g.“@”) whose rationale label is always 0
at the beginning of each of the paragraph. When the stance
prediction module has no actual rationale sentence to take
as input, we feed it with the representation of the dummy
sentence and expect the module to predict NOINFO.

Post Processing. To prevent inconsistency between the
outputs of rationale selection and stance prediction, we en-
force the predicted stance to be NOINFO if no rationale sen-
tence is proposed.

Hyper-parameters. Table 1 lists the hyper-parameters
used for training the Joint-Paragraph model in Table 4 1,
where kFEV ER refers to the number of negative samples
retrieved from FEVER (Thorne et al. 2018) for model pre-
training.

4 Experiments
4.1 SCIFACT Dataset
SCIFACT (Wadden et al. 2020) is a small dataset, whose cor-
pus contains 5183 abstracts. There are 1409 claims, includ-
ing 809 in the training set, 300 in the development set and
300 in the test set.

1https://github.com/jacklxc/ParagraphJointModel



Sentence-level Abstract-level
Selection-Only Selection+Label Label-Only Label+Rationale

Models P R F1 P R F1 P R F1 P R F1

VERISCI 77.7 56.3 65.3 69.8 50.5 58.6 89.6 66.0 76.0 84.4 62.2 71.6

Paragraph-Pipeline 74.9 67.7 71.2 65.6 59.3 62.3 81.6 72.2 76.6 76.8 67.9 72.1
Paragraph-Joint 75.9 62.8 68.8 67.7 56.0 61.3 83.3 76.6 79.8 76.6 70.3 73.3
Paragraph-Joint KGAT 75.5 68.3 71.7 66.2 59.8 62.8 81.8 75.1 78.3 76.5 70.3 73.3

VERT5ERINI* 83.5 72.1 77.4 78.2 67.5 72.4 92.7 79.0 85.3 88.8 75.6 81.7

Table 3: Model performance on dev set oracle abstracts in %. The model with * is only for reference.

Sentence-level Abstract-level
Selection-Only Selection+Label Label-Only Label+Rationale

Models P R F1 P R F1 P R F1 P R F1

VERISCI 54.3 43.4 48.3 48.5 38.8 43.1 56.4 48.3 52.1 54.2 46.4 50.0

Paragraph-Pipeline 71.2 51.4 59.7 62.1 44.8 52.1 77.6 54.5 64.0 72.8 51.2 60.1
Paragraph-Joint 74.2 57.4 64.7 63.3 48.9 55.2 71.4 59.8 65.1 65.7 55.0 59.9
Paragraph-Joint SciFact-only 69.3 50.0 58.1 59.8 43.2 50.2 69.9 52.1 59.7 64.7 48.3 55.3
Paragraph-Joint TF-IDF 72.5 55.7 63.1 62.2 47.8 54.1 70.6 59.8 64.7 65.5 55.5 60.1
Paragraph-Joint DA 69.4 56.6 62.3 60.4 49.2 54.2 67.4 57.4 62.0 63.5 54.1 58.4
Paragraph-Joint KGAT 68.8 56.6 62.1 60.1 49.5 54.3 68.2 62.7 65.3 61.5 56.5 58.9
Paragraph-Joint KGAT DA 70.2 55.5 62.0 61.9 48.9 54.7 70.9 59.3 64.6 66.3 55.5 60.4
VERT5ERINI (BM25)* 67.7 53.8 60.0 63.9 50.8 56.6 70.9 61.7 66.0 67.0 58.4 62.4
VERT5ERINI (T5)* 64.8 57.4 60.9 60.8 53.8 57.1 65.1 65.1 65.1 61.7 61.7 61.7

Table 4: Model performance on dev set with abstract-retrieval in %. The models with * are only for reference.

4.2 Abstract Retrieval Performance
Table 2 compares the performance of abstract retrieval mod-
ules using using TF-IDF and BioSentVec (Chen, Peng, and
Lu 2019). As Table 2 indicates, the overall difference be-
tween these two methods is small. Wadden et al. (2020)
chose kretrieval = 3 to maximize the F1 score of the abstract
retrieval module, while we choose a larger kretrieval to pur-
sue a larger recall score, in order to retrieve more positive
abstracts for the down-stream models.

4.3 Baseline Models
VERISCI. Along with the SCIFACT task and dataset,
Wadden et al. (2020) proposed VERISCI, a sentence-level,
pipeline-based solution. After retrieving the top similar ab-
stracts for each claim with TF-IDF vectorization method,
they applied a sentence-level “BERT to BERT” model DeY-
oung et al. (2019) to extract rationales, sentence by sentence,
with a BERT model, and they predict the stance with an-
other BERT model using the concatenation of the extracted
rationale sentences. Wadden et al. (2020) used Roberta-large
(Liu et al. 2019) as their BERT model and pre-trained their
stance prediction module on the FEVER dataset (Thorne
et al. 2018).

VERT5ERINI. Very recently, Pradeep et al. (2020) pro-
posed a strong model VERT5ERINI, based on T5 (Raffel
et al. 2019). They applied T5 for all three steps of the SCI-
FACT task in a sentence-level, pipeline fashion. Because of

the known significant performance gap between Roberta-
large (Liu et al. 2019) that we use and T5 (Raffel et al. 2019;
Pradeep et al. 2020), we only use VERT5ERINI as a refer-
ence (marked with *).

4.4 Model Performances and Ablation Studies
We experiment on the oracle task, which performs rationale
selection and stance prediction given the oracle abstracts
(Table 3), and the open task, which performs the full task
of abstract retrieval, rationale selection, and stance predic-
tion (Table 4). We tune our models based on the sentence-
level, final development set performance (Selection+Label).
The test labels are not released by Wadden et al. (2020). Un-
less explicitly stated, all models are pre-trained on FEVER
(Thorne et al. 2018).

Paragraph-level Model vs. Sentence-level Model. We
compare our paragraph-level pipeline model against
VERISCI (Wadden et al. 2020), which is a sentence-
level solution on the oracle task. As Table 3 shows, our
paragraph-level pipeline model (Paragraph-Pipeline) outper-
forms VERISCI, particularly on rationale selection. This
suggests the benefit of computing the contextualized sen-
tence representations using the compact paragraph encod-
ing over individual sentence representations.

Joint Model vs. Pipeline Model. Although our joint
model does not show benefits over the pipeline model



on the oracle task (Table 3), the benefit emerges on the
open task. Along with negative sampling, which greatly
increases the tolerance of models to false positive ab-
stracts, the Paragraph-Joint model shows its benefit over the
Paragraph-Pipeline model. The small difference between the
Paragraph-Joint model and the same model except with TF-
IDF abstract retrieval (Paragraph-Joint TF-IDF) shows that
the performance improvement is mainly attributed to the
joint training, instead of replacing TF-IDF similarity with
BioSentVec embedding similarity in abstract retrieval.

Pre-training vs. Domain Adaptation. We also compare
two methods of transfer learning from FEVER (Thorne et al.
2018) to SCIFACT (Wadden et al. 2020). Table 4 shows that
the effect of pre-training (Paragraph-Joint) or domain adap-
tation (Peng and Dredze 2017) (Paragraph-Joint DA) is sim-
ilar. Both of them are effective as transfer learning, as they
significantly outperform the same model that is only trained
on SCIFACT (Paragraph-Joint SCIFACT-only).

KGAT vs. Simple Attention as Stance Prediction Module.
We expected a significant performance improvement by ap-
plying the strong stance prediction model KGAT (Liu et al.
2020), but the actual improvement is limited. This is likely
due to the strong regularization of KGAT that under-fits the
training data.

Test-set Performance on the SCIFACT Leaderboard By
the time this paper is updated, our Paragraph-Joint model
trained on the combination of SCIFACT training set and
development set achieved the first place on the SCIFACT
leaderboard 2. We obtain test sentence-level F1 score (Selec-
tion+Label) of 60.9% and test abstract-level F1 score (La-
bel+Rationale) of 67.2%.

5 Related Work
Fact-verification has been widely studied. There are many
datasets available on various domains (Vlachos and Riedel
2014; Ferreira and Vlachos 2016; Popat et al. 2017; Wang
2017; Derczynski et al. 2017; Popat et al. 2017; Atanasova
2018; Baly et al. 2018; Chen et al. 2019; Hanselowski et al.
2019), among which the most influential one is FEVER
shared task (Thorne et al. 2018), which aims to develop
systems to check the veracity of human-generated claims
by extracting evidences from Wikipedia. Most existing sys-
tems (Nie, Chen, and Bansal 2019) leverages a three-step
pipeline approach by building modules for each of the step:
document retrieval, rationale selection and fact verification.
Many of them focus on the claim verification step (Zhou
et al. 2019; Liu et al. 2020), such as KGAT (Liu et al. 2020),
one of the top models on FEVER leader board. On the other
hand, there are some attempts on jointly optimizing rationale
selection and stance prediction. TwoWingOS (Yin and Roth
2018) leverages attentive CNN (Yin and Schütze 2018) to

2https://leaderboard.allenai.org/scifact/submissions/public, as
of February 12, 2021.

inter-wire two modules, while Hidey et al. (2020) used a sin-
gle pointer network (Vinyals, Fortunato, and Jaitly 2015) for
both sub-tasks. We propose another variation that directly
links two modules by a dynamic attention mechanism.

Because SCIFACT (Wadden et al. 2020) is a scientific ver-
sion of FEVER (Thorne et al. 2018), systems designed for
FEVER can be applied to SCIFACT in principle. However,
as a fact-verification task in scientific domain, SCIFACT task
has inherited the common issue of lacking sufficient data,
which can be mitigated with transfer learning by leverag-
ing language models and introducing external dataset. The
baseline model by Wadden et al. (2020) leverages Roberta-
large (Liu et al. 2019) fine-tuned on FEVER dataset (Thorne
et al. 2018), while VERT5ERINI (Pradeep et al. 2020) lever-
ages T5 (Raffel et al. 2019) and fine-tuned on MS MARCO
dataset (Bajaj et al. 2016). In this work, in addition to fine-
tuning Roberta-large on FEVER, we also explore domain
adaptation (Peng and Dredze 2017) to mitigate the low re-
source issue.

6 Conclusion
In this work, we propose a novel paragraph-level multi-task
learning model for SCIFACT task. Experiments show that
(1) The compact paragraph encoding method is beneficial
over separately computing sentence embeddings. (2) With
negative sampling, the joint training of rationale selection
and stance prediction is beneficial over the pipeline solution.
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