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Abstract

Figurative language plays an important role in thought pro-
cesses and science. Automatic detection of figurative lan-
guage is gaining momentum in the open domain natural lan-
guage processing research, but it is hindered in the biomedi-
cal domain by the absence of document collections for devel-
opment and testing of the approaches. Reliable approaches
to detection of figurative language could potentially improve
automatic indexing of the literature and support clinical ap-
plications. We have developed a collection of documents an-
notated for literal or non-literal use of seven terms that are
known to cause errors in automatic indexing of biomedi-
cal abstracts. Using the collection, we explore detection of
figurative language with CNN-RNN, logistic regression and
transformer models. We establish baselines for each of the
seven terms, achieving the results at the level of the state-of-
the-art reported in the open domain evaluations.

Introduction
Figurative language plays an important role in science, with
metaphors and idiomatic expressions viewed as foundations
for thought processes (Taylor and Dewsbury 2018; Cork,
Kaiser, and White 2019). Wide use of figurative language
in the biomedical literature presents a significant challenge
in automatic text understanding. Consider the term falls in
the following sentences:

A patient who suffered a fall from a wagon.
Falling off the care wagon.
Falling off the dopamine wagon.
Fall from a train wagon.
Fall from horse-drawn wagon.

Whereas it is relatively easy for people to discern which of
these phrases refer to physical falls, the biomedical named
entity recognition (NER) approaches often treat figurative
language as literal and link the word to inappropriate on-
tology terms as a result. Specifically, in the task of auto-
mated indexing that aims to summarize the main points of a
publication by assigning terms from a controlled vocabulary
created to index the biomedical literature: Medical Subject
Headings (MeSH) (NLM 2020 (accessed November, 2020).
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In the biomedical publications, the problem of recogniz-
ing non-literal utterances is intertwined with word sense dis-
ambiguation (WSD), and compounded by the importance of
the term to the article. The WSD aspects could be illustrated
by the following:

The head of each fish, including the brain and pitu-
itary, was sampled for double-colored FISH analysis.

To many NER approaches, the first occurrence of fish is
indistinguishable from FISH, which stands for fluorescent in
situ hybridization. The confusion continues in:

Is being a small fish in a big pond bad for students´
psychosomatic health?

Moreover, for food products manufactured from fish, such
as fish oil, linking to Fishes also violates indexing rules.
To summarize, to label a biomedical publication with the
terms from a terminology, we need to determine if the terms
are used literally, if the sense in the context corresponds to
the sense in the terminology, and if the term is important
enough to be indexed for the article in MEDLINE/PubMed
database, which comprises more than 30 million biomedical
abstracts (NLM 2020 (accessed November, 2020). The im-
portance of a term plays a bigger role when we use the exist-
ing manual indexing of biomedical abstracts for training and
testing: The correct sense of a term could be used literally in
the abstract, but the term might not be central enough to the
publication to be assigned by the indexer.

Whereas there continues to be a steady research in
biomedical WSD (Pesaranghader et al. 2019), and use of fig-
urative language in biomedicine (Cork, Kaiser, and White
2019), automated understanding of biomedical figurative
language is still an under-explored area. Our objectives
therefore are:

1. to determine which non-literal expressions are prevalent
in the biomedical literature and present difficulties to au-
tomated understanding,

2. create training and test collections for these terms, and
3. explore approaches to automated detection of non-literal

language.

Related Work
The body of work on detection of figurative language in the
open domain is significant, and the interest to the topic is



growing, as evidenced by the workshops and shared tasks
on figurative language processing (Klebanov et al. 2020).
Veale et al. (2016) provide an overview of the types of figu-
rative language and of the computational approaches to de-
tection and understanding of figurative language. The ap-
proaches are mostly formulated as a binary classification
task on a limited set of triples, and sometimes as predic-
tion of the class of a token in a sentence (Feldman and Peng
2013; Gao et al. 2018). Taking into account the immediate
lexico–syntactic context of the utterance and incorporating
discourse features improves recognition of figurative lan-
guage (Mu, Yannakoudakis, and Shutova 2019). In an end-
to-end RNN-based system, Mao et al. (2019) emulated two
human approaches to identification of figurative language:
1) noticing a semantic contrast between a target word and
its context – Selectional Preference Violation, and 2) iden-
tifying if the literal meaning of a word contrasts with the
meaning that word takes in the context – Metaphor Identifi-
cation Procedure.

To the best of our knowledge, our work is the first to
explore the difficulties figurative language poses for auto-
mated indexing of the biomedical literature. We also pro-
vide the first publicly available biomedical literature dataset
annotated for figurative language at the token and sentence
level. In addition, leveraging the state-of-the-art approaches
explored in the open domain, we establish baselines for de-
tection of figurative language in biomedical abstracts using
sentence or token level classification.

Data Sources and Collections
We analyzed 870 American English idioms (Bulkes and
Tanner 2017), and 464 metaphors (Katz et al. 1988; Camp-
bell and Raney 2016). We searched the Free Dictionary Id-
ioms dictionary (FARLEX 2020 (accessed November, 2020)
for additional examples of figurative phrases. We then sub-
mitted figurative language expressions to MeSH on De-
mand (NLM 2020 (accessed November, 2020) to identify
potential triggers for false-positive linking to MeSH e.g., cat
and mouse in “the game of cat and mouse” could be mapped
to Cats and Mice, respectively. We then searched PubMed
with these trigger terms to get the frequency of their use in
publications. We identified seven most frequent false posi-
tives triggers that are shown in Table 1 along with the sizes
of the training and test sets for each term.

We then searched PubMed for the exact figurative expres-
sions, and for the abstracts containing trigger terms that were
either indexed or not with the corresponding MeSH head-
ings. Abstracts with trigger terms and MeSH headings serve
as examples of literal use in the training set, and abstracts
without MeSH headings serve as examples of non-literal
use. For the test sets, we randomly sampled files from both
distributions and manually annotated the sentences contain-
ing the terms at the token level. We annotated fine-grained
senses corresponding to:

1. Full MH: the literal Mesh Heading-appropriate sense,
e.g., “a healthy baby at 34 weeks of gestation.” The labels
assigned by the indexers were not shown to the annotators
to avoid bias.

Term (MH) Check Tag Training Test
fall (Accidental Falls) no 45,820 895
fish (Fishes) no 18,256 513
juvenile (Adolescent) yes 59,176 581
baby (Infant) yes 1,065 270
bull (Cattle) yes 1,194 555
cat (Cats) yes 4,368 542
dog (Dogs) yes 19,167 905

Table 1: Sizes of the training and test sets for each term in the
PubMed Figuratively Language Collection. The Check Tag
column indicates if the term is a required term to be added
because it pertains to the subject of the study. Check Tags are
the most frequently used MeSH terms, which indicates our
collection covers a sizable portion of false positive triggers.

2. Partial Literal: MH-appropriate sense, but being a part
of an expression, which should not trigger mapping to
MeSH, e.g., shaken baby syndrome.

3. Literal Other: Literal senses other than MH, e.g., baby
hamster is still a baby, but it should not be indexed with
Infant, which applies only to human babies.

4. Figurative: Non-literal use of the term, e.g., in “There’s
a Baby in this Bath Water!”

Each document was annotated by two annotators and the dif-
ferences were reconciled.

Experiments
We explored CNN-RNN (Svoboda 2020 (accessed Novem-
ber, 2020), Logistic Regression (Pedregosa et al. 2011) and
BERT-based (Kaiyinzhou 2020 (accessed November, 2020)
approaches with various embeddings and the Universal Sen-
tence Encoder (Cer et al. 2018). We used sentences from
PubMed abstracts containing the trigger terms and the ex-
pressions from the above collections of idioms for train-
ing these models. Due to sparseness of the annotations and
unavailability of sufficient examples for training and for
judging the results, we collapsed the annotations into two
classes: figurative or literal MH-appropriate. Any terms that
were labeled LiteralOther or PartialLiteral were relabeled
as Figurative. For example, in an article about dog owners,
dog was considered as non-literal. Terms labeled as Figura-
tive or FullMH remained unchanged.

We then approached the task as binary classification at the
sentence or token level.

To train the CNN-RNN and Logistic Regression mod-
els, sentences containing the target trigger terms were ex-
tracted from a set of retrieved documents that were labeled
using MeSH indexing information as described above. Each
extracted sentence was assigned the label of the document
from which it was derived. Sentence embeddings were gen-
erated using a Doc2Vec (Rehurek and Sojka 2010) model
pre-trained on the documents retrieved for the trigger terms.

In the CNN-RNN approach, the embeddings and asso-
ciated labels served as input to a neural network contain-
ing four groups of four layers: convolutional layer, dropout,
max-pooling, and dropout, followed by an LSTM layer.



Term
Sentence level Token level

CNN-RNN Logistic regression USE BERT
P R F1 A P R F1 A P R F1 A P R F1 A

fall 0.77 0.68 0.72 0.99 0.64 0.78 0.71 0.73 0.89 0.89 0.89 0.88 0.37 0.34 0.35 0.98
fish 0.51 0.48 0.50 0.99 0.58 0.45 0.50 0.50 0.58 0.54 0.56 0.48 0.37 0.35 0.36 0.98
juvenile 0.77 0.64 0.70 0.99 0.97 0.38 0.55 0.86 0.82 0.83 0.82 0.80 0.37 0.36 0.37 0.99
baby 0.76 0.99 0.86 0.99 0.39 0.36 0.37 0.39 0.67 0.56 0.61 0.45 0.61 0.61 0.61 0.99
bull 0.90 0.87 0.88 0.99 0.56 0.38 0.45 0.58 0.78 0.74 0.76 0.71 0.84 0.86 0.85 0.99
cat 0.77 0.74 0.76 0.99 0.54 0.74 0.63 0.54. 0.73 0.73 0.73 0.65 0.68 0.78 0.73 0.99
dog 0.76 0.97 0.85 0.98 0.48 0.55 0.51 0.50 0.63 0.58 0.60 0.65 0.76 0.78 0.77 0.99

Table 2: Results of predicting literal and figurative use of trigger terms. USE = Universal sentence encoder, R = Recall, P
= Precision A = Accuracy. The differences in 0.99 accuracy between the CNN-RNN and BERT approaches are in the third
decimal point.

The model uses a sigmoid activation function, binary cross-
entropy loss and the adam optimizer.

We used the SciKit Learn Logistic Regression classifier,
with Doc2Vec output as inputs.

The Universal Sentence Encoder was also applied in the
sentence level classification task. Unlike the Doc2Vec mod-
els, the Universal Sentence Encoder was trained on a very
large corpus using a variety of sources. In our approach, each
sentence vector representation was generated using the Uni-
versal Sentence Encoder during training. The vector repre-
sentation and the sentence label was then passed to a two-
layer neural network consisting of a RELU and a softmax
layer. A categorical cross-entropy loss and the adam opti-
mizer was used when building the model.

We used BERT encoder extended with a CRF layer
for Named Entity Recognition (Kaiyinzhou 2020 (accessed
November, 2020) for the token-level classification of lit-
eral and figurative use of the tokens. We used BIO-style
(Beginning-Inside-Outside) features. To train BERT, we
tagged the trigger terms with the label of the sentence and
all other terms in the sentence as outside.

Results
Table 2 summarizes the results obtained for the binary clas-
sification approaches to detection of figurative language.
The PubMed searches yielded training sets of varying sizes,
ranging from 1, 065 documents for baby, to 59, 176 for juve-
nile. The manually annotated test sets for each of the terms
range from 270 to 905 documents. The size of the training
set does not seem to be directly correlated with the results,
as shown in Figure 1.

Discussion
We created a collection of PubMed abstracts automatically
annotated for literal and non-literal use of seven terms that
proved to be a rich source of false positive linking to termi-
nologies and have sufficient amounts of training documents
in PubMed. Interestingly, one of these terms, fall was also
found to be difficult to classify as figurative in the open do-
main tasks (Stowe et al. 2019).

We explored several state-of-the-art approaches, casting
the task as binary classification at the sentence and to-

Figure 1: The size of the training set does not always directly
influence the best F-1 scores obtained in figurative language
detection

ken level. We hoped to identify one best approach for the
task and achieve state-of-the-art performance for all trigger
terms. The best results reported in the literature for the open-
domain figurative language detection and in the shared task
on metaphor detection (Klebanov et al. 2020) are around
70% F-1 score, sometimes reaching 80% and above perfor-
mance. Although we have obtained F-1 scores above 80%
for five of the seven terms, we cannot identify a single ap-
proach that will achieve good scores on all trigger terms.
The F-1 score for fish is only 56%. This score could prob-
ably be explained by the fact that this term often violates
the widely used WSD assumption of “one sense per docu-
ment” (Yarowsky 1995), which we used to create the train-
ing set. As can be seen in the example, two senses of fish are
used in the same sentence:

These preliminary results provide the basis for the fur-
ther development of a non-GMO approach to modu-
late fish allergenicity and improve safety of aquacul-
ture fish. (PMID: 31622806)

The indexers labeled this article with both Fishes and
Seafood. When the contexts for these occurrences of fish are
used in the models as positive examples, they might be too
close to the contexts of the articles that present fish only in
the context of food and thus serve as negative examples.

With respect to identifying one approach that would work



best for all of the trigger terms, we can see that cast-
ing the task as sentence-level classification and using the
CNN-RNN model produces the majority of best results.
Stowe (2019) observes that fall is difficult to classify be-
cause the distribution of the literal and metaphoric uses of
this word in the open domain is almost even. In our an-
notations, we also observed frequent use of fall in person-
ification, which might explain why the Universal Sentence
Encoder pre-trained on a variety of sources performs much
better for falls.

Another interesting observation is that if we want to select
a method for automated indexing, we will have to decide
if recall or precision are more important when suggesting
the terms. For cat, dog, fish and juvenile, the differences in
these two metrics achieved by different approaches are rel-
atively large, although the F-scores are mostly close, show-
ing a typical trade-off between the two metrics. In selecting
approaches to support automated indexing, precision often
plays an important role, as currently the consensus is that it
is better to miss a term than to assign an inappropriate term
that will mislead the search engines that rely on MeSH in-
dexing. For that reason, we do not consider accuracy when
selecting an approach for supporting automated indexing.

Our work has some limitations that we hope to address in
the future. First, we addressed only seven of the hundreds
of terms used figuratively in the biomedical literature. Al-
though the seven terms provided enough information to see
that no single approach is a winning strategy, additional an-
notations will be needed for testing approaches to figurative
language detection on PubMed scale. We also found that
for many remaining terms figurative use in PubMed is in-
frequent and additional sources of figurative language will
be needed for training. For example, butterflies in my stom-
ach is used in PubMed only two times, and butterflies AND
stomach 20 times. More data will be needed to train a clas-
sifier to distinguish between these two titles:

Butterflies in My Stomach: Insects in Human Nutrition

Neurotic butterflies in my stomach: the role of anxiety,
anxiety sensitivity and depression in functional gastroin-
testinal disorders

Conclusions
This work presents an initial exploration of the use and de-
tection of figurative language in biomedical publications. On
the one hand, figurative language is known to play an im-
portant role in thought processes and in science, and there-
fore being widely used in biomedical publications, on the
other hand, automated detection of figurative language in
the biomedical publications has not yet attracted research.
To explore feasibility of automated detection of figurative
language, we created a collection of documents annotated
for literal or non-literal use of seven terms that are known to
cause errors in automatic indexing of biomedical abstracts
with MeSH terms. We then explored sentence and token-
level classification approaches to detection of figurative lan-
guage using CNN-RNN, logistic regression and transformer
models. With the exception of one term, fish, our perfor-
mance is on par with the state-of-the-art achieved in the

open domain evaluations. We hope that the interesting prob-
lem of detection of figurative language in biomedical text,
the dataset, and the automated approach to creation of the
training sets outlined in this work will bring about further
research in this area.

Data & code: https://ii.nlm.nih.gov/DataSets/index.shtml
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