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Abstract  
In 1970, Academician V.M. Glushkov published a paper, in which he, along with a 

discussion of some of the problems of artificial intelligence, formulated a research 

programme called Evidence Algorithm (EA), containing his vision of the problem of a 

computer-aided support of a human in theorem proving in mathematics. He suggested to 

make a research on the creation of an automated theorem-proving system with a formal 

language of a natural type as its input language, with a proof search procedure constructed on 

the notion of a computer evidence of a machine-made proof step developing in accordance 

with a knowledge accumulated by the system during its operation, and with the possibility of 

a human to make intervention in the proof search process. Two attempts have been made in 

order to implement this programme. The first led to the appearance in 1978 of the Russian-

language automated theorem-proving system, denoted by RuSAD, and the second – to the 

appearance in 2002 of the English-language system for automate deduction, denoted by 

EnSAD. And if the development and trial operation of RuSAD were stopped in 1992 after 

the output from service of the ES-line computers, EnSAD, after its placement on the website 

“nevidal.org”, is still online available now. This work is mainly devoted to the description of 

the approaches to the creation and realization of the evidential “engines” of both RuSAD and 

EnSAD – a topic insufficiently covered in publications on EA, RuSAD, and EnSAD. 
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   Continuous improvement of the evidence algorithm will lead, sooner or 

later, to the fact that all the theorems that we know today will become                              

evident from the point of view of the machine. During this period, the role 

of a mathematician will consist mainly in defining new concepts and in                            

formulating a fundamentally new proposition and the art of proving a       

new machine-nonevident theorem will consist primarily in the ability to                            

formulate a number of intermediate theorems and lemmas, each of which                               

will be evident to the machine. 

V.M. Glushkov, [1], 1970  

1. Introduction 

The first publications devoted to the possibility of using computers for making logical 

constructions, relate to the late 1950’s - early 1960’s (see, for example, [2] and [3]), when there were 
appeared computers of such a performance, memory capacity, and informational flexibility that the 

programming of complex intelligent processes has become possible. An early history of the 
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development of this branch of computer science in Western countries can be found in [4]. As for the 

USSR and the countries of Eastern Europe, two schools of automated theorem proving appeared in 
the USSR almost simultaneously in the 1960s: one created by Academician V.M. Glushkov and the 

other in Leningrad, for the description of which we refer to [5] (see also [6]). 

In 1962, V.M. Glushkov first spoke about the possibility of a computer to make intelligent 

processing of information in mathematics. Soon there was formed the first team of researchers on 
automated theorem proving. It was active from 1962 to 1969 and its precise subject was an analysis of 

proofs in Group Theory. During its research, the first steps were made in the framework of the 

Evidence Algorithm programme: there were constructed both a language for writing mathematical 
texts and a procedure for logical inference search. The last was later transformed into the so-called 

(sequent) calculus of auxiliary goals (AG calculus) [7], partially satisfying the following EA 

requirements: (i) an EA-style calculus should preserve the structure of an original problem, (ii) 
deduction in it should be separated from equality handling, (iii) it should goal-oriented, (iv) a proof 

search in it was should carried out in the signature of an original theory (for the achievement of this, 

in AG instead of skolemization, the Kanger notion [8] of the admissibility of a substitution of terms 
for variables was used and this made it possible to increase the efficiency of a logical search in AG in 

comparison with calculi using the ordinary Gentzen notion of an admissible substitution [9])2. 

After joining a new, second team of investigators to research on EA in 1971, a new stage began in 
the implementation of EA. As a result, the Russian-language system for automated deduction (here 

called Russian SAD and denoted by RuSAD) was constructed in accordance with the EA theses and 

it was put into trial operation in 1978. At that time span, the formal natural language TL [10] being in 

full compliance with the EA requirements for languages for writing mathematical texts was created 
and implemented in RuSAD. As for the RuSAD evidence maintaining engine, it was realized on the 

basis of both the resolution technique [11] and the sequent one, going back to the AG calculus, but 

using instead of the Kanger notion of admissibility, a new notion proposed by one of the authors of 
this paper in 1975 for improving quantifiers handling technique in the case, when the preliminary 

kolemization becomes a undesirable or impossible operation. 

From 1983 until the collapse of the USSR and the decommissioning of the ES-lines computers in 
1992, on which RuSAD was implemented, RuSAD was improved only in the direction of embedding 

human heuristic methods in its resolution part. The sequent approach to logical reasoning in the EA 

style did not develop in any way and was “preserved”, as it were, until 1998, when the paper's authors 

along with other researchers were joined to fulfilling the Intas project “Rewriting technique and 
efficient theorem proving”, in the framework of which there was decided to construct an English-

language version of the RuSAD system, but already at a new level of the understanding of the EA 

programme and advances in information technologies. 
This version, here called English SAD and denoted by EnSAD, was announced in 2002 at the IIS 

2002 conference [12]. Now, the current EnSAD system is located at the site “http://nevidal.org/ 

sad.en.html” and there exists an online access to it. As its input language, EnSAD uses the ForTheL 

language [13] being an English-language modification of TL expanded later by a set of linguistic 
units for writing theorem proofs, which has turned EnSAD into a system capable of not only proving 

theorems, but also verifying mathematical texts. The own logical engine of EnSAD is built only on 

sequent formalism. But in order for the EnSAD system to use the already well-known (external) 
provers such as Vampire, SPASS, Otter, and so on, EnSAD contains a mechanism for connecting to 

these provers if a user so wishes (see, for example, [14]). In addition, a specific ontological method 

[15] for the processing of mathematical ForTheL-texts is implemented in EnSAD. For constructing 
the EnSAD logical engine, the sequential approach to conducting logical reasoning in the EA-style 

was revised and improved, which subsequently led to the emergence of a whole family of computer-

oriented sequent calculi for both classical first-order logic and non-classical ones [16]. 

In 2008, work on the development of the EnSAD system was suspended due to lack of a financial 
support, but a theoretical studies on the construction of computer-oriented sequent calculi for a proof 

                                                   
2 Here, we note that in what follows, we focus on the development and implementation of EA relating to the construction of a technique for 

a proof search in the EA-style. This is due to the fact that as a part of the research on EA, an original approach to the construction of 

machine-oriented calculi in the EA-style has been developed, to which the authors would like to draw attention of researchers on automated 

reasoning from the point of view of constructing efficient enough sequent calculi not only for classical first-order logic, but also for non-

classical first-order ones, in particular, for r intuitionistic logic. All the others connected with EA found its description in [17]. 
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search in classical and non-classical first-order logics have been continued. But in the course of such 

studies, an exact description of ideas that were used for constructing the evidential engines of the 
RuSAD and EnSAD systems are not fully reflected in publications on EA. This paper is intended to 

fill this gap and outline some possible ways of the further development of the EnSAD system.  

2. EA and information processing in RuSAD and EnSAD 

Both the systems, RuSAD and EnSAD, were constructed as applications suitable for the 
processing of mathematical texts written in a formal mathematical language. They are intended for 

solving the following task: 

Let a (self-contained) text be written in a formal mathematical language and a certain proposition 

be pointed in it. It is necessary to find a proof of the proposition or to verify its proof given by a 
human. 

The following scheme of a text transformation was proposed for the RuSAD and EnSAD systems 

(more details can be found in [17]): 

Formalized text prepared by a user to prove/verify a theorem ⇒ 

⇒ (using a parser) A self-contained first-order text ⇒ 

⇒ (using a prover) A computer-made proof/verification ⇒ 

⇒ (using an editor) Text in a form comprehensible for a human. 

For preparing formalized (mathematical) texts, the Russian- and English-language versions of 
certain fragments of Russian and English natural languages were constructed, namely, TL (Theory 

Language) and ForTheL (Formal Theory Language), relatively. Their grammars and syntactical 

analyzers were designed and implemented in such a way that their outputs are computer internal 
presentations of formulas of the first-order language. 

Note that TL and ForTheL reflect Glushkov's desire to have practical formal languages suitable 

for writing mathematical sentences and their proofs. (He wrote that they “should relate to the existing 

formal languages of mathematical logic as, for example, the ALGOL-60 language relates to the 
language of recursive functions or normal algorithms”[1].) 

Here we complete the consideration of TL and ForTheL since there are many enough 

publications on these languages (the most part of such references can be found in [17] and, in 
particular, ForTheL has its complete description in the “ForTheL Reference” located on the site 

“nevidal.org”. At that, original “units” of the logical background of the “engines” of RuSAD and 

EnSAD do not have a detailed enough description in publications on the EA programme and SAD 
systems. Namely this will attract our attention in the rest of the paper. 

Additionally, note that we restrict us by only the exact descriptions of sequent calculi providing 

this logical background, completely leaving aside relevant proofs and focusing attention only on their 

features. 

3. Basic notions 

A standard terminology of first-order logic without equality is used. The first order language is 

constructed over a signature, containing a countable set Vr of (object) variables, a finite (possibly, 

empty) set of functional symbols, and a finite (nonempty) set of predicate symbols. 
Formulas are constructed with the help of the following logical connectives: the universal 

quantifier symbol ∀, the existential quantifier symbol ∃, and the propositional connectives for the 

implication (⊃), disjunction (∨), conjunction (∧), and negation (¬). 

The notions of terms, atomic formulas, formulas, literals, complement literals, free and bound 

variables, and scopes of quantifiers are defined in the usual way [18] and assumed to be known to a 
reader. 

We assume that no two quantifiers in any formula have, which can be achieved by renaming 

bound variables. Let a formula Φ be of the form ¬Ψ or Ψ ⊙ H  (where ⊙ is one of ∧,a common 

variable ∨, ⊃), then ¬ and ⊙ are called a principal propositional connective of Φ. 
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An equation is an unordered pair of terms s and t written as s ≈ t. Assume L is a literal of the form 

R(t1, ..., tn ) (or ¬R(t1, ..., tn)) and M is a literal of the form R(s1, ..., sn) (or ¬R(s1, ..., sn)), where R is a 
predicate symbol and t1, ..., tn, s1, ..., sn are terms. Then Σ(L, M) denotes the set of equations {t1 ≈ s1, 

..., tn ≈ sn}. In this case, L and M are said to be equal modulo Σ(L, M) (L ≈ M modulo Σ(L, M)). 

A function σ from a set of variables to the set of terms is called a substitution if, and only if, it can 

be presented in the form σ = {x1 → t1, ..., xn → tn}, where t1, ..., tn are terms, x1, ..., xn are pairwise 
different variables, and xi ≠ ti for all i = 1...n. 

Let Ex be an expression (i.e., a term or a formula) and σ a substitution. The result of the 

application of σ to Ex is denoted by Ex·σ. For any set Ξ of expressions, Ξ·σ denotes the set obtained 
by the application of σ to every expression in Ξ. If Ξ is a set of (at least two) expressions and Ξ·σ is a 

singleton, then σ is called a unifier of Ξ. 

The notions of a most general unifier and most general simultaneous unifier (mgsu) of sets of 
expressions are understood in the usual sense (see, for example, [11]). 

If σ and λ are substitutions, then σ·λ denotes their composition, i.e. a substitution, the result of the 

application of which to an expression Ex is equal to (Ex·σ)·λ. 

A sequent is an expression of the form Φ1, ..., Φp => Ψ1, ..., Ψq, where Φ1, ..., Φp, Ψ1, ..., Ψq are 
formulas except that as in the case of [18], its succedent and antecedent are finite multisets. Note that 

without lost of generality, we can regard that Φ1, ..., Φp, Ψ1, ..., Ψq are closed formulas and that all our 

sequents contain no more than one formula in their succedents (i. e. q ≤ 1). 

A tree is understood in the usual sense. A tree labeled by sequents is called a sequent tree. 

In what follows, S∗ denotes the sequent ∀x1∃y1(R1(x 1) ∨ R2(y1)), ∀x2∃y2((R1(y2 ) ∧ ¬R3(x2)) 

⊃ R3(x2)) => ∀y3∃x3(R2(x3) ∨ R3(y3)) (R1, R2, R3 are predicate symbols) that is deducible in G 

[18] and will be used in several examples clarifying introduced notions and obtained results. 

For formulas Φ and Ψ, we understand the notions of positive (ΨΦ+) and negative (ΨΦ-) 
occurrences of Φ in Ψ in the sense of the paper [19]. 

More precisely, let a formula Φ have one or more occurrences in a formula Ψ. Let us fix a certain 
occurrence of Φ in Ψ. This occurrence is called positive (negative) according to the following 

inductive definition: 

– ΨΦ+ holds, if Φ coincides with Ψ;  

– ΨΦ+ (ΨΦ-) holds, if Ψ is of the form Ψ1 ∧ Ψ2, Ψ2 ∧ Ψ1, Ψ1 ∨ Ψ2, Ψ2 ∨ Ψ1 , Ψ2 ⊃ Ψ1,   

∀xΨ1 , or ∃xΨ1 and Ψ1Φ
+ (Ψ1Φ

-) holds; 

– ΨΦ- (ΨΦ+) holds, if Ψ is of the form: Ψ1 ⊃ Ψ2 or ¬Ψ1 and Ψ1Φ
- (Ψ1Φ

+) holds. 

Moreover (cf. [19]), a selected occurrence of a formula in a sequent Γ => ∆ is called a positive 

(negative) one, if this occurrence is fixed as a positive in a formula from ∆ (from Γ) or as a negative in 

a formula from Γ (from ∆). 

If a formula Φ is of the form ∀xΦ' (∃xΦ') and Φ has a positive (negative) occurrence in a 

formula Ψ or a sequent S, then ∀x (∃x) is called a positive quantifier in Ψ or S, respectively; ∃x 

(∀x) is called a negative quantifier in Ψ or S, if ∃xΦ' (∀xΦ') has a positive (negative) occurrence in 

Ψ or S, respectively. 
By the eigenvariable convention, any quantifier cannot have more than one (positive or negative) 

occurrence in a formula or sequent. Hence, the following definitions do not lead to misunderstanding. 

The variable of a positive quantifier occurring in a formula Ψ (a sequent S) is called a parameter in 
Ψ (in S); the variable of a negative quantifier occurring in Ψ (in S) is called a dummy in Ψ (in S). 

Note that we preserve the name “variable” for denoting both dummies and parameters in the cases, 

when it is only important that they occur in a formula or sequent under consideration. 

For S∗, we have: x1, x2, and x3 are dummies and y1, y2, and y3 parameters.  

Because the properties “to be a dummy” and “to be a parameter” are invariant for any variable x 

w.r.t. any rule application in our sequent calculi, the satisfaction of the following convention will not 
lead to an ambiguity: if the application of a quantifier rule eliminates a positive (negative) quantifier 

Qx (Q is ∀or ∃) and substitutes a variable y for x, then y is considered as a parameter (dummy). 
For technical reason only, we write x in order to indicate that when a quantifier rule is applied, x is 

replaced by a new parameter (denoted by x) and, analogously, write x in order to indicate that when a 

quantifier rule is applied, x is replaced by a new dummy (denoted by x). 
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We use the usual definition of a sequent calculus; at that, the deduction of a sequent in it has the 

form of an inference search tree growing “from top to bottom” according to the applications of 
inference rules “from top to bottom”. 

An inference search tree is called a proof tree, if all its leaves are labeled by axioms. A sequent S is 

deducible in a sequent calculus, if there exists a proof tree for S in the calculus and, maybe, some 

additional conditions are satisfied. Note that any sequent calculus under consideration does not 
contain the cut rule and that all its rules satisfy the subformula property (see, for example, the paper 

[9] or [18]). 

4. Admissible substations 

When quantifier rules are applied, some substitution of selected terms for variables is made. To do 
this step of deduction sound, certain restrictions are put on the substitution. The substitution, 

satisfying these restrictions, is said to be admissible. Below we investigate the classical notion of 

admissible substitution and show how it can be modified in such a way that efficient enough sound 
and complete sequent calculi can be finally obtained. We follow the paper [20], in which the sound 

and complete calculus G [14] is taken for the demonstration of peculiarities of quantifier handling in 

sequent calculi reflecting in the logical “engines” of RuSAD and EnSAD. 

4.1.  Gentzen‘s admissible substitutions 

Gentzen quantifier rules are usually of the following form [14]: 
 

     (∃: left)-rule:      Γ, ∃xΦ => ∆ ,                (∀: right)-rule:     Γ => ∀xΦ, ∆ , 
        Γ, Φ|x

y  => ∆                                               Γ => Φ|x
y , ∆  

 

    (∀: left)-rule:      Γ, ∀xΦ => ∆ ,                (∃ : right)-rule:     Γ => ∃xΦ, ∆ .  
                                          Γ, Φ|x

t => ∆                                                   Γ => Φ|x
t , ∆       

where y is a new parameter, the term t is required to satisfy the eigenvariable condition, that is, t 

should be free for the variable x in the formula Φ; at that, Φ|x
y and Φ|x

t denote the results of the 

replacement of x by y and t, respectively. The restriction of the substitution of t for x leads to the 
Gentzen (classical) notion of admissible substitutions, which proves to be sufficient for the needs of 

the proof theory. But it becomes inconvenient from the point of view of efficiency of computer-

oriented sequent calculi. It is clear from the following example. 
Rewrite the sequent S∗ in the form Φ∗

1, Φ
∗
2 => Ψ∗, where Φ∗

1 is ∀x1∃y1(R1(x 1) ∨ R2(y1)), Φ
*
2 is 

∀x2∃y2((R1 (y2 ) ∧¬R3(x2)) ⊃ R3(x2)), and Ψ∗ is ∀y3∃x3(R2(x3) ∨ R3(y3)).  

Later, it will be shown that S∗ is deducible in G, while here we note that for establishing this, 

quantifier rules should be applied to all the quantifiers occurring in Φ∗
1, Φ

∗
2, and Ψ∗. 

Therefore, the Gentzen classical notion of admissible substitution yields 90 (= 6!/(2!*2!*2!)) 

different orders of the quantifier rule applications to the sequent Φ∗
1, Φ

∗
2 => Ψ∗. And only one of 

them (subsequently eliminating the quantifiers in the order: ∀y3, ∀x2, ∃y2, ∀x1, ∃y1, ∃x3) leads to 

establishing the provability of S∗. Thus, in the worse case, we should check all 90 possible quantifier 

rules applications. It is clear that due to skolemazation, resolution type methods permit to avoid this 

redundant work. 

4.2.  Kanger‘s admissible substitutions 

To optimize the procedure of quantifier rules applications, S. Kanger suggested in [8] his sequent 
calculus, denoted here by K. In the K calculus, a proof search is being split into stages, leading to the 

construction of a ``pattern'' of a deduction tree, maybe, containing parameters and dummies. To 

complete the deduction process, once in a while an attempt is made to convert a “pattern” into a proof 
tree by substituting certain terms for dummies. In the case of failure, the process is continued. 

The main difference between K and G consists in splitting the inference search process into stages 

and using special modifications of the above-given quantifier rules. Thus, the calculus K also contains 
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(∃ : left) and (∀ : right), while the rules (∀ : left) and (∃ : right) are replaced by the rules (cf. [8]): 

 (∀': left)-rule:   Γ, ∀xΦ => ∆                               (∃': right):   Γ => ∃xΦ, ∆ 

                             Γ, Φ|x
z => ∆     [z/t1, ..., tn]                                Γ => Φ|x

z , ∆     [z/t1, ..., tn]   
where t1, ..., tn are some of the terms that can be constructed from constant, parameters, and functional 

symbols occurring in the conclusion of the rules, z is a dummy, and [z/t1, ..., tn] denotes that when an 

attempt is made to convert a “pattern” into a proof tree, a dummy z can be replaced by one of the 
terms t1, ..., tn only. This replacement of dummies by terms is made in the end of every stage, and at 

every stage, inference rules are applied in a certain order. 

This scheme of the deduction construction in the K calculus leads to the notion of a Kanger-

admissible substitution, which is more efficient than the classical one. Thus, for the above-given 
example it yields only 6 (=3!) variants of different possible orders of the quantifier rule applications 

(and none of these variants is preferable). Despite this, the Kanger-admissible substitutions still do not 

allow to attain efficiency comparable with that when skolemization is made. The reason for this is 
that, as in case of the classical admissible substitution, it is required to select a certain order of the 

quantifier rule applications when an input sequent is deduced, and, if it proves to be unsuccessful, 

another order of applications should be tried, and so on. 

4.3.  Word admissible substitutions 

On the example of the mG calculus from [20], being a modification of the G calculus, let us 

demonstrate how the below-given new notion of an admissible substitution permits to get rid of the 

dependence of the deduction efficiency in sequent calculi on different possible orders of quantifier 
rule applications. 

The main idea of this notion is to determine by the quantifier structures of formulas of an input 

sequent and a substitution under consideration, whether there exists a sequence of desired quantifier 

rules applications or not. 

Let W be a set of sequences (words) of parameters and dummies and σ a substitution. Put (W, σ) 

= {z, t, w : z is a variable of σ, t is a term of σ, w  W, and z lies in w to the left of some parameter 

from t}. The substitution σ is said to be word admissible (w-admissible) for W if, and only if, (1) all 

the variables of σ are dummies and (2) in (W, σ), there are no elements z1, t1 , w1, ..., zn, tn, wn 

such that z1 → t2  σ, ..., z(n−1) → tn  σ, zn → t1  σ (n > 0). 

Let us make some remarks about the mG calculus. It deals with formulas, except that a certain 
sequence of parameters and dummies is attached to each formula from sequents. That is why the mG 

calculus is defined on pairs of the form w, Φ, where Φ is a formula and w a word (sequence) of 
parameters and dummies. 

An expression of the form w1, Φ1, ..., wm, Φm => v1, Ψ1, ..., vn, Ψn, where w1, ..., wm , v1, ..., 
vn are sequence of parameters and dummies and Φ1, ..., Φm, Ψ1, ..., Ψn are formulas, is called an a-

sequent. At that, the empty sequence is always added to all the formulas of an initial sequent 
producing a so-called input a-sequent for mG. 

Consider the following quantifier rules. 

Γ, w,∃xΦ => ∆                                  Γ, w,∀xΦ => ∆ 

Γ, wy,Φ|x
y => ∆        (∃∗: left),           Γ, wy,Φ|x

y => ∆         (∀∗: right), 

Γ, w,∀xΦ => ∆                                  Γ, w,∃xΦ => ∆ 

Γ, wy,Φ|x
y => ∆         (∀∗: left),          Γ, wy,Φ|x

y => ∆         (∃∗: right), 

where w is a word, Φ a formula, y a parameter, and z a dummy. 
The calculus mG can be defined as the G calculus expanded on the case of w-sequents and 

containing the just-given quantifier rules instead on its own quantifier rules. 

Applying first rules “from top to bottom” to an input a-sequent for mG and afterwards to its 
“heirs” “from left to right”, and so on, we finally obtain a so-called inference search tree for the input 

a-sequent. 

An inference tree Tr for an input a-sequent is called a proof tree in mG if, and only if, there exists 

such a substitution of terms for variables, say, σ, that (1) after application of σ to all the formulas from 
the a-sequents of all the leaves of Tr, these a-sequents become axioms, that is, each of them is of the 
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form Γ => ∆ with such Γ and ∆ that Γ and ∆ contain the same formula, and (2) the substitution σ is w-

admissible for the set of all the words of parameters and dummies from all the leaves of Tr. 
As it was shown in [20], a sequent S is deducible in G if, and only if, a proof tree for the input a-

sequent corresponding to S can be constructed in mG. That is mG is a sound and complete calculus 

for classical first-order logic in the sense of this “coextensivity” of G and mG.  

If we consider the above-given sequent S∗ and the corresponding input a-sequent , Φ∗
1, , Φ

∗
2 => 

, Ψ∗ for mG, then applying only quantifier rules eliminating all quantifiers in Φ∗
1, Φ

∗
2, and Ψ∗ in 

any order and after this, applying only propositional rules to the result, we can construct an inference 

tree, say, Tr, all leaves of which are the following a-sequents: 

x1y1, R1(x1), x2y2, R3(x2) => y3x3, R2(x3), y3x3, R3(y3), 

x1y1, R1(x1) => y3x3, R2(x3), y3x3, R3(y3), x2y2, R1(y2), 

x1y1, R2(y1), x2y2, R3(x2) => y3x3, R2(x3), y3x3, R3(y3), 

x1y1, R2(y1) => y3x3, R2(x3), y3x3, R3(y3), x2y2, R1(y2), 
where x1, x2, x2 are dummies and y1, y2, y3 parameters. 

For a substitution σ∗ = {x1 → y2, x2 → y3, x3 → y1}, we see that the application of σ∗ to all the just-

given leafs converts them into axioms of mG. Moreover, σ∗ is w-admissible for the set {x1y1, x2y2, 

x3y3}. Thus, Tr is a proof tree in mG, which implies the deducibility of S∗ in the G calculus. 

Note that the proof of the proposition about the soundness and completeness of mG is carried out 

in [16] in such a way that if in it we replace the G calculus by another (sound and complete) sequent 

calculus, say, G' , with the usual quantifier rules, then the replacement of them by (∃∗: left)-, (∀∗: 

right)-, (∀∗: left)-, and (∃∗: right)-rules leads to a calculus, say, mG' defined on w-sequents, such 

that G' and mG' possess the same properties w.r.t. deducibility that G and mG have. 

5. RuSAD and automated theorem proving 

The above-given example demonstrates that inference search in mG has the following properties 

provided by using the w-admissibility instead of the Gentzen or Kanger one: 

– the selection of an order of quantifier rules applications does not affect the final result, which 
means the following: (1) if a selected order of the applications of quantifier rules in mG leads to the 

construction of a proof tree, then the same proof tree can be constructed in the case of the selection of 

any another order of the quantifier rule applications eliminating the same quantifiers that were 

eliminated in using the selected order; (2) if a selected order of applications of quantifier rules in mG 
cannot lead to the construction of a proof tree, then any another order of the quantifier rule 

applications eliminating the same quantifiers that were eliminated in the selected order cannot lead to 

the construction of a proof tree.  
– the selection of a substitution can be made at any suitable moment; as a result, equality handling 

can be separated from deduction. 

These positive features of mG demonstrate the usefulness of incorporating the notion of a w-
admissible substitution into computer-oriented inference search. Below, we make the reconstruction 

of the AG calculus from [7] denoted by mAG and take it as a basic calculus when constructing the 

sequent logical engine of RuSAD. 

5.1.  Calculus of w-sequents 

A basic object of the mAG calculus is a w-sequent. It may be considered as a special 

generalization of the standard notion of a sequent. We will deal with w-sequents having only one 

object (goal) in its succedent, which allows making inference search in mAG goal-driven. 

An ordered triple w, Φ, E is called an ensemble if, and only if, w is a sequence (a word) of 
dummies and parameters, Φ is a first-order formula, and E is a set of pairs of terms t1, t2 (equations of 
the form t1 ≈ t2). 

A w-sequent is an expression of the form w1, Φ1,  E1,..., wn, Φn, En => w, Ψ, E, where 

w1, Φ1, E1, ..., wn, Φn, En,  and w, Ψ, E are ensembles. 



151 

 

Ensembles in the antecedent of a w-sequent are called premises, and an ensemble in the succedent 

of a w-sequent is called a goal of this w-sequent. 
The mAG calculus contains goal-splitting rules and premise-splitting rules transforming a sequent 

under consideration into w-sequents obligatorily with new goals and, maybe, new premises. 

The goal-splitting rules make decomposition of Ψ in w1, Φ1, E1,..., wn, Φn, En => w, Ψ, E by 
its principal logical connective, while premise-splitting rules realizes a possible interaction of Ψ with 

Φi, which leads to generating a new w-sequent (new w-sequents). The sets E1, ..., En, and E define the 
terms to be substituted for dummies in order to transform each equation of the form t1 ≈ t2 from E1, ..., 

En, and E to an identity of the form t ≈ t by applying to E1, ..., En, and E a substitution chosen in a 

certain way. The words (sequences) w1, ..., wn, and w participate in checking whether a substitution 
generated during a proof search is w-admissible.  

An initial w-sequent is constructed as follows. Suppose we want to establish the deducibility of a 
usual (original) sequent S of the form Φ1, ..., Φn => Ψ (for example, in the calculus G), where Φ1, ..., 

Φn and Ψ are closed formulas. Then w-sequent , Φ1, , ..., , Φn,  => , Ψ,  is declared as an 
initial one for Φ1, ..., Φn => Ψ. 

During a proof search in mAG an inference tree is constructed. At the beginning of a search 
process it consists of an initial w-sequent. The subsequent nodes of the inference tree are generated 

accordingly to the rules described below. Note that inference trees grow “from top to bottom”. 

Goal Splitting Rules 

These rules are used for the elimination of the principal logical connective from the formula-goal 

of a w-sequent under consideration. The application of any such a rule results in the generation of a 
new w-sequent (new w-sequents) with only one goal and, possibly, with new premises. The 

elimination of propositional connectives is done on the basis of the well-known transformations of 

formulas in classical first-order logic and can be easily expressed in the form of derivative rules of a 

standard Gentzen-type calculus. 
In the below-given rules, Γ is a multiset of premises, w a word consisting of dummies and 

parameters, E a set of equations, and Φ1, Φ2, and Φ formulas. 

(=>⊃1)-rule:       Γ => w, Φ1 ⊃ Φ2, E                  (=>⊃2)-rule:       Γ =>  Φ1 ⊃ Φ2, E 
   Γ, w, Φ1, E => w, Φ2, E                                   Γ,  w,¬Φ2, E => w, ¬Φ1, E  
 

(=>∨1)-rule:        Γ =>  w,  Φ1 ∨ Φ2, E               (=>∨2)-rule:       Γ =>  Φ1 ∨ Φ2, E 
     Γ,  w, ¬Φ1, E => Φ2, E                                     Γ,  w, ¬Φ2, E => w, Φ1, E  
 

(=>∧)-rule:         Γ =>  w, Φ1 ∧ Φ2, E                 (=>¬)-rule:        Γ =>  w, ¬Φ, E 
                      Γ =>  w, ¬Φ1, E    Γ =>  w, Φ2, E                            Γ => w, Φ', E  

where Φ'  is the result of one-step moving the sign ¬ into Φ, if Φ is not an atomic formula; otherwise 

Φ' coincides with Φ. 

Quantifier Rules 
 

(=>∀)-rule:       Γ => w, ∀xΦ, E                   (=>∃)-rule:          Γ => w, ∃xΦ, E 
                            Γ => wy, Φ|x

y E                                      w, ∀x'(¬Φ|x
x'), E => wz, Φ|x

z, E|x
z 

where x' and z are new dummies and y is a new parameter. 
 

Auxiliary Goal Rules 
 

The Auxiliary Goal rules (AG-rules) are applied, when a formula, say, L, in the goal of a w-
sequent under consideration is a literal and one of the premises of the sequent contains a negative 

(w.r.t. the sequent) occurrence of a literal, say, L' , such that L ≈ L' modulo Σ(L, L'). (We simply write 

L ≈ L', when Σ(L, L') is immaterial.) 
The fixing of a selected occurrence of L' produces such a sequence of rules eliminating logical 

connectives in premises that leads to the “goal-driven” generation of a w-sequent, containing a 

premise with L' as its formula.  
In all the below-given rules, Φ1 and Φ2 are formulas, L and L' are literals and L ≈ L' modulo Σ(L, 

L'), w and w' are words consisting of dummies and parameters, E, E', and E'' are sets of equations 

such that E'' = E ∪ E' ∪ Σ(L, L'). For a formula Φ, the expression ΦL− (ΦL+) denotes that a 

selected occurrence of L in Φ is negative (positive) in Φ. 
 

(⊃1 =>)-rule:                        Γ, w, Φ1L
− ⊃ Φ2, E => w', L', E' 

                               Γ, w, (¬Φ1)L
+,  E =>  w', L', E''    Γ => w, ¬Φ2, E  
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(⊃2 =>)-rule:                        Γ, w, Φ1 ⊃ Φ2L
+, E => w', L', E' 

                                  Γ, w, Φ2L
+,  E  =>  w', L', E''     Γ => w, Φ1, E 

 

(∨ 1 =>)-rule:                     Γ, w, Φ1L
+ ∨  Φ2, E => w', L', E' 

                                  Γ, w, Φ1L
+, E => w', L', E''    Γ => w, ¬Φ2, E  

 

(∨ 2 =>)-rule:                    Γ, w, Φ1 ∨  Φ2L
+, E => w', L', E' 

                                  Γ, w, Φ2L
+, E => w', L', E''   Γ => w, ¬Φ1, E 

 

(∧ 1 =>)-rule:                     Γ, w, Φ1L
+ ∧  Φ2, E => w', L', E' 

                                        Γ, w, Φ1L
+, E, Φ2, E => w', L', E'  

 

(∧ 2 =>)-rule:                     Γ, w, Φ1 ∧  Φ2L
+, E => w', L', E' 

      Γ, w, Φ1, E, Φ2L
+, E => w', L', E'  

 

(¬ =>)-rule:                          Γ, w, ¬(ΦL -), E => w', L', E' 
        Γ, w, Φ'L +, E => w', L', E', 

where Φ'  is the result of one-step moving the sign ¬ into Φ, if Φ is not an atomic formula; otherwise 

Φ' coincides with Φ. 

Quantifier Rules 
 

(∀=>)-rule:  Γ, w, ∀xΦL+, E => w', L', E' ,    (∃=>)-rule:   Γ, w,  xΦL+, E => w', L', E'  , 

                Γ, wy, (ΦL+)|x
y, E => w', L', E'                          Γ, wz, (ΦL+)|x

z, E => w', L', E' 
where y is a new parameter and z a new dummy. 
 

Termination Rules 
 

(=> #1)-rule:                               Γ, w, L , E => w', L', E' 
   Γ => w, #, E'' 

where L and L' are literals such that L ≈ L' modulo Σ(L, L') and E'' = E ∪ E' ∪ Σ(L ,L'). 

(=> #2)-rule:  Let Tr be an inference search tree and Br  some its branch ending by a tree leaf 

Γ => w, L, E, where L is a literal. Let Br contain a w-sequent Γ' => w', L', E',              
such that L' is a literal and  L ≈ L''  modulo  Σ(L, L'')  holds for the complement literal 

L'' of L' and E'' = E ∪ E' ∪ Σ(L, L''). Then the sequent Γ => w, #, E'' is said to be 

deducible from Γ => w, L, E by the (=> #2)-rule. 
 

Premise-Adding Rule 

(ρ =>)-rule: After the  (∀=>)-rule  application,  the triple  w,∀x'(Φ|x
x' ), E  can be added to  

the antecedent of any w-sequent containing wx,(ΦL+)|x
x', E as its premise in a 

current sequent tree, where x' is a new variable. 

Axioms. Axioms are w-sequents of the form Γ => w, #, E, where # denotes the empty formula. 

Proof Tree. An inference tree Tr in mAG is called a proof tree in mAG if, and only if, all the 
leaves of Tr are axioms, there exists the most general simultaneous unifier σ of all the equations from 

the axioms of Tr, and σ is a w-admissible substitution for the set of all the words from Tr.  

5.3.  Main results for mAG calculus 

The soundness and completeness of the mAG calculus have the following forms, one of which is 
of the form of coextensetivity. 

Proposition 1. For closed formulas Φ1 ,..., Φn , and Ψ, the sequent Φ1 ,..., Φn => Ψ is deducible in 

a Gentzen-type (sound and complete) calculus with standard quantifier rules (for example, in G) if, 

and only if, a proof tree can be constructed in the mAG calculus for the initial w-sequent , Φ1,  ,..., 

, Φn,  => , Ψ, . 

Corollary 1. A formula Ψ is valid in classical first-order logic without equality if, and only if, a 

proof tree can be constructed in the mAG calculus for the initial w-sequent => , Ψ, .  

5.4.  Peculiarities of proof search in RuSAD 

Logical engine of RuSAD was constructed as containing of two independent parts. The first, 
resolution part was based on the well-known deductive system “negative resolution+paramodulation”, 

while the second one practically presents a computer realization of the mAG calculus constructed in 
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such a way that it satisfies at least the EA-requirements (ii) - (iv), which did not get representation in 

publications on EA. The subsequent content is intended to eliminate this disadvantage. 
The satisfying of mAG to the EA-requirements (ii) - (iv) was the main reason for taking mAG as 

a basis for constructing the logical engine of RuSAD. An additional reason was that mAG also 

partially satisfies (i) in the case of “coloring” premises of an input w-sequent into definitions, 

auxiliary propositions, and theorem preliminaries (theorem conditions) depending on in which 
premise of the sequent, a considered linguistic unit of an original TL-text (definition, auxiliary 

proposition, or theorem condition) is translated. This means that after the translation of an original 

TL-text into an input w-sequent, any its premise has a label “coloring” it into a definition, auxiliary 
proposition, or theorem condition. 

 
 

Figure 1: Scheme of proof search in RuSAD's logical engine 
 

An input w-sequent “colored” by such a way imposes the following order of involving its premises 

in the proof search process: First of all, an attempt to prove a theorem under consideration is made by 
using only the theorem preliminaries. In the case of failure, one or another definition is involved in 

the proof search process, and in the case if the use of preliminaries and definitions do not lead to 

success, auxiliary propositions are allowed to use.  

More precisely. Let T denote a theorem that should be proved in the assumption that there are 
theorem preliminaries C1, ..., Cm, definitions D1, ..., Dn, and auxiliary propositions A1, ..., Ar written in 

TL.  The  TL-parser translates  them  into first-order formulas  and, as a  result, an initial  w-sequent  

, Φ(C1), , ..., , Φ(Cm), , , Φ(D1), , ..., , Φ(Dm), , Φ(A1), , ..., , Φ(Ar),  => , Φ(T), 

 is constructed, where Φ(C1), …, Φ(Cn) are first-order formulas presenting C1, ..., Cm, Φ(D1), …, 
Φ(Dn) are first-order formulas presenting D1, ..., Dn; Φ(A1), ..., Φ(Ar) are first-order formulas 

presenting A1, ..., Ar; Φ(T) is a first-order formula presenting T. Then the RuSAD sequent engine 

makes an attempt to reach the goal , Φ(T),  using firstly , Φ(C1), , ..., , Φ(Cm), . In the case 

of failure, it makes an attempt to use additionally some or all , Φ(D1), , ..., , Φ(Dm), . And only 

after this, if there is no success, the sequent engine involves some or all , Φ(A1), , ...,  , Φ(Ar),  
into the proof search process. We refer to Fig. 1 for a relatively full description of information 

processing in the RuSAD sequent engine, in which the unification algorithm was incorporated for 
equation (“equality”) handling and a w-admissibility technique was built-in for the admissibility 

checking. 

Note that it is presupposed for a human to make intervention in the proof search process with the 
aim to change the direction of proof search by, for example, setting his own order of the use of 

premises. 

A theorem T is RuSAD-valid in a context of a TL-text Txt if, and only if, the RuSAD system can 
prove T using only facts (notions, definitions, lemmas, etc.) from the text Txt in the assumption that it 

has an infinite memory to store data and that the system has an infinite time to operate. 
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The RuSAD system is sound and correct in the following sense.  

Theorem 1. Let Txt be a self-contained noncontradictory TL-text for a theorem T and Txt∗ => T∗ 

be a sequent, in which Txt∗ and T∗ are the results of the translation of respectively Txt and T into first-

order formulas. Then T is a RuSAD-valid theorem in the context of the TL-text Txt if, and only if, the 

sequent Txt∗ => T∗ is deducible in a Gentzen-type sound and complete calculus with standard 

quantifier rules.  
Finally note that the trial exploitation of the RuSAD's sequent engine shows good enough results. 

For example, when solving some tasks, this engine produced only several dozen new w-sequents, 

while the RuSAD's resolution engine generates several hundred new clauses, when solving the same 

tasks. 

6. EnSAD, automated theorem proving, and proof verification 

The mAG calculus showes that words in its quantifier rules are used only for fixing the quantifier 

structures of formulas in an input sequent; at that, both these structures and words remain unchanged 

during proof search since they are invariant w.r.t. the application of any mAG inference rule.  
This leads to the idea that if we preliminary remember the quantifier structures of formulas from 

an input sequent and develop a special technique for handling them, we will be able to completely 

refuse from quantifier rules and get a quantifier-rules-free calculus. This idea was traced in a number 
of works of the first author and found its most complete reflection in [11]. But in all these papers, an 

attention is mainly concentrated only on a quantifier-handling technique, while below we show how it 

is possible to construct certain modifications of the mAG calculus combining this quantifier-handling 
technique with the goal-driven applying of propositional (quantifier-free) rules. At that, the results 

from [16] lead to satisfying the above-formulated strong coextensivity property providing a simple 

enough way for obtaining results similar to given in Proposition 1 for other sequent calculi. 

6.1.  Strong Admissible Substitutions 

A formula Φ (sequent S) containing only variables from Vr is called an original one. 

Every dummy or parameter v of an original formula Φ (an original sequent S) generates a 

countable set of new variables of the form kv (k = 1,2,...) called indexed variables and this set is 

denoted by Vr+(v); at that, k is called an index. The union of all the sets Vr+(v) taken on all the 
dummies or parameters v occurred in a formula Φ (sequent S) is denoted by Vr+(Φ) (Vr+(S)). We will 

simply write Vr+ in case, if Φ or S is immaterial. 

If v1, ..., vr is the list of all the dummies and parameters of an initial formula Φ (an original sequent 
S) and k is a natural number, then kΦ (kS) is the result of the simultaneous replacement in Φ (S) of 

each occurrence of vj by kvj (j = 1, ..., r). 

For a formula Φ (a sequent S), µ(Φ) (µ(S)) denotes the result of the removing of all the quantifiers 
from Φ (from S). 

If Φ (S) is an initial formula (an initial sequent) and v is its parameter or dummy, then v is defined 

as a parameter or dummy in µ(Φ) (in µ(S))respectively. Moreover, if v is a parameter (dummy) in Φ 

or S, then, by definition, kv is a parameter (dummy) in µ(kΦ) or µ(kS). Thus, v is a parameter or 
dummy in µ(Φ) (µ(S)) if, and only if, kv is a parameter or dummy in µ(kΦ) (µ(kS)). 

The result of adding upper-left indexes to all variables from an original formula or sequent is 

called its copy. Additionally, we require that two copies of the same original formula or sequent are 
copies each other, that is the relation “to be a copy” is transitive. 

Let Φ be an original formula and different quantifiers Qx and Q'y occur in Φ, where x and y are 

variables and Q and Q' are ∀ or ∃. We write x ≺Φ y if, and only if, in Φ, the selected occurrence of 

Q'y is in the scope of the selected occurrence of Qx. For example, if Φ is ∀x¬∃yP(x,y), then x ≺Φ y. 

For an original sequent S of the form Φ1, ..., Φp => Ψ1 , ..., Ψq, we have x ≺S y if, and only if, x ≺Φi y 

or x ≺Ψj y (1 ≤ i ≤ p,1 ≤ j ≤ q). 

Because of the convention about bound variables occurred in sequents, this definition of ≺S is 

correct and does not lead to ambiguity.  
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Moreover, ≺S is an irreflexive and transitive relation. 

For an original sequent S, we extend ≺S to the case of the set of variables Vr+(S) in the following 

way: kx ≺S 
ry if, and only if, x ≺S y. Obviously, this extension of ≺S is irreflexive and transitive. 

Any substitution σ induces a (possibly, empty) relation ≪σ in the following way: y ≪σ x if, and 

only if, there exists x → t  σ such that x is a dummy, the term t contains y, and y is a parameter. For 
example, consider a substitution σ = {1x → f(2y, 1v, 1z)}, where 1x and 1v are dummies and 2y and 1z 

parameters. Then, 2y ≪σ 
1x and 1z ≪σ 

1x. The relation ≪σ is irreflexive and transitive. 

Let S be an original sequent and let ≺S be the above introduced relation on the set Vr+(S). A 

substitution σ is strong admissible (s-admissible) for Vr+(S) if, and only if, for every x → t  σ, x is a 

dummy and the transitive closure ◁S,σ of ≺S ∪ ≪σ is an irreflexive relation. 

6.2.  Quantifier-Rules-Free Calculus 

Now, we have all the necessary for constructing a quantifier-rules-free calculus denoted by pAG 

being a modification of the propositional part of mAG that deals with so-called s-sequents consisting 

of ordered pairs of the form Φ, E, where E a set of equations and Φ is a quantifier-free formula, in 
which indexed variables occur only. 

As in the case of mAG, s-sequents of pAG cannot contain more than one goal in their succedents. 
In the below-given rules, Γ is a multiset of premises being ordered pairs, E is a set of equations 

(“equalities”), and Φ1,  Φ2,  and Φ are quantifier-free formulas. 

Goal Splitting Rules 

These rules are used for elimination of the principal logical connective from a goal. 
 

 (=> k⊃1)-rule:       Γ => Φ1 ⊃ Φ2, E                  (=> k⊃2)-rule:     Γ =>  Φ1 ⊃ Φ2, E 
                              Γ, Φ1, E => Φ2, E                                          Γ, ¬Φ2, E => ¬Φ1, E 
 

(=> k∨1)-rule:       Γ =>  Φ1 ∨ Φ2, E                  (=> k∨2)-rule:      Γ =>  Φ1 ∨ Φ2, E 
                            Γ, ¬Φ1, E => Φ2, E                                          Γ, ¬Φ2, E => Φ1, E 
 

(=> k∧)-rule:        Γ => Φ1 ∧ Φ2, E                    (=> k¬)-rule:            Γ => ¬Φ, E 
                       Γ => ¬Φ1, E    Γ => Φ2, E                                           Γ => Φ', E 

where Φ' is the result of one-step moving the sign ¬ into Φ, if Φ is not an atomic formula; otherwise 

Φ'coincides with Φ. 

Auxiliary Goal Rules 
 

 

The fixing of a selected occurrence of L' produces a sequence of rules that leads to the “goal-

driven” generation of an s-sequent, containing a premise. This sequence can be viewed as an 

application of a “large-block” inference rule initiated by L'.  
In all the below-given rules, Φ1 and Φ2 are formulas, L and L' are literals such that L ≈ L' modulo 

Σ(L, L'); E, E', and E'' are sets of equations such that E'' = E ∪ E' ∪ Σ(L, L').  
 

(k⊃1 =>)-rule:                    Γ, Φ1L
 − ⊃ Φ2, E => L', E' 

Γ, (¬Φ1)L
 +, E => L', E''   Γ => ¬Φ2, E  

 

(k⊃2 =>)-rule:                    Γ, Φ1 ⊃ Φ2L
 +, E => L', E' 

Γ, Φ2L
 +, E => L', E''   Γ => Φ1, E 

 

(k∨1 =>)-rule:                    Γ, Φ1L
 + ∨Φ2, E => L', E' 

Γ, Φ1L
 +, E => L', E''   Γ => ¬Φ2, E  

 

(k∨2 =>)-rule:                    Γ, Φ1 ∨Φ2L
 +, E => L', E' 

Γ, Φ2L
 +, E => L', E''   Γ => ¬Φ1, E 

 

(k∧1 =>)-rule:                    Γ, Φ1L
 + ∧Φ2, E => L', E' 

Γ, Φ1L
 +, E, Φ2, E => L', E''  

 

(k∧2 =>)-rule:                    Γ, Φ1 ∧Φ2L
 +, E => L', E' 

Γ, Φ1, E, Φ2L
 +, E => L', E''  

 
 

(k¬ =>)-rule:                          Γ, ¬(ΦL -), E => L', E'  
Γ, Φ'L +, E => L', E   

where Φ' is the result of one-step moving the sign ¬ into Φ, if Φ is not an atomic formula; otherwise 
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Φ' coincides with Φ. 

Termination Rules 
 

(=> k#1)-rule:                               Γ, L , E => L', E' 
Γ => #, E'' 

 

where L and L' are literals such that L ≈ L' modulo Σ(L, L') and E'' = E ∪  E' ∪  Σ(L, L'). 

(=> k#2 )-rule:  Let Tr be an inference search tree and Br some its branch ending by a tree leaf 

Γ => L, E, where L is a literal. Suppose Br contains an s-sequent Γ' => L', E' such 
that L' is a literal and L ≈ L'' modulo Σ(L, L'') holds for the complement literal L'' of 

L' and E'' = E ∪  E' ∪  Σ(L, L''). Then the s-sequent Γ => #, E'' is said to be 

deducible from Γ => L, E by the (=> k#2) -rule. 

Premise-Adding Rules 

(kρ1 =>)-rule:                             Φ[x], E, Γ => Ψ, E' 

kΦ[x], kE, Φ, E, Γ => Ψ, E' 

(kρ2 =>)-rule:                             Φ[x], E, Γ => Ψ, E' 

¬ kΨ[x], kE', Φ, E, Γ => Ψ, E'  
where Φ[x] (Ψ[x]) denotes that x is some dummy occurring in Φ (Ψ). The formula kΦ[x] (kΨ[x]) is the 
result of the simultaneous replacement in Φ[x] (Ψ[x]) of the upper-left indexes of both x and all 

variables y such that x ≺S y by the natural number k being new w.r.t. an inference tree under 

consideration (S denotes the upper sequent of these rules); kE (kE') is the result of the corresponding 
replacement in E (E') of the upper-left indexes in x and all such y.  

Axioms. Axioms are w-sequents of the form Γ => #, E, where # denotes an empty formula. 
Starting sequent. If S is an original sequent of the form Φ1, ..., Φm => Ψ1, ..., Ψn, then the sequent 

µ(1Φ1), , ..., µ(1Φm),  => µ(1Ψ 1), , ..., µ(1Ψ n),  is called a starting sequent for S. 
Proof Tree. Let S be an initial (original) sequent with one formula in its succedent. An inference 

tree Tr in the pAG calculus is called a proof tree in pAG for the starting sequent for S if, and only if, 
all the leaves of Tr are axioms, there exists the most general simultaneous unifier σ of all the 

equations from the axioms of Tr, and σ is an s-admissible substitution for Vr+(S). 

6.3.  Main Results for pAG Calculus 

Due to the w-admissibility and s-admissibility are invariant w.r.t. any inference rules applications, 
it is not difficult to prove the equivalence of this notions in the following sense: if for an initial 

(original) sequent S, Tr is a proof tree constructed in mAG for the corresponding input w-sequent S' 

and a substitution σ is w-admissible for Tr, then Tr can be converted into such a proof tree Tr' in pAG 

for the starting s-sequent => µ(1S),  that σ will be an s-admissible substitution for Vr+(S), and vice 

versa, if for an initial sequent S, Tr' is a proof tree in pAG for the starting s-sequent => µ(1S),  and 
σ is an s-admissible substitution for Vr+(S), then Tr' can be converted into such a proof tree Tr in 

mAG for the input w-sequent for S that σ is a w-admissible substitution for Tr. This leads to the 
following results. 

Proposition 2. For closed formulas Φ1, ..., Φn, and Ψ, the sequent Φ1, ..., Φn => Ψ is deducible in 

a Gentzen-type (sound and complete) calculus with standard quantifier rules (for example, in G) if, 

and only if, a proof tree can be constructed in the pAG calculus for the starting s-sequent µ(1Φ1), , 

..., µ(1Φn),  => µ(1Ψ) , . 

Corollary 2. A formula Ψ is valid in classical first-order logic without equality if, and only if, a 

proof tree can be constructed in the pAG calculus for the starting s-sequent => µ(1Ψ) , . 

Let us construct a proof tree in pAG for the above-given sequent S∗.  

1. µ(1Φ*1), , µ(1Φ*2),  => µ(1Ψ*),   (a starting s-sequent)    

2. ¬R2(
1x3), , µ(1Φ*1), , µ(1Φ*2,  => (R3(

1x2 )),   (by (=> k∨1 )-rule from 1) 

    2.1. ¬R2(
1x3), , µ(1Φ*1), , ¬R3 (

1x2),  => ¬R3 (
1y3), {

1x2 ≈ 1y3 }  (by (k⊃2 =>)-rule from 2) 

2.2. ¬R2(
1x3), , µ(1Φ*1),  => R1(

1y2 ) ∧ ¬R3(
1x2 ), {

1x2 ≈ 1y3} (by (k⊃2 =>)-rule from 2) 

   2.1.1. ¬R 2(
1x3), , µ(1Φ*1),  => #, {1x2 ≈ 1y3}   (by (=> k#1)-rule from 2.1)  

   2.2.1. ¬R2(
1x3), , µ(1Φ*1),  => ¬R3(

1x2), {
1x2 ≈ 1y3}   (by (k∧=>)-rule from 2.2) 
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   2.2.2. ¬R 2(
1x3), , µ(1Φ*1),  => R1(

1y2), {
1x2 ≈ 1y3}   (by (k∧=>)-rule from 2.2) 

      2.2.1.1. => #, {1x2 ≈ 1y3}   (by (=>k#2)-rule from 2.2.1 and 2) 

      2.2.2.1. ¬R2(
1x3), , R1(

1x1),  => R1(
1y2), {

1x1 ≈ 1y2, 
1x2 ≈ 1y3}  (by (k∨2 →)-rule 

         from 2.2.2) 

      2.2.2.2. ¬R2(
1x3 ),  => ¬R2(

1y1), {
1x1 ≈ 1y2 , 

1x2 ≈ 1y3}   (by (k∨2 =>)-rule from 2.2.2) 

   2.2.2.1.1. ¬R2(
1x3), , R1(

1x1),   => #, {1x1 ≈ 1y2 , 
1x2 ≈ 1y3}   (by (=> k#1)-rule from 

            2.2.2.1) 

   2.2.2.2.1. ¬R2(
1x3 ),  => #, {1x1 ≈ 1y2 , 

1x2 ≈ 1y3, 
1x3 ≈ 1y1}   (by (=> k#1)-rule from  

            2.2.2.2) 

This tree contains four branches: 1, 2, 2.1, 2.1.1; 1, 2, 2.2, 2.2.1, 2.2.1.1; 1, 2, 2.2, 2.2.2, 2.2.2.1., 

2.2.2.1.1; and 1, 2, 2.2, 2.2.2, 2.2.2.2., 2.2.2.2.1. Its leaves 2.1.1, 2.2.1.1, 2.2.2.1.1, and 2.2.2.2.1 are 
axioms. These axioms contain the equations 1x1 ≈ 1y2, 

1x2 ≈ 1y3, 
1x3 ≈ 1y1 producing the most general 

simultaneous unifier {1x1 → 1y2, 
1x2 → 1y3, 

1x3 → 1y1} being an s-admissible one for Vr+(S∗). By 

Proposition 2, the sequent S∗ is deducible in the G calculus. 

Also draw your attention to the fact that the given inference is purely propositional. 

6.4.  Peculiarities of Theorem Proving and Proof Verification in EnSAD 

One of the main distinguishes of EnSAD from RuSAD is that the EnSAD system allows verifying 

a proof of a theorem written in ForTheL and inserted into a self-contained ForTheL environment, 

while the RuSAD system is intended only for proving a theorem under consideration. In this 

connection, for solving a verification task, there is in EnSAD a module for generating goals that are 
sequentially passed to the logical engine of EnSAD for automatic establishing the validity of a goal in 

question. A proof is regarded to be correct, if all the generated goals are valid. (This module becomes 

useless in the case, if EnSAD solves the task of automated theorem proving.) Another distinguish is 
that along with its native engine, EnSAD gives the possibility to use one of such of well-known 

provers as Vampire, SPASS, E Prover, Otter, and Prover9. (Remind that RuSAD contained only its 

own resolution engine based on the negative hyperresolution.) 

6.4.1.  Architecture of EnSAD 

The action scheme of EnSAD could be described as follows. A user communicates with it using 

texts written in ForTheL. He may submit a problem like “prove the following proposition” or “verify 

whether the given mathematical text is correct”. The text, provided it is syntactically correct, is sent to 

a subsystem, a so-called “reasoner”. The reasoner makes analysis of a problem under consideration 
and formulates a number of tasks submitting them to an the EnSAD logical engine being a prover. If 

the prover finishes the job, the result of its work (e.g. a proof verification trace) is displayed to the 

user and the work is over. If it fails, then a diagnostic is made and its result supplies to the reasoner 
for repairing the situation. In particular, the reasoner can decide that a certain auxiliary proposition 

might be useful and starts the search for those in existing mathematical archives. After finding it, the 

service begins a new proof search cycle with a modified problem and the process goes on. 
According to this scheme, the EnSAD system initially conceived as a linguistic-deductive system 

designed to assist a mathematician in his scientific and teaching activities, has three levels of the  

processing of input ForTheL-texts (see Fig. 2). 

The architecture of EnSAD having three levels structure, a short description of which are given 
below.  

At the first (linguistic) level, the Parser module accepts a ForTheL text, checks its syntactical 

correctness and converts the text into a normalized form for a further processing. The result of 
translation is a number of goal statements to be sequentially deduced from their predecessors. The 

FOL submodule is a parser for a “dialect” of the first-order language. The EnSAD system can also 

connect with the famous TPTP library [21] for receiving theorem-proving tasks. 
At the second (reasoning) level, the Verification Manager module scans the normalized text 

sentence by sentence. Each sentence is first sent to the “evidence collector”, which accumulates so-
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called term properties for terms occurred in the sentence. Term properties are literals that tell the 

system something important about a given term occurrence. The most important mission of term 
properties is to hold information about term “types”, which is usually expressed by a statement of the 

form “t is a notion”. Some simple properties, like the nonemptiness, are also highly useful. 
 

 
 

Figure 2: Architecture of the EnSAD system  
 

At the second (reasoning) level, the Verification Manager module scans the normalized text 
sentence by sentence. Each sentence is first sent to the “evidence collector”, which accumulates so-

called term properties for terms occurred in the sentence. Term properties are literals that tell the 

system something important about a given term occurrence. The most important mission of term 

properties is to hold information about term “types”, which is usually expressed by an atomic 
statement of the form “t is a notion”. Some simple properties, like the nonemptiness, are also highly 

useful. 

The Evidence Collector submodule is a simple syntactical procedure that scans the context of a 
given occurrence and checks what can be “easily” deduced from the properties already known. For 

example, let S be declared as a set of integer numbers and x be declared as an element of S. Then, 

anywhere in view of these declarations, the term -x will be known to be an integer. 
The Ontological Checker submodule uses certain ontological connections between notions  

occurred in a text for fortifying its certain properties with the purpose to form a certain proof task. 

Proof tasks are sequentially processed by the Reasoner module. In the verification mode, Reasoner 

is intended for splitting a proof task in question into a number of subtasks for a prover. It either makes 
reduction of the main goal to several simpler subgoals or proposes an alternative subgoal. In 

particular, its toolkit contains some simplification methods on the propositional level. This module is 

redundant in the case, when the EnSAD system solves an automated theorem-proving problem. 
At the third (deductive) level, the Prover module carries out a proof search in classical first-order 

logic with equality using its own Moses prover or one of the following (external w.r.t. EnSAD) 

provers: Vampire [22], Otter [23], SPASS [24], and E Prover [25]. Remind that the Moses prover is 
based on a goal-driven sequent calculus exploiting the notion of an s-admissible substitution, which 

permits to preserve the initial signature of a task in question so that equations accumulated during 

proof search can be sent to a specialized solver, e.g. to an external computer algebra system. 

At the final stage, EnSAD outputs the result of its session. Note a user can influence to solving a 
task under consideration by changing some system parameters. 

Now, the EnSAD system can perform the following: 

• Inference Search: establishing of deducibility of a first-order formula/sequent; 
• Theorem Proving: proving of a proposition in the context of a ForTheL-text; 

• Text Verification: verifying of a self-contained mathematical ForTheL-text. 

A theorem T is called EnSAD-valid in a context of a ForTheL-text Txt if, and only if, EnSAD can 

prove T using only facts (notions, definitions, lemmas, etc.) from the text Txt in the assumption that it 
has an infinite memory to store data and that it has an infinite time to operate. 
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The EnSAD system is sound and logically correct in the following sense. 

Theorem 2. Let Txt be a self-contained noncontradictory ForTheL-text for a theorem T and Txt∗ 

=> T∗ be a sequent, in which Txt∗ and T∗ are the results of the translation of respectively Txt and T 

into first-order formulas. Then T is an EnSAD-valid theorem in the context of the ForTheL-text Txt 

if, and only if, the sequent Txt ∗ => T∗ is deducible in a Gentzen-type sound and complete calculus 

with standard quantifier rules. 
A proof Pr of a theorem T is EnSAD-correct in a context of a ForTheL-text Txt if, and only if, 

EnSAD can verify Pr using only facts (notions, definitions, lemmas, etc.) from the text Txt in the 

assumption that it has an infinite memory to store data and that it has an infinite time to operate. 
 

Theorem 3. Let Txt be a self-contained noncontradictory ForTheL-text for a theorem T together 

with its proof Pr and Txt∗ => T∗ be a sequent, in which Txt∗ and T∗ are the results of the translation of 

respectively Txt and T into first-order formulas. If the proof Pr is EnSAD-correct in the context of the 

ForTheL-text Txt, then the sequent Txt∗ => T∗ is deducible in a Gentzen-type sound and complete 

calculus with standard quantifier rules. 

6.4.2. Examples of theorem proving and proof verification in EnSAD 

Below, two examples of the processing of ForTheL-texts (being available on the web-site at the 

pages http://nevidal.org/help-thm.en.html and http://nevidal.org/help-txt.en.html) are presented. 

The first demonstrates the ability of EnSAD not only to prove theorems, but also to establish the 

validity of different logical task, for example, the validity of the childish statement known as 

Schuberts Steamroller Problem and given as Proposition that concerns the relationships between 
animals and plants. The second one shows the ability of the EnSAD system to verify a given proof of 

theorems relating to Number Theory and inserted into a self-contained ForTheL-text. (In the first 

case, the Moses prover was used and in the second one, the SPASS prover was used.) 
 

6.4.2.1. Example of solving Schubert's steamroller problem 
 

Receiving the below-given problem given in Proposition, EnSAD processes it and outputs the 

result on this session and some statistical data. 
============================================================= 
[animal/-s] [plant/-s] [eat/-s] 

Signature Animal. An animal is a notion. 
Signature Plant. A plant is a notion. 

Let A,B denote animals. Let P denote a plant. 
Signature EatAnimal. A eats B is an atom. 

Signature EatPlant. A eats P is an atom. 
Signature Smaller. A is smaller than B is an atom. 

Axiom CruelWorld. Let B be smaller than A and eat some plant. Then A eats all plants 
or A eats B. 

Signature Wolf. A wolf is an animal. 
Signature Fox. A fox is an animal smaller than any wolf. 

Signature Bird. A bird is an animal smaller than any fox. 
Signature Worm. A worm is an animal smaller than any bird. 

Signature Snail. A snail is an animal smaller than any bird. 

Signature Grain. A grain is a plant. 
Axiom Everybody. There exist a wolf and a fox and a bird and a worm and a snail 

and a grain. 
Axiom WormGrain. Every worm eats some grain. 

Axiom SnailGrain. Every snail eats some grain. 
Axiom BirdWorm. Every bird eats every worm. 

Axiom BirdSnail. Every bird eats no snail. 
Axiom WolfGrain. Every wolf eats no grain. 

Axiom WolfFox. Every wolf eats no fox. 
 

Proposition. There exist animals A,B such that A eats B and B eats every grain. 

============================================================= 
 [ForTheL] stdin: parsing successful 

[Reason] stdin: theorem proving started 
[Reason] line 32: goal: There exist animals A,B such that A eats B and B eats  
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every grain. 

[Reason] stdin: theorem proving successful 
[Main] sections 45 - goals 1 - subgoals 3 - trivial 1 - proved 1 

[Main] symbols 68 - checks 58 - trivial 57 - proved 0 - unfolds 0 
[Main] parser 00:00.00 - reason 00:00.00 - prover 00:00.00/00:00.00 

[Main] total 00:00.01 
============================================================= 

 

6.4.2.2. Example of verifying a proof of a theorem relating to Number Theory 
 

In this example, iif is an abbreviation for “if and only if”. A test beginning with # is a comment 
that a user can write for a better understanding of a given ForTheL-text. 

============================================================= 
# 

# Axioms of zero and the successor 

# 
[number/-s] 

Signature NatSort.  A number is a notion. 
Let A,B,C stand for numbers. 

Signature NatZero.  The zero is a number. 
Let X is nonzero stand for X is not equal to zero. 

Signature NatSucc.  The successor of A is a nonzero number. 
Axiom SuccEquSucc. 

    If the successor of A is equal to the successor of B 
    then A and B are equal. 

Signature NatSum.   The sum of A and B is a number. 
Axiom AddZero.      The sum of A and zero is equal to A. 

Axiom AddSucc.      The sum of A and the successor of B 
        is equal to the successor of the sum of A and B. 

# 
# We take the following facts as axioms, too 

# 
Axiom ZeroOrSucc. 

    Every nonzero number is the successor of some number. 
Axiom AssoAdd. 

    The sum of A and the sum of B and C is equal to the sum of (the sum of A and B)  
        and C. 

Axiom InjAdd. 
    If the sum of A and B is equal to the sum of A and C then B and C are equal. 

Axiom Diff. 
    There exists C such that 

        A is the sum of B and C or B is the sum of A and C. 
# 

# Definition of order on natural numbers 

# 
Definition DefLess. 

    A is less than B  iff  B is equal to the sum of A and the successor of some number. 
Let X is greater than Y stand for Y is less than X. 

# 
# Theorems with basic properties of order 

# 
Theorem NReflLess. 

    A is not less than A. 
Proof. 

    Assume the contrary. 
    Take a number C such that A is equal to the sum of A and the successor of C. 

    Then the successor of C is zero (by AddZero,InjAdd). 
    We have a contradiction. 

qed. 
 

Theorem TransLess. 
    Assume A is less than B and B is less than C. 

    Then A is less than C (by DefLess). 
Proof. 

    Let M be a number and N be the successor of M. 
    Let P be a number and Q be the successor of P. 

    Assume the sum of A and N is equal to B. 
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    Assume the sum of B and Q is equal to C. 

    Let S be the sum of N and Q. 
    S is the successor of the sum of N and P (by AddSucc). 

    The sum of A and S is equal to C (by AssoAdd). 
qed. 

 
Theorem ASymmLess. 

    If B is less than A then A is not less than B. 
 

Theorem TotalLess. 
    Let A,B be nonequal. 

    Then A is less than B or B is less than A. 
Proof. 

    Take C such that A is the sum of B and C or B is the sum of A and C. 
    If C is zero then B is equal to A. 

    Hence C is the successor of some number. 
    If B is the sum of A and C then A is less than B. 

    Then A is the sum of B and C or A is less than B. 
    If A is the sum of B and C then B is less than A. 

    Hence the thesis. 
qed. 

============================================================= 

After receiving this ForTheL-text, EnSAD establishes the correctness of the theorem proofs and 

output the below-given verification trace ended by statistical data. 
============================================================= 
[ForTheL] stdin: parsing successful 

[Reason] stdin: verification started 
[Reason] line 46: goal: Take a number C such that A is equal to the sum of A and the successor of C. 

[Reason] line 48: goal: Then the successor of C is zero (by AddZero,InjAdd). 
[Reason] line 49: goal: We have a contradiction. 

[Reason] line 43: goal: A is not less than A. 
[Reason] line 61: goal: S is the successor of the sum of N and P (by AddSucc). 

[Reason] line 62: goal: The sum of A and S is equal to C (by AssoAdd). 
[Reason] line 54: goal: Then A is less than C (by DefLess). 

[Reason] line 66: goal: If B is less than A then A is not less than B. 
[Reason] line 72: goal: Take C such that A is the sum of B and C or B is the sum of A and C. 

[Reason] line 73: goal: If C is zero then B is equal to A. 

[Reason] line 74: goal: Hence C is the successor of some number. 
[Reason] line 75: goal: If B is the sum of A and C then A is less than B. 

[Reason] line 76: goal: Then A is the sum of B and C or A is less than B. 
[Reason] line 77: goal: If A is the sum of B and C then B is less than A. 

[Reason] line 78: goal: Hence the thesis. 
[Reason] line 70: goal: Then A is less than B or B is less than A. 

[Reason] stdin: verification successful 
[Main] sections 65 - goals 16 - subgoals 19 - trivial 2 - proved 14 

[Main] symbols 128 - checks 89 - trivial 89 - proved 0 - unfolds 5 
[Main] parser 00:00.01 - reason 00:00.02 - prover 00:10.18/00:00.07 

[Main] total 00:10.22 
=========================================================== 

7. Current state and possible future work 

In general, the entire time of research on EA can be divided into the following stages: 

 1962-1969: pre-attempts to follow EA; 

 1970-1992: research on EA leaded to the construction and trial operation of RuSAD; 

 1998-2008: research on EA leaded to the construction and trial operation of EnSAD; 

 2009-present: investigations on EA on a computer-oriented proof search in non-classical logics. 

And although the further development of EnSAD was stopped in 2008, anyone can carry out a 

series of experiments with the system that is available online on “nevidal.org/sad.en.html”. 

Note that by now, a number of tests has been made with the EnSAD system. They are related to 
proof search in first-order logic, theorem proving in the ForTheL-environment, and verification of 

self-contained ForTheL-texts. The most interesting ones concern verification, among which are: 

Newman's lemma, Cauchy-Bouniakowsky-Schwarz inequality from mathematical analysis, Ramsey’s 
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finite and infinite theorems, Chinese remainder theorem, Bezouts identity in terms of abstract rings, 

Tarskis fixed point theorem, Furstenbergs proof of the in finitude of primes, and some properties of 
finite groups. 

The trial operation of the EnSAD system and a number of current achievements made in 

automated reasoning in the EA-style have shown the desirability of improving the capabilities of 

EnSAD in the following directions (studied and not implemented). 
On the linguistic level. The nearest objective can be the incorporation of the existing ForTheL 

language into a LaTeX-environment to reach the reading of ForTheL-texts in the form closest to 

usual mathematical texts. Besides, there are drafts of Russian and Ukrainian versions of the ForTheL 
language. Therefore, there exists the possibility to construct the next bidirectional translators: English 

ForTheL-texts ⇔ Russian ForTheL-texts, English ForTheL-texts ⇔ Ukrainian ForTheL-texts, 

and Russian ForTheL-texts ⇔ Ukrainian ForTheL-texts, which will give the opportunity for using 

such a multilingual extension of EnSAD by a person who knows only one of these languages as well 

as for making an automatic translation from one of these languages into another. (Of course, one can 
try to construct a German, French, and/or other version of the ForTheL language, thereby 

strengthening this multilingual EnSAD component.) 

On the reasoning level. The improving of heuristic possibilities of the EnSAD system is 
presupposed to do by incorporating in EnSAD the human-like reasoning methods depending on the 

subject domain in question concentrating the main attention on inductive theorem proving methods. 

On the deductive level. On the basis of the research made on computer-oriented proof search in 

classical and non-classical sequent logics, one can try to construct a toolkit giving the possibility to 
“puzzle” one or another system logical engine depending on a desire of an EnSAD user or a subject 

domain under consideration. 

8. Conclusion 

Features of the EnSAD system indicate that EnSAD is designed and implemented with taking into 

account modern achievements in the field of construction of computer mathematical services. In this 

regard, we draw attention to that the ForTheL language is based on fundamental logical and set-

theoretic relations. Therefore, it is suitable for representing any (not only mathematical) texts, if the 

latter are formalized in terms of first-order logic. A ForTheL-text can be created either by a human or 

a computer and after this it can be sent to EnSAD or even another system directly or via a network. 

As for the deductive component of EnSAD, the existing theoretical results and the experience 

accumulated during the trial operation of EnSAD can serve as a good basis for a further improvement 

of the EA-style deductive technique in the direction of increasing the efficiency of inference search in 

classical logic and making reasoning in non-classical logics. 

Of particular note is the ability of EnSAD to combine deduction with analytical transformations 

performed by a system external to EnSAD. This is provided by a special proof technique and 

properties of the EA-style deductive formalism permitting to preserve the signature of an original 

problem and make equality handling in isolation from deduction. 

In the long run, the EA-approach to automated reasoning and further development of the EnSAD 

system can lead to the creation of an info-structure for the remote multilingual presentation and 

complex processing of mathematical knowledge, what can make the system useful for both teaching 

and academic daily activity of a person. 
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