
144

Evidence Algorithm Approach to Automated Theorem Proving
and SAD Systems
(In Honor of 50 Years of Evidence Algorithm Announcement)

Alexander Lyaletski, Alexandre Lyaletsky

National University of Life and Environmental Sciences, Heroiv Oborony str. 15, Kyiv, 03041, Ukraine

Abstract
In 1970, Academician V.M. Glushkov published a paper, in which he, along with a

discussion of some of the problems of artificial intelligence, formulated a research

programme called Evidence Algorithm (EA), containing his vision of the problem of a

computer-aided support of a human in theorem proving in mathematics. He suggested to

make a research on the creation of an automated theorem-proving system with a formal

language of a natural type as its input language, with a proof search procedure constructed on

the notion of a computer evidence of a machine-made proof step developing in accordance

with a knowledge accumulated by the system during its operation, and with the possibility of

a human to make intervention in the proof search process. Two attempts have been made in

order to implement this programme. The first led to the appearance in 1978 of the Russian-

language automated theorem-proving system, denoted by RuSAD, and the second – to the

appearance in 2002 of the English-language system for automate deduction, denoted by

EnSAD. And if the development and trial operation of RuSAD were stopped in 1992 after

the output from service of the ES-line computers, EnSAD, after its placement on the website

“nevidal.org”, is still online available now. This work is mainly devoted to the description of

the approaches to the creation and realization of the evidential “engines” of both RuSAD and

EnSAD – a topic insufficiently covered in publications on EA, RuSAD, and EnSAD.

Keywords 1
V.M. Glushkov, Evidence Algorithm, automated theorem proving, deduction, classical first-

order logic, sequent calculus, resolution method.

 Continuous improvement of the evidence algorithm will lead, sooner or

later, to the fact that all the theorems that we know today will become

evident from the point of view of the machine. During this period, the role

of a mathematician will consist mainly in defining new concepts and in

formulating a fundamentally new proposition and the art of proving a

new machine-nonevident theorem will consist primarily in the ability to

formulate a number of intermediate theorems and lemmas, each of which

will be evident to the machine.

V.M. Glushkov, [1], 1970

1. Introduction

The first publications devoted to the possibility of using computers for making logical

constructions, relate to the late 1950’s - early 1960’s (see, for example, [2] and [3]), when there were
appeared computers of such a performance, memory capacity, and informational flexibility that the

programming of complex intelligent processes has become possible. An early history of the

IT&I-2020 Information Technology and Interactions, December 02–03, 2020, KNU Taras Shevchenko, Kyiv, Ukraine

EMAIL: a.lyaletski@nubip.edu.ua (A. Lyaletski); alyaletsky@yahoo.com (A. Lyaletsky)

ORCID: 0000-0003-0370-5041 (A. Lyaletski); 0000-0002-0389-2759 (A. Lyaletsky)

© 2020 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

145

development of this branch of computer science in Western countries can be found in [4]. As for the

USSR and the countries of Eastern Europe, two schools of automated theorem proving appeared in
the USSR almost simultaneously in the 1960s: one created by Academician V.M. Glushkov and the

other in Leningrad, for the description of which we refer to [5] (see also [6]).

In 1962, V.M. Glushkov first spoke about the possibility of a computer to make intelligent

processing of information in mathematics. Soon there was formed the first team of researchers on
automated theorem proving. It was active from 1962 to 1969 and its precise subject was an analysis of

proofs in Group Theory. During its research, the first steps were made in the framework of the

Evidence Algorithm programme: there were constructed both a language for writing mathematical
texts and a procedure for logical inference search. The last was later transformed into the so-called

(sequent) calculus of auxiliary goals (AG calculus) [7], partially satisfying the following EA

requirements: (i) an EA-style calculus should preserve the structure of an original problem, (ii)
deduction in it should be separated from equality handling, (iii) it should goal-oriented, (iv) a proof

search in it was should carried out in the signature of an original theory (for the achievement of this,

in AG instead of skolemization, the Kanger notion [8] of the admissibility of a substitution of terms
for variables was used and this made it possible to increase the efficiency of a logical search in AG in

comparison with calculi using the ordinary Gentzen notion of an admissible substitution [9])2.

After joining a new, second team of investigators to research on EA in 1971, a new stage began in
the implementation of EA. As a result, the Russian-language system for automated deduction (here

called Russian SAD and denoted by RuSAD) was constructed in accordance with the EA theses and

it was put into trial operation in 1978. At that time span, the formal natural language TL [10] being in

full compliance with the EA requirements for languages for writing mathematical texts was created
and implemented in RuSAD. As for the RuSAD evidence maintaining engine, it was realized on the

basis of both the resolution technique [11] and the sequent one, going back to the AG calculus, but

using instead of the Kanger notion of admissibility, a new notion proposed by one of the authors of
this paper in 1975 for improving quantifiers handling technique in the case, when the preliminary

kolemization becomes a undesirable or impossible operation.

From 1983 until the collapse of the USSR and the decommissioning of the ES-lines computers in
1992, on which RuSAD was implemented, RuSAD was improved only in the direction of embedding

human heuristic methods in its resolution part. The sequent approach to logical reasoning in the EA

style did not develop in any way and was “preserved”, as it were, until 1998, when the paper's authors

along with other researchers were joined to fulfilling the Intas project “Rewriting technique and
efficient theorem proving”, in the framework of which there was decided to construct an English-

language version of the RuSAD system, but already at a new level of the understanding of the EA

programme and advances in information technologies.
This version, here called English SAD and denoted by EnSAD, was announced in 2002 at the IIS

2002 conference [12]. Now, the current EnSAD system is located at the site “http://nevidal.org/

sad.en.html” and there exists an online access to it. As its input language, EnSAD uses the ForTheL

language [13] being an English-language modification of TL expanded later by a set of linguistic
units for writing theorem proofs, which has turned EnSAD into a system capable of not only proving

theorems, but also verifying mathematical texts. The own logical engine of EnSAD is built only on

sequent formalism. But in order for the EnSAD system to use the already well-known (external)
provers such as Vampire, SPASS, Otter, and so on, EnSAD contains a mechanism for connecting to

these provers if a user so wishes (see, for example, [14]). In addition, a specific ontological method

[15] for the processing of mathematical ForTheL-texts is implemented in EnSAD. For constructing
the EnSAD logical engine, the sequential approach to conducting logical reasoning in the EA-style

was revised and improved, which subsequently led to the emergence of a whole family of computer-

oriented sequent calculi for both classical first-order logic and non-classical ones [16].

In 2008, work on the development of the EnSAD system was suspended due to lack of a financial
support, but a theoretical studies on the construction of computer-oriented sequent calculi for a proof

2 Here, we note that in what follows, we focus on the development and implementation of EA relating to the construction of a technique for

a proof search in the EA-style. This is due to the fact that as a part of the research on EA, an original approach to the construction of

machine-oriented calculi in the EA-style has been developed, to which the authors would like to draw attention of researchers on automated

reasoning from the point of view of constructing efficient enough sequent calculi not only for classical first-order logic, but also for non-

classical first-order ones, in particular, for r intuitionistic logic. All the others connected with EA found its description in [17].

146

search in classical and non-classical first-order logics have been continued. But in the course of such

studies, an exact description of ideas that were used for constructing the evidential engines of the
RuSAD and EnSAD systems are not fully reflected in publications on EA. This paper is intended to

fill this gap and outline some possible ways of the further development of the EnSAD system.

2. EA and information processing in RuSAD and EnSAD

Both the systems, RuSAD and EnSAD, were constructed as applications suitable for the
processing of mathematical texts written in a formal mathematical language. They are intended for

solving the following task:

Let a (self-contained) text be written in a formal mathematical language and a certain proposition

be pointed in it. It is necessary to find a proof of the proposition or to verify its proof given by a
human.

The following scheme of a text transformation was proposed for the RuSAD and EnSAD systems

(more details can be found in [17]):

Formalized text prepared by a user to prove/verify a theorem ⇒

⇒ (using a parser) A self-contained first-order text ⇒

⇒ (using a prover) A computer-made proof/verification ⇒

⇒ (using an editor) Text in a form comprehensible for a human.

For preparing formalized (mathematical) texts, the Russian- and English-language versions of
certain fragments of Russian and English natural languages were constructed, namely, TL (Theory

Language) and ForTheL (Formal Theory Language), relatively. Their grammars and syntactical

analyzers were designed and implemented in such a way that their outputs are computer internal
presentations of formulas of the first-order language.

Note that TL and ForTheL reflect Glushkov's desire to have practical formal languages suitable

for writing mathematical sentences and their proofs. (He wrote that they “should relate to the existing

formal languages of mathematical logic as, for example, the ALGOL-60 language relates to the
language of recursive functions or normal algorithms”[1].)

Here we complete the consideration of TL and ForTheL since there are many enough

publications on these languages (the most part of such references can be found in [17] and, in
particular, ForTheL has its complete description in the “ForTheL Reference” located on the site

“nevidal.org”. At that, original “units” of the logical background of the “engines” of RuSAD and

EnSAD do not have a detailed enough description in publications on the EA programme and SAD
systems. Namely this will attract our attention in the rest of the paper.

Additionally, note that we restrict us by only the exact descriptions of sequent calculi providing

this logical background, completely leaving aside relevant proofs and focusing attention only on their

features.

3. Basic notions

A standard terminology of first-order logic without equality is used. The first order language is

constructed over a signature, containing a countable set Vr of (object) variables, a finite (possibly,

empty) set of functional symbols, and a finite (nonempty) set of predicate symbols.
Formulas are constructed with the help of the following logical connectives: the universal

quantifier symbol ∀, the existential quantifier symbol ∃, and the propositional connectives for the

implication (⊃), disjunction (∨), conjunction (∧), and negation (¬).

The notions of terms, atomic formulas, formulas, literals, complement literals, free and bound

variables, and scopes of quantifiers are defined in the usual way [18] and assumed to be known to a
reader.

We assume that no two quantifiers in any formula have, which can be achieved by renaming

bound variables. Let a formula Φ be of the form ¬Ψ or Ψ ⊙ H (where ⊙ is one of ∧,a common

variable ∨, ⊃), then ¬ and ⊙ are called a principal propositional connective of Φ.

147

An equation is an unordered pair of terms s and t written as s ≈ t. Assume L is a literal of the form

R(t1, ..., tn) (or ¬R(t1, ..., tn)) and M is a literal of the form R(s1, ..., sn) (or ¬R(s1, ..., sn)), where R is a
predicate symbol and t1, ..., tn, s1, ..., sn are terms. Then Σ(L, M) denotes the set of equations {t1 ≈ s1,

..., tn ≈ sn}. In this case, L and M are said to be equal modulo Σ(L, M) (L ≈ M modulo Σ(L, M)).

A function σ from a set of variables to the set of terms is called a substitution if, and only if, it can

be presented in the form σ = {x1 → t1, ..., xn → tn}, where t1, ..., tn are terms, x1, ..., xn are pairwise
different variables, and xi ≠ ti for all i = 1...n.

Let Ex be an expression (i.e., a term or a formula) and σ a substitution. The result of the

application of σ to Ex is denoted by Ex·σ. For any set Ξ of expressions, Ξ·σ denotes the set obtained
by the application of σ to every expression in Ξ. If Ξ is a set of (at least two) expressions and Ξ·σ is a

singleton, then σ is called a unifier of Ξ.

The notions of a most general unifier and most general simultaneous unifier (mgsu) of sets of
expressions are understood in the usual sense (see, for example, [11]).

If σ and λ are substitutions, then σ·λ denotes their composition, i.e. a substitution, the result of the

application of which to an expression Ex is equal to (Ex·σ)·λ.

A sequent is an expression of the form Φ1, ..., Φp => Ψ1, ..., Ψq, where Φ1, ..., Φp, Ψ1, ..., Ψq are
formulas except that as in the case of [18], its succedent and antecedent are finite multisets. Note that

without lost of generality, we can regard that Φ1, ..., Φp, Ψ1, ..., Ψq are closed formulas and that all our

sequents contain no more than one formula in their succedents (i. e. q ≤ 1).

A tree is understood in the usual sense. A tree labeled by sequents is called a sequent tree.

In what follows, S∗ denotes the sequent ∀x1∃y1(R1(x 1) ∨ R2(y1)), ∀x2∃y2((R1(y2) ∧ ¬R3(x2))

⊃ R3(x2)) => ∀y3∃x3(R2(x3) ∨ R3(y3)) (R1, R2, R3 are predicate symbols) that is deducible in G

[18] and will be used in several examples clarifying introduced notions and obtained results.

For formulas Φ and Ψ, we understand the notions of positive (ΨΦ+) and negative (ΨΦ-)
occurrences of Φ in Ψ in the sense of the paper [19].

More precisely, let a formula Φ have one or more occurrences in a formula Ψ. Let us fix a certain
occurrence of Φ in Ψ. This occurrence is called positive (negative) according to the following

inductive definition:

– ΨΦ+ holds, if Φ coincides with Ψ;

– ΨΦ+ (ΨΦ-) holds, if Ψ is of the form Ψ1 ∧ Ψ2, Ψ2 ∧ Ψ1, Ψ1 ∨ Ψ2, Ψ2 ∨ Ψ1 , Ψ2 ⊃ Ψ1,

∀xΨ1 , or ∃xΨ1 and Ψ1Φ
+ (Ψ1Φ

-) holds;

– ΨΦ- (ΨΦ+) holds, if Ψ is of the form: Ψ1 ⊃ Ψ2 or ¬Ψ1 and Ψ1Φ
- (Ψ1Φ

+) holds.

Moreover (cf. [19]), a selected occurrence of a formula in a sequent Γ => ∆ is called a positive

(negative) one, if this occurrence is fixed as a positive in a formula from ∆ (from Γ) or as a negative in

a formula from Γ (from ∆).

If a formula Φ is of the form ∀xΦ' (∃xΦ') and Φ has a positive (negative) occurrence in a

formula Ψ or a sequent S, then ∀x (∃x) is called a positive quantifier in Ψ or S, respectively; ∃x

(∀x) is called a negative quantifier in Ψ or S, if ∃xΦ' (∀xΦ') has a positive (negative) occurrence in

Ψ or S, respectively.
By the eigenvariable convention, any quantifier cannot have more than one (positive or negative)

occurrence in a formula or sequent. Hence, the following definitions do not lead to misunderstanding.

The variable of a positive quantifier occurring in a formula Ψ (a sequent S) is called a parameter in
Ψ (in S); the variable of a negative quantifier occurring in Ψ (in S) is called a dummy in Ψ (in S).

Note that we preserve the name “variable” for denoting both dummies and parameters in the cases,

when it is only important that they occur in a formula or sequent under consideration.

For S∗, we have: x1, x2, and x3 are dummies and y1, y2, and y3 parameters.

Because the properties “to be a dummy” and “to be a parameter” are invariant for any variable x

w.r.t. any rule application in our sequent calculi, the satisfaction of the following convention will not
lead to an ambiguity: if the application of a quantifier rule eliminates a positive (negative) quantifier

Qx (Q is ∀or ∃) and substitutes a variable y for x, then y is considered as a parameter (dummy).
For technical reason only, we write x in order to indicate that when a quantifier rule is applied, x is

replaced by a new parameter (denoted by x) and, analogously, write x in order to indicate that when a

quantifier rule is applied, x is replaced by a new dummy (denoted by x).

148

We use the usual definition of a sequent calculus; at that, the deduction of a sequent in it has the

form of an inference search tree growing “from top to bottom” according to the applications of
inference rules “from top to bottom”.

An inference search tree is called a proof tree, if all its leaves are labeled by axioms. A sequent S is

deducible in a sequent calculus, if there exists a proof tree for S in the calculus and, maybe, some

additional conditions are satisfied. Note that any sequent calculus under consideration does not
contain the cut rule and that all its rules satisfy the subformula property (see, for example, the paper

[9] or [18]).

4. Admissible substations

When quantifier rules are applied, some substitution of selected terms for variables is made. To do
this step of deduction sound, certain restrictions are put on the substitution. The substitution,

satisfying these restrictions, is said to be admissible. Below we investigate the classical notion of

admissible substitution and show how it can be modified in such a way that efficient enough sound
and complete sequent calculi can be finally obtained. We follow the paper [20], in which the sound

and complete calculus G [14] is taken for the demonstration of peculiarities of quantifier handling in

sequent calculi reflecting in the logical “engines” of RuSAD and EnSAD.

4.1. Gentzen‘s admissible substitutions

Gentzen quantifier rules are usually of the following form [14]:

 (∃: left)-rule: Γ, ∃xΦ => ∆ , (∀: right)-rule: Γ => ∀xΦ, ∆ ,
 Γ, Φ|x

y => ∆ Γ => Φ|x
y , ∆

 (∀: left)-rule: Γ, ∀xΦ => ∆ , (∃ : right)-rule: Γ => ∃xΦ, ∆ .
 Γ, Φ|x

t => ∆ Γ => Φ|x
t , ∆

where y is a new parameter, the term t is required to satisfy the eigenvariable condition, that is, t

should be free for the variable x in the formula Φ; at that, Φ|x
y and Φ|x

t denote the results of the

replacement of x by y and t, respectively. The restriction of the substitution of t for x leads to the
Gentzen (classical) notion of admissible substitutions, which proves to be sufficient for the needs of

the proof theory. But it becomes inconvenient from the point of view of efficiency of computer-

oriented sequent calculi. It is clear from the following example.
Rewrite the sequent S∗ in the form Φ∗

1, Φ
∗
2 => Ψ∗, where Φ∗

1 is ∀x1∃y1(R1(x 1) ∨ R2(y1)), Φ
*
2 is

∀x2∃y2((R1 (y2) ∧¬R3(x2)) ⊃ R3(x2)), and Ψ∗ is ∀y3∃x3(R2(x3) ∨ R3(y3)).

Later, it will be shown that S∗ is deducible in G, while here we note that for establishing this,

quantifier rules should be applied to all the quantifiers occurring in Φ∗
1, Φ

∗
2, and Ψ∗.

Therefore, the Gentzen classical notion of admissible substitution yields 90 (= 6!/(2!*2!*2!))

different orders of the quantifier rule applications to the sequent Φ∗
1, Φ

∗
2 => Ψ∗. And only one of

them (subsequently eliminating the quantifiers in the order: ∀y3, ∀x2, ∃y2, ∀x1, ∃y1, ∃x3) leads to

establishing the provability of S∗. Thus, in the worse case, we should check all 90 possible quantifier

rules applications. It is clear that due to skolemazation, resolution type methods permit to avoid this

redundant work.

4.2. Kanger‘s admissible substitutions

To optimize the procedure of quantifier rules applications, S. Kanger suggested in [8] his sequent
calculus, denoted here by K. In the K calculus, a proof search is being split into stages, leading to the

construction of a ``pattern'' of a deduction tree, maybe, containing parameters and dummies. To

complete the deduction process, once in a while an attempt is made to convert a “pattern” into a proof
tree by substituting certain terms for dummies. In the case of failure, the process is continued.

The main difference between K and G consists in splitting the inference search process into stages

and using special modifications of the above-given quantifier rules. Thus, the calculus K also contains

149

(∃ : left) and (∀ : right), while the rules (∀ : left) and (∃ : right) are replaced by the rules (cf. [8]):

 (∀': left)-rule: Γ, ∀xΦ => ∆ (∃': right): Γ => ∃xΦ, ∆

 Γ, Φ|x
z => ∆ [z/t1, ..., tn] Γ => Φ|x

z , ∆ [z/t1, ..., tn]
where t1, ..., tn are some of the terms that can be constructed from constant, parameters, and functional

symbols occurring in the conclusion of the rules, z is a dummy, and [z/t1, ..., tn] denotes that when an

attempt is made to convert a “pattern” into a proof tree, a dummy z can be replaced by one of the
terms t1, ..., tn only. This replacement of dummies by terms is made in the end of every stage, and at

every stage, inference rules are applied in a certain order.

This scheme of the deduction construction in the K calculus leads to the notion of a Kanger-

admissible substitution, which is more efficient than the classical one. Thus, for the above-given
example it yields only 6 (=3!) variants of different possible orders of the quantifier rule applications

(and none of these variants is preferable). Despite this, the Kanger-admissible substitutions still do not

allow to attain efficiency comparable with that when skolemization is made. The reason for this is
that, as in case of the classical admissible substitution, it is required to select a certain order of the

quantifier rule applications when an input sequent is deduced, and, if it proves to be unsuccessful,

another order of applications should be tried, and so on.

4.3. Word admissible substitutions

On the example of the mG calculus from [20], being a modification of the G calculus, let us

demonstrate how the below-given new notion of an admissible substitution permits to get rid of the

dependence of the deduction efficiency in sequent calculi on different possible orders of quantifier
rule applications.

The main idea of this notion is to determine by the quantifier structures of formulas of an input

sequent and a substitution under consideration, whether there exists a sequence of desired quantifier

rules applications or not.

Let W be a set of sequences (words) of parameters and dummies and σ a substitution. Put (W, σ)

= {z, t, w : z is a variable of σ, t is a term of σ, w  W, and z lies in w to the left of some parameter

from t}. The substitution σ is said to be word admissible (w-admissible) for W if, and only if, (1) all

the variables of σ are dummies and (2) in (W, σ), there are no elements z1, t1 , w1, ..., zn, tn, wn

such that z1 → t2  σ, ..., z(n−1) → tn  σ, zn → t1  σ (n > 0).

Let us make some remarks about the mG calculus. It deals with formulas, except that a certain
sequence of parameters and dummies is attached to each formula from sequents. That is why the mG

calculus is defined on pairs of the form w, Φ, where Φ is a formula and w a word (sequence) of
parameters and dummies.

An expression of the form w1, Φ1, ..., wm, Φm => v1, Ψ1, ..., vn, Ψn, where w1, ..., wm , v1, ...,
vn are sequence of parameters and dummies and Φ1, ..., Φm, Ψ1, ..., Ψn are formulas, is called an a-

sequent. At that, the empty sequence is always added to all the formulas of an initial sequent
producing a so-called input a-sequent for mG.

Consider the following quantifier rules.

Γ, w,∃xΦ => ∆ Γ, w,∀xΦ => ∆

Γ, wy,Φ|x
y => ∆ (∃∗: left), Γ, wy,Φ|x

y => ∆ (∀∗: right),

Γ, w,∀xΦ => ∆ Γ, w,∃xΦ => ∆

Γ, wy,Φ|x
y => ∆ (∀∗: left), Γ, wy,Φ|x

y => ∆ (∃∗: right),

where w is a word, Φ a formula, y a parameter, and z a dummy.
The calculus mG can be defined as the G calculus expanded on the case of w-sequents and

containing the just-given quantifier rules instead on its own quantifier rules.

Applying first rules “from top to bottom” to an input a-sequent for mG and afterwards to its
“heirs” “from left to right”, and so on, we finally obtain a so-called inference search tree for the input

a-sequent.

An inference tree Tr for an input a-sequent is called a proof tree in mG if, and only if, there exists

such a substitution of terms for variables, say, σ, that (1) after application of σ to all the formulas from
the a-sequents of all the leaves of Tr, these a-sequents become axioms, that is, each of them is of the

150

form Γ => ∆ with such Γ and ∆ that Γ and ∆ contain the same formula, and (2) the substitution σ is w-

admissible for the set of all the words of parameters and dummies from all the leaves of Tr.
As it was shown in [20], a sequent S is deducible in G if, and only if, a proof tree for the input a-

sequent corresponding to S can be constructed in mG. That is mG is a sound and complete calculus

for classical first-order logic in the sense of this “coextensivity” of G and mG.

If we consider the above-given sequent S∗ and the corresponding input a-sequent , Φ∗
1, , Φ

∗
2 =>

, Ψ∗ for mG, then applying only quantifier rules eliminating all quantifiers in Φ∗
1, Φ

∗
2, and Ψ∗ in

any order and after this, applying only propositional rules to the result, we can construct an inference

tree, say, Tr, all leaves of which are the following a-sequents:

x1y1, R1(x1), x2y2, R3(x2) => y3x3, R2(x3), y3x3, R3(y3),

x1y1, R1(x1) => y3x3, R2(x3), y3x3, R3(y3), x2y2, R1(y2),

x1y1, R2(y1), x2y2, R3(x2) => y3x3, R2(x3), y3x3, R3(y3),

x1y1, R2(y1) => y3x3, R2(x3), y3x3, R3(y3), x2y2, R1(y2),
where x1, x2, x2 are dummies and y1, y2, y3 parameters.

For a substitution σ∗ = {x1 → y2, x2 → y3, x3 → y1}, we see that the application of σ∗ to all the just-

given leafs converts them into axioms of mG. Moreover, σ∗ is w-admissible for the set {x1y1, x2y2,

x3y3}. Thus, Tr is a proof tree in mG, which implies the deducibility of S∗ in the G calculus.

Note that the proof of the proposition about the soundness and completeness of mG is carried out

in [16] in such a way that if in it we replace the G calculus by another (sound and complete) sequent

calculus, say, G' , with the usual quantifier rules, then the replacement of them by (∃∗: left)-, (∀∗:

right)-, (∀∗: left)-, and (∃∗: right)-rules leads to a calculus, say, mG' defined on w-sequents, such

that G' and mG' possess the same properties w.r.t. deducibility that G and mG have.

5. RuSAD and automated theorem proving

The above-given example demonstrates that inference search in mG has the following properties

provided by using the w-admissibility instead of the Gentzen or Kanger one:

– the selection of an order of quantifier rules applications does not affect the final result, which
means the following: (1) if a selected order of the applications of quantifier rules in mG leads to the

construction of a proof tree, then the same proof tree can be constructed in the case of the selection of

any another order of the quantifier rule applications eliminating the same quantifiers that were

eliminated in using the selected order; (2) if a selected order of applications of quantifier rules in mG
cannot lead to the construction of a proof tree, then any another order of the quantifier rule

applications eliminating the same quantifiers that were eliminated in the selected order cannot lead to

the construction of a proof tree.
– the selection of a substitution can be made at any suitable moment; as a result, equality handling

can be separated from deduction.

These positive features of mG demonstrate the usefulness of incorporating the notion of a w-
admissible substitution into computer-oriented inference search. Below, we make the reconstruction

of the AG calculus from [7] denoted by mAG and take it as a basic calculus when constructing the

sequent logical engine of RuSAD.

5.1. Calculus of w-sequents

A basic object of the mAG calculus is a w-sequent. It may be considered as a special

generalization of the standard notion of a sequent. We will deal with w-sequents having only one

object (goal) in its succedent, which allows making inference search in mAG goal-driven.

An ordered triple w, Φ, E is called an ensemble if, and only if, w is a sequence (a word) of
dummies and parameters, Φ is a first-order formula, and E is a set of pairs of terms t1, t2 (equations of
the form t1 ≈ t2).

A w-sequent is an expression of the form w1, Φ1, E1,..., wn, Φn, En => w, Ψ, E, where

w1, Φ1, E1, ..., wn, Φn, En, and w, Ψ, E are ensembles.

151

Ensembles in the antecedent of a w-sequent are called premises, and an ensemble in the succedent

of a w-sequent is called a goal of this w-sequent.
The mAG calculus contains goal-splitting rules and premise-splitting rules transforming a sequent

under consideration into w-sequents obligatorily with new goals and, maybe, new premises.

The goal-splitting rules make decomposition of Ψ in w1, Φ1, E1,..., wn, Φn, En => w, Ψ, E by
its principal logical connective, while premise-splitting rules realizes a possible interaction of Ψ with

Φi, which leads to generating a new w-sequent (new w-sequents). The sets E1, ..., En, and E define the
terms to be substituted for dummies in order to transform each equation of the form t1 ≈ t2 from E1, ...,

En, and E to an identity of the form t ≈ t by applying to E1, ..., En, and E a substitution chosen in a

certain way. The words (sequences) w1, ..., wn, and w participate in checking whether a substitution
generated during a proof search is w-admissible.

An initial w-sequent is constructed as follows. Suppose we want to establish the deducibility of a
usual (original) sequent S of the form Φ1, ..., Φn => Ψ (for example, in the calculus G), where Φ1, ...,

Φn and Ψ are closed formulas. Then w-sequent , Φ1, , ..., , Φn,  => , Ψ,  is declared as an
initial one for Φ1, ..., Φn => Ψ.

During a proof search in mAG an inference tree is constructed. At the beginning of a search
process it consists of an initial w-sequent. The subsequent nodes of the inference tree are generated

accordingly to the rules described below. Note that inference trees grow “from top to bottom”.

Goal Splitting Rules

These rules are used for the elimination of the principal logical connective from the formula-goal

of a w-sequent under consideration. The application of any such a rule results in the generation of a
new w-sequent (new w-sequents) with only one goal and, possibly, with new premises. The

elimination of propositional connectives is done on the basis of the well-known transformations of

formulas in classical first-order logic and can be easily expressed in the form of derivative rules of a

standard Gentzen-type calculus.
In the below-given rules, Γ is a multiset of premises, w a word consisting of dummies and

parameters, E a set of equations, and Φ1, Φ2, and Φ formulas.

(=>⊃1)-rule: Γ => w, Φ1 ⊃ Φ2, E (=>⊃2)-rule: Γ =>  Φ1 ⊃ Φ2, E
 Γ, w, Φ1, E => w, Φ2, E Γ,  w,¬Φ2, E => w, ¬Φ1, E 

(=>∨1)-rule: Γ =>  w, Φ1 ∨ Φ2, E (=>∨2)-rule: Γ =>  Φ1 ∨ Φ2, E
 Γ,  w, ¬Φ1, E => Φ2, E Γ,  w, ¬Φ2, E => w, Φ1, E 

(=>∧)-rule: Γ =>  w, Φ1 ∧ Φ2, E (=>¬)-rule: Γ =>  w, ¬Φ, E
 Γ =>  w, ¬Φ1, E Γ =>  w, Φ2, E Γ => w, Φ', E

where Φ' is the result of one-step moving the sign ¬ into Φ, if Φ is not an atomic formula; otherwise

Φ' coincides with Φ.

Quantifier Rules

(=>∀)-rule: Γ => w, ∀xΦ, E (=>∃)-rule: Γ => w, ∃xΦ, E
 Γ => wy, Φ|x

y E w, ∀x'(¬Φ|x
x'), E => wz, Φ|x

z, E|x
z

where x' and z are new dummies and y is a new parameter.

Auxiliary Goal Rules

The Auxiliary Goal rules (AG-rules) are applied, when a formula, say, L, in the goal of a w-
sequent under consideration is a literal and one of the premises of the sequent contains a negative

(w.r.t. the sequent) occurrence of a literal, say, L' , such that L ≈ L' modulo Σ(L, L'). (We simply write

L ≈ L', when Σ(L, L') is immaterial.)
The fixing of a selected occurrence of L' produces such a sequence of rules eliminating logical

connectives in premises that leads to the “goal-driven” generation of a w-sequent, containing a

premise with L' as its formula.
In all the below-given rules, Φ1 and Φ2 are formulas, L and L' are literals and L ≈ L' modulo Σ(L,

L'), w and w' are words consisting of dummies and parameters, E, E', and E'' are sets of equations

such that E'' = E ∪ E' ∪ Σ(L, L'). For a formula Φ, the expression ΦL− (ΦL+) denotes that a

selected occurrence of L in Φ is negative (positive) in Φ.

(⊃1 =>)-rule: Γ, w, Φ1L
− ⊃ Φ2, E => w', L', E'

 Γ, w, (¬Φ1)L
+, E =>  w', L', E'' Γ => w, ¬Φ2, E

152

(⊃2 =>)-rule: Γ, w, Φ1 ⊃ Φ2L
+, E => w', L', E'

 Γ, w, Φ2L
+, E =>  w', L', E'' Γ => w, Φ1, E

(∨ 1 =>)-rule: Γ, w, Φ1L
+ ∨ Φ2, E => w', L', E'

 Γ, w, Φ1L
+, E => w', L', E'' Γ => w, ¬Φ2, E

(∨ 2 =>)-rule: Γ, w, Φ1 ∨ Φ2L
+, E => w', L', E'

 Γ, w, Φ2L
+, E => w', L', E'' Γ => w, ¬Φ1, E

(∧ 1 =>)-rule: Γ, w, Φ1L
+ ∧ Φ2, E => w', L', E'

 Γ, w, Φ1L
+, E, Φ2, E => w', L', E'

(∧ 2 =>)-rule: Γ, w, Φ1 ∧ Φ2L
+, E => w', L', E'

 Γ, w, Φ1, E, Φ2L
+, E => w', L', E'

(¬ =>)-rule: Γ, w, ¬(ΦL -), E => w', L', E'
 Γ, w, Φ'L +, E => w', L', E',

where Φ' is the result of one-step moving the sign ¬ into Φ, if Φ is not an atomic formula; otherwise

Φ' coincides with Φ.

Quantifier Rules

(∀=>)-rule: Γ, w, ∀xΦL+, E => w', L', E' , (∃=>)-rule: Γ, w, xΦL+, E => w', L', E' ,

 Γ, wy, (ΦL+)|x
y, E => w', L', E' Γ, wz, (ΦL+)|x

z, E => w', L', E'
where y is a new parameter and z a new dummy.

Termination Rules

(=> #1)-rule: Γ, w, L , E => w', L', E'
 Γ => w, #, E''

where L and L' are literals such that L ≈ L' modulo Σ(L, L') and E'' = E ∪ E' ∪ Σ(L ,L').

(=> #2)-rule: Let Tr be an inference search tree and Br some its branch ending by a tree leaf

Γ => w, L, E, where L is a literal. Let Br contain a w-sequent Γ' => w', L', E',
such that L' is a literal and L ≈ L'' modulo Σ(L, L'') holds for the complement literal

L'' of L' and E'' = E ∪ E' ∪ Σ(L, L''). Then the sequent Γ => w, #, E'' is said to be

deducible from Γ => w, L, E by the (=> #2)-rule.

Premise-Adding Rule

(ρ =>)-rule: After the (∀=>)-rule application, the triple w,∀x'(Φ|x
x'), E can be added to

the antecedent of any w-sequent containing wx,(ΦL+)|x
x', E as its premise in a

current sequent tree, where x' is a new variable.

Axioms. Axioms are w-sequents of the form Γ => w, #, E, where # denotes the empty formula.

Proof Tree. An inference tree Tr in mAG is called a proof tree in mAG if, and only if, all the
leaves of Tr are axioms, there exists the most general simultaneous unifier σ of all the equations from

the axioms of Tr, and σ is a w-admissible substitution for the set of all the words from Tr.

5.3. Main results for mAG calculus

The soundness and completeness of the mAG calculus have the following forms, one of which is
of the form of coextensetivity.

Proposition 1. For closed formulas Φ1 ,..., Φn , and Ψ, the sequent Φ1 ,..., Φn => Ψ is deducible in

a Gentzen-type (sound and complete) calculus with standard quantifier rules (for example, in G) if,

and only if, a proof tree can be constructed in the mAG calculus for the initial w-sequent , Φ1,  ,...,

, Φn,  => , Ψ, .

Corollary 1. A formula Ψ is valid in classical first-order logic without equality if, and only if, a

proof tree can be constructed in the mAG calculus for the initial w-sequent => , Ψ, .

5.4. Peculiarities of proof search in RuSAD

Logical engine of RuSAD was constructed as containing of two independent parts. The first,
resolution part was based on the well-known deductive system “negative resolution+paramodulation”,

while the second one practically presents a computer realization of the mAG calculus constructed in

153

such a way that it satisfies at least the EA-requirements (ii) - (iv), which did not get representation in

publications on EA. The subsequent content is intended to eliminate this disadvantage.
The satisfying of mAG to the EA-requirements (ii) - (iv) was the main reason for taking mAG as

a basis for constructing the logical engine of RuSAD. An additional reason was that mAG also

partially satisfies (i) in the case of “coloring” premises of an input w-sequent into definitions,

auxiliary propositions, and theorem preliminaries (theorem conditions) depending on in which
premise of the sequent, a considered linguistic unit of an original TL-text (definition, auxiliary

proposition, or theorem condition) is translated. This means that after the translation of an original

TL-text into an input w-sequent, any its premise has a label “coloring” it into a definition, auxiliary
proposition, or theorem condition.

Figure 1: Scheme of proof search in RuSAD's logical engine

An input w-sequent “colored” by such a way imposes the following order of involving its premises

in the proof search process: First of all, an attempt to prove a theorem under consideration is made by
using only the theorem preliminaries. In the case of failure, one or another definition is involved in

the proof search process, and in the case if the use of preliminaries and definitions do not lead to

success, auxiliary propositions are allowed to use.

More precisely. Let T denote a theorem that should be proved in the assumption that there are
theorem preliminaries C1, ..., Cm, definitions D1, ..., Dn, and auxiliary propositions A1, ..., Ar written in

TL. The TL-parser translates them into first-order formulas and, as a result, an initial w-sequent

, Φ(C1), , ..., , Φ(Cm), , , Φ(D1), , ..., , Φ(Dm), , Φ(A1), , ..., , Φ(Ar),  => , Φ(T),

 is constructed, where Φ(C1), …, Φ(Cn) are first-order formulas presenting C1, ..., Cm, Φ(D1), …,
Φ(Dn) are first-order formulas presenting D1, ..., Dn; Φ(A1), ..., Φ(Ar) are first-order formulas

presenting A1, ..., Ar; Φ(T) is a first-order formula presenting T. Then the RuSAD sequent engine

makes an attempt to reach the goal , Φ(T),  using firstly , Φ(C1), , ..., , Φ(Cm), . In the case

of failure, it makes an attempt to use additionally some or all , Φ(D1), , ..., , Φ(Dm), . And only

after this, if there is no success, the sequent engine involves some or all , Φ(A1), , ..., , Φ(Ar), 
into the proof search process. We refer to Fig. 1 for a relatively full description of information

processing in the RuSAD sequent engine, in which the unification algorithm was incorporated for
equation (“equality”) handling and a w-admissibility technique was built-in for the admissibility

checking.

Note that it is presupposed for a human to make intervention in the proof search process with the
aim to change the direction of proof search by, for example, setting his own order of the use of

premises.

A theorem T is RuSAD-valid in a context of a TL-text Txt if, and only if, the RuSAD system can
prove T using only facts (notions, definitions, lemmas, etc.) from the text Txt in the assumption that it

has an infinite memory to store data and that the system has an infinite time to operate.

154

The RuSAD system is sound and correct in the following sense.

Theorem 1. Let Txt be a self-contained noncontradictory TL-text for a theorem T and Txt∗ => T∗

be a sequent, in which Txt∗ and T∗ are the results of the translation of respectively Txt and T into first-

order formulas. Then T is a RuSAD-valid theorem in the context of the TL-text Txt if, and only if, the

sequent Txt∗ => T∗ is deducible in a Gentzen-type sound and complete calculus with standard

quantifier rules.
Finally note that the trial exploitation of the RuSAD's sequent engine shows good enough results.

For example, when solving some tasks, this engine produced only several dozen new w-sequents,

while the RuSAD's resolution engine generates several hundred new clauses, when solving the same

tasks.

6. EnSAD, automated theorem proving, and proof verification

The mAG calculus showes that words in its quantifier rules are used only for fixing the quantifier

structures of formulas in an input sequent; at that, both these structures and words remain unchanged

during proof search since they are invariant w.r.t. the application of any mAG inference rule.
This leads to the idea that if we preliminary remember the quantifier structures of formulas from

an input sequent and develop a special technique for handling them, we will be able to completely

refuse from quantifier rules and get a quantifier-rules-free calculus. This idea was traced in a number
of works of the first author and found its most complete reflection in [11]. But in all these papers, an

attention is mainly concentrated only on a quantifier-handling technique, while below we show how it

is possible to construct certain modifications of the mAG calculus combining this quantifier-handling
technique with the goal-driven applying of propositional (quantifier-free) rules. At that, the results

from [16] lead to satisfying the above-formulated strong coextensivity property providing a simple

enough way for obtaining results similar to given in Proposition 1 for other sequent calculi.

6.1. Strong Admissible Substitutions

A formula Φ (sequent S) containing only variables from Vr is called an original one.

Every dummy or parameter v of an original formula Φ (an original sequent S) generates a

countable set of new variables of the form kv (k = 1,2,...) called indexed variables and this set is

denoted by Vr+(v); at that, k is called an index. The union of all the sets Vr+(v) taken on all the
dummies or parameters v occurred in a formula Φ (sequent S) is denoted by Vr+(Φ) (Vr+(S)). We will

simply write Vr+ in case, if Φ or S is immaterial.

If v1, ..., vr is the list of all the dummies and parameters of an initial formula Φ (an original sequent
S) and k is a natural number, then kΦ (kS) is the result of the simultaneous replacement in Φ (S) of

each occurrence of vj by kvj (j = 1, ..., r).

For a formula Φ (a sequent S), µ(Φ) (µ(S)) denotes the result of the removing of all the quantifiers
from Φ (from S).

If Φ (S) is an initial formula (an initial sequent) and v is its parameter or dummy, then v is defined

as a parameter or dummy in µ(Φ) (in µ(S))respectively. Moreover, if v is a parameter (dummy) in Φ

or S, then, by definition, kv is a parameter (dummy) in µ(kΦ) or µ(kS). Thus, v is a parameter or
dummy in µ(Φ) (µ(S)) if, and only if, kv is a parameter or dummy in µ(kΦ) (µ(kS)).

The result of adding upper-left indexes to all variables from an original formula or sequent is

called its copy. Additionally, we require that two copies of the same original formula or sequent are
copies each other, that is the relation “to be a copy” is transitive.

Let Φ be an original formula and different quantifiers Qx and Q'y occur in Φ, where x and y are

variables and Q and Q' are ∀ or ∃. We write x ≺Φ y if, and only if, in Φ, the selected occurrence of

Q'y is in the scope of the selected occurrence of Qx. For example, if Φ is ∀x¬∃yP(x,y), then x ≺Φ y.

For an original sequent S of the form Φ1, ..., Φp => Ψ1 , ..., Ψq, we have x ≺S y if, and only if, x ≺Φi y

or x ≺Ψj y (1 ≤ i ≤ p,1 ≤ j ≤ q).

Because of the convention about bound variables occurred in sequents, this definition of ≺S is

correct and does not lead to ambiguity.

155

Moreover, ≺S is an irreflexive and transitive relation.

For an original sequent S, we extend ≺S to the case of the set of variables Vr+(S) in the following

way: kx ≺S
ry if, and only if, x ≺S y. Obviously, this extension of ≺S is irreflexive and transitive.

Any substitution σ induces a (possibly, empty) relation ≪σ in the following way: y ≪σ x if, and

only if, there exists x → t  σ such that x is a dummy, the term t contains y, and y is a parameter. For
example, consider a substitution σ = {1x → f(2y, 1v, 1z)}, where 1x and 1v are dummies and 2y and 1z

parameters. Then, 2y ≪σ
1x and 1z ≪σ

1x. The relation ≪σ is irreflexive and transitive.

Let S be an original sequent and let ≺S be the above introduced relation on the set Vr+(S). A

substitution σ is strong admissible (s-admissible) for Vr+(S) if, and only if, for every x → t  σ, x is a

dummy and the transitive closure ◁S,σ of ≺S ∪ ≪σ is an irreflexive relation.

6.2. Quantifier-Rules-Free Calculus

Now, we have all the necessary for constructing a quantifier-rules-free calculus denoted by pAG

being a modification of the propositional part of mAG that deals with so-called s-sequents consisting

of ordered pairs of the form Φ, E, where E a set of equations and Φ is a quantifier-free formula, in
which indexed variables occur only.

As in the case of mAG, s-sequents of pAG cannot contain more than one goal in their succedents.
In the below-given rules, Γ is a multiset of premises being ordered pairs, E is a set of equations

(“equalities”), and Φ1, Φ2, and Φ are quantifier-free formulas.

Goal Splitting Rules

These rules are used for elimination of the principal logical connective from a goal.

 (=> k⊃1)-rule: Γ => Φ1 ⊃ Φ2, E (=> k⊃2)-rule: Γ =>  Φ1 ⊃ Φ2, E
 Γ, Φ1, E => Φ2, E Γ, ¬Φ2, E => ¬Φ1, E

(=> k∨1)-rule: Γ =>  Φ1 ∨ Φ2, E (=> k∨2)-rule: Γ =>  Φ1 ∨ Φ2, E
 Γ, ¬Φ1, E => Φ2, E Γ, ¬Φ2, E => Φ1, E

(=> k∧)-rule: Γ => Φ1 ∧ Φ2, E (=> k¬)-rule: Γ => ¬Φ, E
 Γ => ¬Φ1, E Γ => Φ2, E Γ => Φ', E

where Φ' is the result of one-step moving the sign ¬ into Φ, if Φ is not an atomic formula; otherwise

Φ'coincides with Φ.

Auxiliary Goal Rules

The fixing of a selected occurrence of L' produces a sequence of rules that leads to the “goal-

driven” generation of an s-sequent, containing a premise. This sequence can be viewed as an

application of a “large-block” inference rule initiated by L'.
In all the below-given rules, Φ1 and Φ2 are formulas, L and L' are literals such that L ≈ L' modulo

Σ(L, L'); E, E', and E'' are sets of equations such that E'' = E ∪ E' ∪ Σ(L, L').

(k⊃1 =>)-rule: Γ, Φ1L
 − ⊃ Φ2, E => L', E'

Γ, (¬Φ1)L
 +, E => L', E'' Γ => ¬Φ2, E

(k⊃2 =>)-rule: Γ, Φ1 ⊃ Φ2L
 +, E => L', E'

Γ, Φ2L
 +, E => L', E'' Γ => Φ1, E

(k∨1 =>)-rule: Γ, Φ1L
 + ∨Φ2, E => L', E'

Γ, Φ1L
 +, E => L', E'' Γ => ¬Φ2, E

(k∨2 =>)-rule: Γ, Φ1 ∨Φ2L
 +, E => L', E'

Γ, Φ2L
 +, E => L', E'' Γ => ¬Φ1, E

(k∧1 =>)-rule: Γ, Φ1L
 + ∧Φ2, E => L', E'

Γ, Φ1L
 +, E, Φ2, E => L', E''

(k∧2 =>)-rule: Γ, Φ1 ∧Φ2L
 +, E => L', E'

Γ, Φ1, E, Φ2L
 +, E => L', E''

(k¬ =>)-rule: Γ, ¬(ΦL -), E => L', E'
Γ, Φ'L +, E => L', E

where Φ' is the result of one-step moving the sign ¬ into Φ, if Φ is not an atomic formula; otherwise

156

Φ' coincides with Φ.

Termination Rules

(=> k#1)-rule: Γ, L , E => L', E'
Γ => #, E''

where L and L' are literals such that L ≈ L' modulo Σ(L, L') and E'' = E ∪ E' ∪ Σ(L, L').

(=> k#2)-rule: Let Tr be an inference search tree and Br some its branch ending by a tree leaf

Γ => L, E, where L is a literal. Suppose Br contains an s-sequent Γ' => L', E' such
that L' is a literal and L ≈ L'' modulo Σ(L, L'') holds for the complement literal L'' of

L' and E'' = E ∪ E' ∪ Σ(L, L''). Then the s-sequent Γ => #, E'' is said to be

deducible from Γ => L, E by the (=> k#2) -rule.

Premise-Adding Rules

(kρ1 =>)-rule: Φ[x], E, Γ => Ψ, E'

kΦ[x], kE, Φ, E, Γ => Ψ, E'

(kρ2 =>)-rule: Φ[x], E, Γ => Ψ, E'

¬ kΨ[x], kE', Φ, E, Γ => Ψ, E'
where Φ[x] (Ψ[x]) denotes that x is some dummy occurring in Φ (Ψ). The formula kΦ[x] (kΨ[x]) is the
result of the simultaneous replacement in Φ[x] (Ψ[x]) of the upper-left indexes of both x and all

variables y such that x ≺S y by the natural number k being new w.r.t. an inference tree under

consideration (S denotes the upper sequent of these rules); kE (kE') is the result of the corresponding
replacement in E (E') of the upper-left indexes in x and all such y.

Axioms. Axioms are w-sequents of the form Γ => #, E, where # denotes an empty formula.
Starting sequent. If S is an original sequent of the form Φ1, ..., Φm => Ψ1, ..., Ψn, then the sequent

µ(1Φ1), , ..., µ(1Φm),  => µ(1Ψ 1), , ..., µ(1Ψ n),  is called a starting sequent for S.
Proof Tree. Let S be an initial (original) sequent with one formula in its succedent. An inference

tree Tr in the pAG calculus is called a proof tree in pAG for the starting sequent for S if, and only if,
all the leaves of Tr are axioms, there exists the most general simultaneous unifier σ of all the

equations from the axioms of Tr, and σ is an s-admissible substitution for Vr+(S).

6.3. Main Results for pAG Calculus

Due to the w-admissibility and s-admissibility are invariant w.r.t. any inference rules applications,
it is not difficult to prove the equivalence of this notions in the following sense: if for an initial

(original) sequent S, Tr is a proof tree constructed in mAG for the corresponding input w-sequent S'

and a substitution σ is w-admissible for Tr, then Tr can be converted into such a proof tree Tr' in pAG

for the starting s-sequent => µ(1S),  that σ will be an s-admissible substitution for Vr+(S), and vice

versa, if for an initial sequent S, Tr' is a proof tree in pAG for the starting s-sequent => µ(1S),  and
σ is an s-admissible substitution for Vr+(S), then Tr' can be converted into such a proof tree Tr in

mAG for the input w-sequent for S that σ is a w-admissible substitution for Tr. This leads to the
following results.

Proposition 2. For closed formulas Φ1, ..., Φn, and Ψ, the sequent Φ1, ..., Φn => Ψ is deducible in

a Gentzen-type (sound and complete) calculus with standard quantifier rules (for example, in G) if,

and only if, a proof tree can be constructed in the pAG calculus for the starting s-sequent µ(1Φ1), ,

..., µ(1Φn),  => µ(1Ψ) , .

Corollary 2. A formula Ψ is valid in classical first-order logic without equality if, and only if, a

proof tree can be constructed in the pAG calculus for the starting s-sequent => µ(1Ψ) , .

Let us construct a proof tree in pAG for the above-given sequent S∗.

1. µ(1Φ*1), , µ(1Φ*2),  => µ(1Ψ*),  (a starting s-sequent)

2. ¬R2(
1x3), , µ(1Φ*1), , µ(1Φ*2,  => (R3(

1x2)),  (by (=> k∨1)-rule from 1)

 2.1. ¬R2(
1x3), , µ(1Φ*1), , ¬R3 (

1x2),  => ¬R3 (
1y3), {

1x2 ≈ 1y3 } (by (k⊃2 =>)-rule from 2)

2.2. ¬R2(
1x3), , µ(1Φ*1),  => R1(

1y2) ∧ ¬R3(
1x2), {

1x2 ≈ 1y3} (by (k⊃2 =>)-rule from 2)

 2.1.1. ¬R 2(
1x3), , µ(1Φ*1),  => #, {1x2 ≈ 1y3} (by (=> k#1)-rule from 2.1)

 2.2.1. ¬R2(
1x3), , µ(1Φ*1),  => ¬R3(

1x2), {
1x2 ≈ 1y3} (by (k∧=>)-rule from 2.2)

157

 2.2.2. ¬R 2(
1x3), , µ(1Φ*1),  => R1(

1y2), {
1x2 ≈ 1y3} (by (k∧=>)-rule from 2.2)

 2.2.1.1. => #, {1x2 ≈ 1y3} (by (=>k#2)-rule from 2.2.1 and 2)

 2.2.2.1. ¬R2(
1x3), , R1(

1x1),  => R1(
1y2), {

1x1 ≈ 1y2,
1x2 ≈ 1y3} (by (k∨2 →)-rule

 from 2.2.2)

 2.2.2.2. ¬R2(
1x3),  => ¬R2(

1y1), {
1x1 ≈ 1y2 ,

1x2 ≈ 1y3} (by (k∨2 =>)-rule from 2.2.2)

 2.2.2.1.1. ¬R2(
1x3), , R1(

1x1),  => #, {1x1 ≈ 1y2 ,
1x2 ≈ 1y3} (by (=> k#1)-rule from

 2.2.2.1)

 2.2.2.2.1. ¬R2(
1x3),  => #, {1x1 ≈ 1y2 ,

1x2 ≈ 1y3,
1x3 ≈ 1y1} (by (=> k#1)-rule from

 2.2.2.2)

This tree contains four branches: 1, 2, 2.1, 2.1.1; 1, 2, 2.2, 2.2.1, 2.2.1.1; 1, 2, 2.2, 2.2.2, 2.2.2.1.,

2.2.2.1.1; and 1, 2, 2.2, 2.2.2, 2.2.2.2., 2.2.2.2.1. Its leaves 2.1.1, 2.2.1.1, 2.2.2.1.1, and 2.2.2.2.1 are
axioms. These axioms contain the equations 1x1 ≈ 1y2,

1x2 ≈ 1y3,
1x3 ≈ 1y1 producing the most general

simultaneous unifier {1x1 → 1y2,
1x2 → 1y3,

1x3 → 1y1} being an s-admissible one for Vr+(S∗). By

Proposition 2, the sequent S∗ is deducible in the G calculus.

Also draw your attention to the fact that the given inference is purely propositional.

6.4. Peculiarities of Theorem Proving and Proof Verification in EnSAD

One of the main distinguishes of EnSAD from RuSAD is that the EnSAD system allows verifying

a proof of a theorem written in ForTheL and inserted into a self-contained ForTheL environment,

while the RuSAD system is intended only for proving a theorem under consideration. In this

connection, for solving a verification task, there is in EnSAD a module for generating goals that are
sequentially passed to the logical engine of EnSAD for automatic establishing the validity of a goal in

question. A proof is regarded to be correct, if all the generated goals are valid. (This module becomes

useless in the case, if EnSAD solves the task of automated theorem proving.) Another distinguish is
that along with its native engine, EnSAD gives the possibility to use one of such of well-known

provers as Vampire, SPASS, E Prover, Otter, and Prover9. (Remind that RuSAD contained only its

own resolution engine based on the negative hyperresolution.)

6.4.1. Architecture of EnSAD

The action scheme of EnSAD could be described as follows. A user communicates with it using

texts written in ForTheL. He may submit a problem like “prove the following proposition” or “verify

whether the given mathematical text is correct”. The text, provided it is syntactically correct, is sent to

a subsystem, a so-called “reasoner”. The reasoner makes analysis of a problem under consideration
and formulates a number of tasks submitting them to an the EnSAD logical engine being a prover. If

the prover finishes the job, the result of its work (e.g. a proof verification trace) is displayed to the

user and the work is over. If it fails, then a diagnostic is made and its result supplies to the reasoner
for repairing the situation. In particular, the reasoner can decide that a certain auxiliary proposition

might be useful and starts the search for those in existing mathematical archives. After finding it, the

service begins a new proof search cycle with a modified problem and the process goes on.
According to this scheme, the EnSAD system initially conceived as a linguistic-deductive system

designed to assist a mathematician in his scientific and teaching activities, has three levels of the

processing of input ForTheL-texts (see Fig. 2).

The architecture of EnSAD having three levels structure, a short description of which are given
below.

At the first (linguistic) level, the Parser module accepts a ForTheL text, checks its syntactical

correctness and converts the text into a normalized form for a further processing. The result of
translation is a number of goal statements to be sequentially deduced from their predecessors. The

FOL submodule is a parser for a “dialect” of the first-order language. The EnSAD system can also

connect with the famous TPTP library [21] for receiving theorem-proving tasks.
At the second (reasoning) level, the Verification Manager module scans the normalized text

sentence by sentence. Each sentence is first sent to the “evidence collector”, which accumulates so-

158

called term properties for terms occurred in the sentence. Term properties are literals that tell the

system something important about a given term occurrence. The most important mission of term
properties is to hold information about term “types”, which is usually expressed by a statement of the

form “t is a notion”. Some simple properties, like the nonemptiness, are also highly useful.

Figure 2: Architecture of the EnSAD system

At the second (reasoning) level, the Verification Manager module scans the normalized text
sentence by sentence. Each sentence is first sent to the “evidence collector”, which accumulates so-

called term properties for terms occurred in the sentence. Term properties are literals that tell the

system something important about a given term occurrence. The most important mission of term

properties is to hold information about term “types”, which is usually expressed by an atomic
statement of the form “t is a notion”. Some simple properties, like the nonemptiness, are also highly

useful.

The Evidence Collector submodule is a simple syntactical procedure that scans the context of a
given occurrence and checks what can be “easily” deduced from the properties already known. For

example, let S be declared as a set of integer numbers and x be declared as an element of S. Then,

anywhere in view of these declarations, the term -x will be known to be an integer.
The Ontological Checker submodule uses certain ontological connections between notions

occurred in a text for fortifying its certain properties with the purpose to form a certain proof task.

Proof tasks are sequentially processed by the Reasoner module. In the verification mode, Reasoner

is intended for splitting a proof task in question into a number of subtasks for a prover. It either makes
reduction of the main goal to several simpler subgoals or proposes an alternative subgoal. In

particular, its toolkit contains some simplification methods on the propositional level. This module is

redundant in the case, when the EnSAD system solves an automated theorem-proving problem.
At the third (deductive) level, the Prover module carries out a proof search in classical first-order

logic with equality using its own Moses prover or one of the following (external w.r.t. EnSAD)

provers: Vampire [22], Otter [23], SPASS [24], and E Prover [25]. Remind that the Moses prover is
based on a goal-driven sequent calculus exploiting the notion of an s-admissible substitution, which

permits to preserve the initial signature of a task in question so that equations accumulated during

proof search can be sent to a specialized solver, e.g. to an external computer algebra system.

At the final stage, EnSAD outputs the result of its session. Note a user can influence to solving a
task under consideration by changing some system parameters.

Now, the EnSAD system can perform the following:

• Inference Search: establishing of deducibility of a first-order formula/sequent;
• Theorem Proving: proving of a proposition in the context of a ForTheL-text;

• Text Verification: verifying of a self-contained mathematical ForTheL-text.

A theorem T is called EnSAD-valid in a context of a ForTheL-text Txt if, and only if, EnSAD can

prove T using only facts (notions, definitions, lemmas, etc.) from the text Txt in the assumption that it
has an infinite memory to store data and that it has an infinite time to operate.

159

The EnSAD system is sound and logically correct in the following sense.

Theorem 2. Let Txt be a self-contained noncontradictory ForTheL-text for a theorem T and Txt∗

=> T∗ be a sequent, in which Txt∗ and T∗ are the results of the translation of respectively Txt and T

into first-order formulas. Then T is an EnSAD-valid theorem in the context of the ForTheL-text Txt

if, and only if, the sequent Txt ∗ => T∗ is deducible in a Gentzen-type sound and complete calculus

with standard quantifier rules.
A proof Pr of a theorem T is EnSAD-correct in a context of a ForTheL-text Txt if, and only if,

EnSAD can verify Pr using only facts (notions, definitions, lemmas, etc.) from the text Txt in the

assumption that it has an infinite memory to store data and that it has an infinite time to operate.

Theorem 3. Let Txt be a self-contained noncontradictory ForTheL-text for a theorem T together

with its proof Pr and Txt∗ => T∗ be a sequent, in which Txt∗ and T∗ are the results of the translation of

respectively Txt and T into first-order formulas. If the proof Pr is EnSAD-correct in the context of the

ForTheL-text Txt, then the sequent Txt∗ => T∗ is deducible in a Gentzen-type sound and complete

calculus with standard quantifier rules.

6.4.2. Examples of theorem proving and proof verification in EnSAD

Below, two examples of the processing of ForTheL-texts (being available on the web-site at the

pages http://nevidal.org/help-thm.en.html and http://nevidal.org/help-txt.en.html) are presented.

The first demonstrates the ability of EnSAD not only to prove theorems, but also to establish the

validity of different logical task, for example, the validity of the childish statement known as

Schuberts Steamroller Problem and given as Proposition that concerns the relationships between
animals and plants. The second one shows the ability of the EnSAD system to verify a given proof of

theorems relating to Number Theory and inserted into a self-contained ForTheL-text. (In the first

case, the Moses prover was used and in the second one, the SPASS prover was used.)

6.4.2.1. Example of solving Schubert's steamroller problem

Receiving the below-given problem given in Proposition, EnSAD processes it and outputs the

result on this session and some statistical data.
===
[animal/-s] [plant/-s] [eat/-s]

Signature Animal. An animal is a notion.
Signature Plant. A plant is a notion.

Let A,B denote animals. Let P denote a plant.
Signature EatAnimal. A eats B is an atom.

Signature EatPlant. A eats P is an atom.
Signature Smaller. A is smaller than B is an atom.

Axiom CruelWorld. Let B be smaller than A and eat some plant. Then A eats all plants
or A eats B.

Signature Wolf. A wolf is an animal.
Signature Fox. A fox is an animal smaller than any wolf.

Signature Bird. A bird is an animal smaller than any fox.
Signature Worm. A worm is an animal smaller than any bird.

Signature Snail. A snail is an animal smaller than any bird.

Signature Grain. A grain is a plant.
Axiom Everybody. There exist a wolf and a fox and a bird and a worm and a snail

and a grain.
Axiom WormGrain. Every worm eats some grain.

Axiom SnailGrain. Every snail eats some grain.
Axiom BirdWorm. Every bird eats every worm.

Axiom BirdSnail. Every bird eats no snail.
Axiom WolfGrain. Every wolf eats no grain.

Axiom WolfFox. Every wolf eats no fox.

Proposition. There exist animals A,B such that A eats B and B eats every grain.

===
 [ForTheL] stdin: parsing successful

[Reason] stdin: theorem proving started
[Reason] line 32: goal: There exist animals A,B such that A eats B and B eats

160

every grain.

[Reason] stdin: theorem proving successful
[Main] sections 45 - goals 1 - subgoals 3 - trivial 1 - proved 1

[Main] symbols 68 - checks 58 - trivial 57 - proved 0 - unfolds 0
[Main] parser 00:00.00 - reason 00:00.00 - prover 00:00.00/00:00.00

[Main] total 00:00.01
===

6.4.2.2. Example of verifying a proof of a theorem relating to Number Theory

In this example, iif is an abbreviation for “if and only if”. A test beginning with # is a comment
that a user can write for a better understanding of a given ForTheL-text.

===

Axioms of zero and the successor

[number/-s]

Signature NatSort. A number is a notion.
Let A,B,C stand for numbers.

Signature NatZero. The zero is a number.
Let X is nonzero stand for X is not equal to zero.

Signature NatSucc. The successor of A is a nonzero number.
Axiom SuccEquSucc.

 If the successor of A is equal to the successor of B
 then A and B are equal.

Signature NatSum. The sum of A and B is a number.
Axiom AddZero. The sum of A and zero is equal to A.

Axiom AddSucc. The sum of A and the successor of B
 is equal to the successor of the sum of A and B.

We take the following facts as axioms, too

Axiom ZeroOrSucc.

 Every nonzero number is the successor of some number.
Axiom AssoAdd.

 The sum of A and the sum of B and C is equal to the sum of (the sum of A and B)
 and C.

Axiom InjAdd.
 If the sum of A and B is equal to the sum of A and C then B and C are equal.

Axiom Diff.
 There exists C such that

 A is the sum of B and C or B is the sum of A and C.

Definition of order on natural numbers

Definition DefLess.

 A is less than B iff B is equal to the sum of A and the successor of some number.
Let X is greater than Y stand for Y is less than X.

Theorems with basic properties of order

Theorem NReflLess.

 A is not less than A.
Proof.

 Assume the contrary.
 Take a number C such that A is equal to the sum of A and the successor of C.

 Then the successor of C is zero (by AddZero,InjAdd).
 We have a contradiction.

qed.

Theorem TransLess.
 Assume A is less than B and B is less than C.

 Then A is less than C (by DefLess).
Proof.

 Let M be a number and N be the successor of M.
 Let P be a number and Q be the successor of P.

 Assume the sum of A and N is equal to B.

161

 Assume the sum of B and Q is equal to C.

 Let S be the sum of N and Q.
 S is the successor of the sum of N and P (by AddSucc).

 The sum of A and S is equal to C (by AssoAdd).
qed.

Theorem ASymmLess.

 If B is less than A then A is not less than B.

Theorem TotalLess.
 Let A,B be nonequal.

 Then A is less than B or B is less than A.
Proof.

 Take C such that A is the sum of B and C or B is the sum of A and C.
 If C is zero then B is equal to A.

 Hence C is the successor of some number.
 If B is the sum of A and C then A is less than B.

 Then A is the sum of B and C or A is less than B.
 If A is the sum of B and C then B is less than A.

 Hence the thesis.
qed.

===

After receiving this ForTheL-text, EnSAD establishes the correctness of the theorem proofs and

output the below-given verification trace ended by statistical data.
===
[ForTheL] stdin: parsing successful

[Reason] stdin: verification started
[Reason] line 46: goal: Take a number C such that A is equal to the sum of A and the successor of C.

[Reason] line 48: goal: Then the successor of C is zero (by AddZero,InjAdd).
[Reason] line 49: goal: We have a contradiction.

[Reason] line 43: goal: A is not less than A.
[Reason] line 61: goal: S is the successor of the sum of N and P (by AddSucc).

[Reason] line 62: goal: The sum of A and S is equal to C (by AssoAdd).
[Reason] line 54: goal: Then A is less than C (by DefLess).

[Reason] line 66: goal: If B is less than A then A is not less than B.
[Reason] line 72: goal: Take C such that A is the sum of B and C or B is the sum of A and C.

[Reason] line 73: goal: If C is zero then B is equal to A.

[Reason] line 74: goal: Hence C is the successor of some number.
[Reason] line 75: goal: If B is the sum of A and C then A is less than B.

[Reason] line 76: goal: Then A is the sum of B and C or A is less than B.
[Reason] line 77: goal: If A is the sum of B and C then B is less than A.

[Reason] line 78: goal: Hence the thesis.
[Reason] line 70: goal: Then A is less than B or B is less than A.

[Reason] stdin: verification successful
[Main] sections 65 - goals 16 - subgoals 19 - trivial 2 - proved 14

[Main] symbols 128 - checks 89 - trivial 89 - proved 0 - unfolds 5
[Main] parser 00:00.01 - reason 00:00.02 - prover 00:10.18/00:00.07

[Main] total 00:10.22
===

7. Current state and possible future work

In general, the entire time of research on EA can be divided into the following stages:

 1962-1969: pre-attempts to follow EA;

 1970-1992: research on EA leaded to the construction and trial operation of RuSAD;

 1998-2008: research on EA leaded to the construction and trial operation of EnSAD;

 2009-present: investigations on EA on a computer-oriented proof search in non-classical logics.

And although the further development of EnSAD was stopped in 2008, anyone can carry out a

series of experiments with the system that is available online on “nevidal.org/sad.en.html”.

Note that by now, a number of tests has been made with the EnSAD system. They are related to
proof search in first-order logic, theorem proving in the ForTheL-environment, and verification of

self-contained ForTheL-texts. The most interesting ones concern verification, among which are:

Newman's lemma, Cauchy-Bouniakowsky-Schwarz inequality from mathematical analysis, Ramsey’s

162

finite and infinite theorems, Chinese remainder theorem, Bezouts identity in terms of abstract rings,

Tarskis fixed point theorem, Furstenbergs proof of the in finitude of primes, and some properties of
finite groups.

The trial operation of the EnSAD system and a number of current achievements made in

automated reasoning in the EA-style have shown the desirability of improving the capabilities of

EnSAD in the following directions (studied and not implemented).
On the linguistic level. The nearest objective can be the incorporation of the existing ForTheL

language into a LaTeX-environment to reach the reading of ForTheL-texts in the form closest to

usual mathematical texts. Besides, there are drafts of Russian and Ukrainian versions of the ForTheL
language. Therefore, there exists the possibility to construct the next bidirectional translators: English

ForTheL-texts ⇔ Russian ForTheL-texts, English ForTheL-texts ⇔ Ukrainian ForTheL-texts,

and Russian ForTheL-texts ⇔ Ukrainian ForTheL-texts, which will give the opportunity for using

such a multilingual extension of EnSAD by a person who knows only one of these languages as well

as for making an automatic translation from one of these languages into another. (Of course, one can
try to construct a German, French, and/or other version of the ForTheL language, thereby

strengthening this multilingual EnSAD component.)

On the reasoning level. The improving of heuristic possibilities of the EnSAD system is
presupposed to do by incorporating in EnSAD the human-like reasoning methods depending on the

subject domain in question concentrating the main attention on inductive theorem proving methods.

On the deductive level. On the basis of the research made on computer-oriented proof search in

classical and non-classical sequent logics, one can try to construct a toolkit giving the possibility to
“puzzle” one or another system logical engine depending on a desire of an EnSAD user or a subject

domain under consideration.

8. Conclusion

Features of the EnSAD system indicate that EnSAD is designed and implemented with taking into

account modern achievements in the field of construction of computer mathematical services. In this

regard, we draw attention to that the ForTheL language is based on fundamental logical and set-

theoretic relations. Therefore, it is suitable for representing any (not only mathematical) texts, if the

latter are formalized in terms of first-order logic. A ForTheL-text can be created either by a human or

a computer and after this it can be sent to EnSAD or even another system directly or via a network.

As for the deductive component of EnSAD, the existing theoretical results and the experience

accumulated during the trial operation of EnSAD can serve as a good basis for a further improvement

of the EA-style deductive technique in the direction of increasing the efficiency of inference search in

classical logic and making reasoning in non-classical logics.

Of particular note is the ability of EnSAD to combine deduction with analytical transformations

performed by a system external to EnSAD. This is provided by a special proof technique and

properties of the EA-style deductive formalism permitting to preserve the signature of an original

problem and make equality handling in isolation from deduction.

In the long run, the EA-approach to automated reasoning and further development of the EnSAD

system can lead to the creation of an info-structure for the remote multilingual presentation and

complex processing of mathematical knowledge, what can make the system useful for both teaching

and academic daily activity of a person.

9. References

[1] V.M. Glushkov. “Some problems in the theories of automata and artificial intelligence.”

Cybernetics and System Analysis, Vol. 6, Issue 2, Springer, New York, 1970: 17-27. DOI:

10.1007/BF01070496.

[2] P.C. Gilmore. “A program for the production of proofs for theorems derivable within the first-

order predicate calculus from axioms.” Proceedings of the International Conference on

163

Information Processing, Unesco, Paris, June 15-20 (1959): 265-273.

[3] Hao Wang. “Towards mechanical mathematics.” IBM Journal of Research and Development,

Vol. 4, Issue 1, Jan. (1960): 2-22. DOI: 10.1147/rd.41.0002.

[4] J.A. Robinson, and A. Voronkov. “Handbook of Automated Reasoning” (in 2 volumes). Elsevier

and MIT Press, June (2001): 2122 pp. ISBN: 0-444-50813-9.

[5] V. Lifschitz. “Mechanical theorem proving in the USSR: The Leningrad school.” Delphic

Associates Inc., Jan. (1986): 206 pp.

[6] G. Mints. “Proof theory in the USSR (1925-1969).” Journal of Symbolic Logic, Vol. 56, Issue 2,

June (1991): 385-424. DOI: 10.2307/2274689

[7] F. V. Anufriyev. “Algoritm poiska dokazatel'stv teorem v logicheskikh ischisleniyakh.” [An

algorithm of search for proofs of theorems in logical calculi.] Teoriya Avtomatov, GIC AN

USSR, Kiev, 1969: 3-26. (In Russian).

[8] S. Kanger. “Simplified proof method for elementary logic.” Studies in Logic and the Foundations

of Mathematics, North-Holland Publishing Company, Amsterdam, 1963: 87-94.

[9] G. Gentzen. “Untersuchungen uber das logische schliessen. I.” Mathematische Zeitschrift,

Vol. 39, 1935: 176–210. https://doi.org/10.1007/BF01201353.

[10] V. M. Glushkov, Yu. V. Kapitonova, A. A Letichevskii, K. P. Vershinin, and N. P. Malevanyi.

“Construction of a practical formal language for mathematical theories.” Cybernetics and

Systems Analysis, Vol. 8, Issue 5, 1972: 730-739. https://doi.org/10.1007/BF01068445

[11] J. Robinson. “A machine-oriented logic based on resolution principle.” Journal of the ACM, Vol.

12, Issue 1, 1965: 23-41. DOI: 10.2307/2270500.

[12] A. Lyaletski, K. Verchinine, A. Degtyarev, and A. Paskevich. “System for Automated Deduction

(SAD): Linguistic and deductive peculiarities.” Advances in Soft Computing (Intelligent

Information Systems, 11th International Symposium, IIS 2002, Sopot, Poland, June 2002), 2002:

413-422. DOI: 10.1007/978-3-7908-1777-5_44.

[13] K. Vershinin, and A. Paskevich. “ForTheL – the language of formal theories.” International

Journal of Information Theories and Applications, Volume 7, Issue 3, 2000: 120-126.

[14] K. Vershinin, A. Lyaletski, and A. Paskevich. “System for Automated Deduction (SAD): A tool

for proof verification.” Proceedings, Lecture Notes in Computer Science (Automated Deduction

- CADE-21, 21st International Conference on Automated Deduction, Bremen, Germany, July 17-

20, 2007), Vol. 4603, 2007: 398-403.

[15] A. Paskevych. Méthodes de formalisation des connaissances et des raisonnements

mathématiques: aspects appliqués et théoriques. PhD thesis, Univ. Paris 12, 2007. (In French.)

[16] A. Lyaletski. “Mathematical text processing in EA-style: a sequent aspect.” Journal of

Formalized Reasoning (Special Issue: Twenty Years of the QED Manifesto), Vol. 9, Issue 1,

2016: 235-264. DOI: 10.6092/issn.1972-5787/4569.

[17] A. Lyaletski, M. Morokhovets, and A. Paskevich. “Kyiv school of automated theorem proving: a

historical chronicle.” Logic in Central and Eastern Europe: History, Science, and Discourse.

University Press of America, 2012: 431-469.

[18] J.H. Gallier. “Logic for computer science: Foundations of automatic theorem proving.” Dover

Publications, June (2015): 534 pp. ISBN-10: 0486780821.

[19] G. Mints. “Teorema Erbrana”. [Herbrand theorem.] Matematicheskaya Teoriya Logicheskogo

Vyvoda, Nauka, Moskva, 1967: 311-350. (In Russian.)

[20] A. Lyaletski. “Gentzen calculi and admissible substitutions.” Actes Preliminaieres, du

Symposium Franco-Sovietique “Informatika-91”, Grenoble, France (October 16-19, 1991), 1991:

99-111.

[21] The TPTP problem library for automated theorem proving. URL: http://www.tptp.org/.

[22] Vampire's Home Page. URL: http://www.vprover.org/.

[23] Otter homepage. URL: https://www.mcs.anl.gov/research/projects/AR/otter/.

[24] SPASS theorem prover. URL: https://www.mpi-inf.mpg.de/departments/automation-of-logic/

software/spass-workbench/classic-spass-theorem-prover.

[25] The E Theorem Prove. URL: https://wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html.

https://doi.org/10.1147/rd.41.0002
https://doi.org/10.2307/2274689
https://philpapers.org/asearch.pl?pub=11819
https://doi.org/10.2307/2270500
https://doi.org/10.1007/978-3-7908-1777-5_44
http://www.doverpublications.com/
http://www.doverpublications.com/

