The Use of E. Cartan Mechanics in Quantum Electrodynamics of a Meson Field*

Anatoliy N. Kazak 1 [0000-0001-7678-9211], Yuri D. Mendygulov 1 [0000-0003-3490-9143],
Nelli P. Shamaeva 2 [0000-0002-8241-3524]

1 V.I. Vernadsky Crimean Federal University, Simferopol, Russia
2 Udmurt State University, Universitetskaya St. 1, Izhevsk, 426034, Russia

kazak_a@mail.ru

Abstract. In this paper, the mechanics of E. Cartan is used to formulate the quantum electrodynamics of the meson field. The dynamics of quantized fields are written in the form of Cartan mechanics. One of the Cartan equations - the Schrödinger equation is solved by the perturbation theory method. As a result, the processes of photon boson emission and photon boson absorption are studied.

The modern use of the tools of Cartan mechanics for the formulation of all branches of theoretical physics: mechanics, electrodynamics, quantum mechanics also involves the spread of Cartan mechanics in problems of quantum electrodynamics.

Along with the well-known mechanics of Lagrange and Hamilton, the use of Cartan mechanics tools has become very promising.

This paper answers this question. To quantize the meson field, the Lagrangian and Hamiltonian formalism is used. And for quantization of the electromagnetic field, Maxwell’s equations and the energy formula of the electromagnetic field are used. The type of electromagnetic current is derived from the Lagrangian invariance concerning the phase Ψ-operator of the meson field.

And the form of electromagnetic interaction of the electromagnetic field is.

\[A_\mu \]

with a meson current from electrodynamics

Keywords: Cartan mechanics; quantum electrodynamics, meson field.

1 Introduction

Along with the well-known mechanics of Lagrange and Hamilton, the use of Cartan mechanics tools has become very promising [5].

Its application first to the problems of mechanics, then, in general relativity, Einstein and, finally, to field theory (and, finally, to field theory) showed the universality and convenience of its application to other problems of physics.

* Copyright 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
One of these problems is quantum field theory and, in particular, quantum electrodynamics.

In this paper, the mechanics of E. Cartan is used to formulate the quantum electrodynamics of the meson field.

Mesons are bound states of a quark and an antiquark. Mesons have a baryon number \(B = 0 \) and an integer (including zero) spin, i.e., they are bosons. The masses and quantum numbers of mesons are determined by the types of quark and antiquark that make up the meson, their radial quantum numbers, the relative orientation of their spins, and the values of isospins and orbital moments. The interaction caused by the meson field of nuclear forces is carried out using virtual particles.

The quark model allows one to qualitatively describe the structure of mesons and to obtain their quantum numbers.

The dynamics of quantized fields are written in the form of Cartan mechanics. One of the Cartan equations - the Schrödinger equation is solved by the perturbation theory method. As a result, the processes of photon boson emission and photon boson absorption are studied.

2 Main content. E. Cartan mechanics in quantum electrodynamics of a meson field

The Lagrangian of the meson field \(\mathcal{L} \) has the form [10]:

\[
\mathcal{L} = \int dV \left\{ \frac{1}{c^2} \frac{\partial \psi^*}{\partial t} \frac{\partial \psi}{\partial t} - \frac{\nabla \psi^* \cdot \nabla \psi}{c^2} - \frac{m^2 c^2 \psi^* \psi}{\hbar^2} \right\}
\]

(1)

The Lagrange equation has the form:

\[
\frac{\partial}{\partial t} \frac{\delta \mathcal{L}}{\delta \psi^*} - \frac{\delta \mathcal{L}}{\delta \psi} = 0 = \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} - \Delta \psi + \frac{m^2 c^2}{\hbar^2} \psi
\]

(2)

By rewriting equation (2) in the form:

\[
\frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} = \left\{ \Delta - \frac{m^2 c^2}{\hbar^2} \right\} \psi,
\]

(3)

see that it follows from the equation:

\[
i \hbar \frac{\partial \psi}{\partial t} = c \sqrt{-\hbar^2 \Delta + m^2 c^2 \psi}
\]

(4)

Equation (4) can be obtained from Lagrangian \(\mathcal{L}_1 \):

\[
\mathcal{L}_1 = \int dV \psi^* \left\{ i \hbar \frac{\partial \psi}{\partial t} - c \sqrt{-\hbar^2 \Delta + m^2 c^2 \psi} \right\},
\]

(5)

really:
The Hamiltonian corresponding to the Lagrangian L_1 has the form:

$$H = \int dV \Pi_\Psi \frac{\partial \Psi}{\partial t} + \Pi_{\Psi^*} \frac{\partial \Psi^*}{\partial t} - \mathcal{L},$$

where $\Pi_\Psi = \frac{\delta L_\Psi}{\delta \dot{\Psi}} = i\hbar \Psi^*$, $\Pi_{\Psi^*} = \frac{\delta L_{\Psi^*}}{\delta \dot{\Psi}^*} = 0$. For the second quantization of mesons, the corresponding ideas of Haken [10] were used:

$$H = \int dV i \hbar \Psi^* \frac{\partial \Psi}{\partial t} - \mathcal{L} = \int dV \Psi^* c\sqrt{-\hbar^2 \Delta + m^2 c^2} \Psi$$

(6)

when by expanding the operators Ψ and Ψ^* in the creation and annihilation operators of quanta of this field - mesons, we reduce the corresponding Hamiltonian (6) to the second quantization representation (7).

To pass to the representation of secondary quantization, we expand Ψ by the annihilation operators:

$$\Psi = \sum_K e^{-iK \cdot r} a_K^r,$$

and $\Psi^* = \sum_K e^{iK \cdot r} a_R^R$ concerning the creation operators.

Hamiltonian (6) in the second quantization representation will take the form:

$$H_\Lambda = \int dV \Psi^* c\sqrt{-\hbar^2 \Delta + m^2 c^2} \Psi = \sum_K \sum_R c\sqrt{\hbar^2 K^2 + m^2 c^2} \int dV e^{i(K \cdot r' - \mathbf{K} \cdot r)} a_R^R a_K^r = \sum_K \sum_R c\sqrt{\hbar^2 K^2 + m^2 c^2} a_R^R a_K^r$$

(7)

To quantize the electromagnetic field, we use the exposition method in [23]. The electric field strength \vec{E} and the magnetic field induction \vec{H} can be represented in the form:

$$\vec{E} = \sum_{K\alpha} \omega_{KR} q_{KR} \vec{e}_{KR} \sqrt{4\pi},$$

(8)

$$\vec{H} = \sum_{K\alpha} P_{KR} \vec{h}_{KR} \sqrt{4\pi}.$$

(9)

Here $\hbar \vec{K} = \vec{p}$ - is the photon momentum, α – indices of 2 directions perpendicular to it. We substitute the expressions (8) and (9) into the Maxwell equations for the electromagnetic field in a vacuum: $\vec{\nabla} \cdot \vec{E} = \vec{\nabla} \cdot \vec{H} = 0$, this gives the equation:
\[\vec{v} \cdot \vec{\epsilon}_{\alpha} = \vec{v} \cdot \vec{h}_{\alpha} = 0, \]
\[\vec{v} \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{n}}{\partial t} = \sum_{K\alpha} \omega_K q_{K\alpha}(t) \vec{v} \times \vec{\epsilon}_{K\alpha} = -\sum_{K\alpha} \frac{dP_{K\alpha}(t)}{dt} \frac{1}{c} \vec{h}_{K\alpha}, \text{ gives} \frac{dP_{K\alpha}(t)}{dt} = -\omega^2 h_{K\alpha} \quad \text{and} \quad \vec{v} \times \vec{\epsilon}_{K\alpha} = \frac{\omega_K}{c} \vec{h}_{K\alpha} \]

The equation:
\[\vec{v} \times \vec{H} = \frac{1}{c} \frac{\partial \vec{P}}{\partial t} = \sum_{K\alpha} \vec{P}_{K\alpha} \vec{v} \times \vec{h}_{K\alpha} = \sum_{K\alpha} \frac{1}{c} \omega_K \frac{da_{K\alpha}}{dt} \vec{e}_{K\alpha}, \]

leads to:
\[P_{K\alpha}(t) = \frac{d\alpha_{K\alpha}(t)}{dt} \quad \text{and} \quad \vec{v} \times \vec{h}_{K\alpha} = \frac{\omega_K}{c} \vec{e}_{K\alpha}. \]

Calculating the rotor from the expressions (10) and (11) we get:
\[\vec{v} \times (\vec{v} \times \vec{\epsilon}_{K\alpha}) = \vec{v} \vec{v} \cdot \vec{\epsilon}_{K\alpha} - \Delta \vec{\epsilon}_{K\alpha} = \frac{\omega_K}{c} \vec{v} \times \vec{h}_{K\alpha}, \]

what gives
\[\Delta \vec{\epsilon}_{K\alpha} = -\left(\frac{\omega_K}{c}\right)^2 \vec{\epsilon}_{K\alpha}. \]

(12)

Similarly:
\[\vec{v} \times (\vec{v} \times \vec{h}_{K\alpha}) = \vec{v} \vec{v} \cdot \vec{h}_{K\alpha} - \Delta \vec{h}_{K\alpha} = \frac{\omega_K}{c} \vec{v} \times \vec{\epsilon}_{K\alpha}, \]

what gives
\[\Delta \vec{h}_{K\alpha} = -\left(\frac{\omega_K}{c}\right)^2 \vec{h}_{K\alpha}. \]

(13)

Expressions (12) and (13) show that \(\vec{\epsilon}_{K\alpha} \) and \(\vec{h}_{K\alpha} \) are eigenvectors of the d’Alembert operator \(\Delta \) with eigenvalues \(\left(\frac{\omega_K}{c}\right)^2 \), therefore \(\vec{\epsilon}_{K\alpha} \) are orthogonal \(\vec{h}_{K\alpha} \neq \vec{R} \) or \(\alpha \neq \alpha' \), similarly \(\vec{h}_{K\alpha} \) are orthogonal \(\vec{h}_{K\alpha} \neq \vec{R} \) or \(\alpha \neq \alpha' \).

Thus, the energy of the electromagnetic field \(H_2 \) is equal to:
\[H_2 = \frac{1}{8\pi} \int dV (H^2 + E^2) = \frac{1}{8\pi} \cdot 4\pi \int dV \left(\sum_{\alpha} P_{\alpha} P_{\alpha} \cdot \vec{h}_{\alpha} \cdot \vec{h}_{\alpha} + \sum_{\alpha} \omega_K \omega_K q_{K\alpha} q_{K\alpha} P_{K\alpha} P_{K\alpha} \vec{\epsilon}_{K\alpha} \cdot \vec{\epsilon}_{K\alpha} \right) = \frac{1}{2} \sum_{\alpha} (P_{\alpha}^2 + \omega_K^2 q_{K\alpha}^2) = \]
\[\sum_{K_{\alpha}} \hbar \omega_{K} \left(\frac{p_{K_{\alpha}}^{2}}{2\hbar \omega_{K}} + \frac{q_{K_{\alpha}}^{2}}{2\hbar} \right) = \sum_{K_{\alpha}} \hbar \omega_{K} \left[\left(\frac{p_{K_{\alpha}}}{2\hbar \omega_{K}} + i \frac{q_{K_{\alpha}}}{2\hbar} \right) \right] \]

\[-i \frac{\omega_{K}}{2\hbar} q_{K_{\alpha}} + \frac{1}{2} \right] = \sum_{K_{\alpha}} \hbar \omega_{K} \left(a_{K_{\alpha}} \psi_{K_{\alpha}} + \frac{1}{2} \right) \quad (14) \]

We have obtained the Hamiltonian of the electromagnetic field in the secondary quantization representation.

The Lagrangian of the meson field (1) is invariant concerning the transformations:

\[\psi \rightarrow e^{i\alpha} \psi \text{ and } \psi^{*} \rightarrow e^{-i\alpha} \psi^{*}. \]

Therefore [3]:

\[\delta \mathcal{L} = \frac{\partial \mathcal{L}}{\partial \psi} \delta \psi + \frac{\partial \mathcal{L}}{\partial \psi^{*}} \delta \psi^{*} + \frac{\partial \mathcal{L}}{\partial \partial_{\psi}} \delta \psi + \frac{\partial \mathcal{L}}{\partial \partial_{\psi^{*}}} \delta \psi^{*} = \left(\frac{\partial \mathcal{L}}{\partial \psi} - \frac{\partial \mathcal{L}}{\partial \psi^{*}} \right) \delta \psi + \left(\frac{\partial \mathcal{L}}{\partial \psi^{*}} - \frac{\partial \mathcal{L}}{\partial \psi} \right) \delta \psi^{*} \]

\[- \frac{\partial}{\partial x^{\mu}} \frac{\partial \mathcal{L}}{\partial \partial_{\psi^{*}}} \delta \psi^{*} + \frac{\partial}{\partial x^{\mu}} \left(\frac{\partial \mathcal{L}}{\partial \partial_{\psi}} \delta \psi \right) + \frac{\partial}{\partial x^{\mu}} \left(\frac{\partial \mathcal{L}}{\partial \partial_{\psi^{*}}} \delta \psi^{*} \right) \quad (15) \]

Using infinitesimal transformations:

\[\psi^{*} = (1 + i\alpha) \psi \text{ and } \psi^{*} = (1 - i\alpha) \psi^{*} \]

\[\psi^{*} - \psi = i \alpha \psi \quad \psi^{*} - \psi = -i \alpha \psi^{*} \]

and the Lagrange equations we bring (15) to the form:

\[0 = \delta \mathcal{L} = \left\{ i \frac{\partial}{\partial x^{\mu}} \left(\frac{\partial \mathcal{L}}{\partial \partial_{\psi^{*}}} \psi \right) - i \frac{\partial}{\partial x^{\mu}} \left(\frac{\partial \mathcal{L}}{\partial \partial_{\psi^{*}}} \psi^{*} \right) \right\} \alpha. \]

So, a consequence of the Lagrangian invariance is the existence of the 4th vector \(j^{\mu} \):

\[j^{\mu} = i \frac{\partial \mathcal{L}}{\partial \partial_{\psi^{*}}} \psi - i \frac{\partial \mathcal{L}}{\partial \partial_{\psi}} \psi^{*}. \quad (16) \]

For which the conservation law holds

\[\partial_{\mu} j^{\mu} = 0 \quad (17) \]

Using (1) we obtain the explicit form of the probability current:

\[j^{\mu} = i \left(\frac{\partial \psi^{*}}{\partial x^{\nu}} - \frac{\partial \psi}{\partial x^{\nu}} \right) g^{\mu\nu}. \]

Electricity:

\[j^{\mu} = e j^{\mu}. \quad (18) \]
Thus, the Hamiltonian of the interaction of an electromagnetic field with a field having an electric charge [16]

\[H_{\text{es}} = \frac{1}{c} \int dV j^\mu A_\mu. \]

From the expression for \(j^\mu \) and \(A_\mu \), it can be seen that \(H_{\text{es}} \) has the form:

\[H_{\text{es}} = \sum_{\mathbf{K} q \mathbf{a}} \left(g_\mathbf{q} a^+_{\mathbf{K} - \mathbf{q}} a^+_{\mathbf{K}} b_{\mathbf{q}} + g_\mathbf{q}^* a^+_{\mathbf{K}} a^+_{\mathbf{K} - \mathbf{q}} b_{\mathbf{q}} \right). \]

Using the results of the second quantization of the meson and electromagnetic fields and their interaction, one can formulate quantum electrodynamics in the form of the mechanics of E. Cartan [5].

To do this, take the 2 Cartan form \(\Omega \) in the form:

\[\Omega = \left\{ (\mathbf{d}l \mid 1t) - \left[\sum_i \sqrt{\hbar^2 K_i^2 + mc^2} a^+_i a_i + \sum_{\mathbf{K} a} \hbar \omega \left(b^+_{\mathbf{K} a} b_{\mathbf{K} a} + \frac{1}{2} \right) + \sum_{\mathbf{K} q \mathbf{a}} \left(g_\mathbf{q} a^+_{\mathbf{K} - \mathbf{q}} a^+_{\mathbf{K}} b_{\mathbf{q}} + g_\mathbf{q}^* a^+_{\mathbf{K}} a^+_{\mathbf{K} - \mathbf{q}} b_{\mathbf{q}} \right) \right] \right\} dt \wedge d\xi + \sum_{\mathbf{K} K} \left[b_{\mathbf{K} K} - b^+_{\mathbf{K} K} \right] d\nu^K \wedge d\eta^K + \sum_{\mathbf{K} K} \left[a^+_{\mathbf{K} K} a_{\mathbf{K} K} \right] d\omega^K \wedge d\theta^K + \sum_{\mathbf{K} K} \left[a^+_{\mathbf{K} K} a_{\mathbf{K} K} \right] d\omega^K \wedge d\theta^K. \]

Here

\[[a, b] = ab - ba \]

The equations of E. Cartan [5] give:

\[\frac{\delta \mathcal{L}}{\delta a_{\mathbf{K} K}} = \frac{\delta^2 \mathcal{L}}{\delta a_{\mathbf{K} K} \delta \mathcal{A}_{\mathbf{K} K}} = \frac{\delta^2 \mathcal{L}}{\delta \mathcal{A}_{\mathbf{K} K} \delta a_{\mathbf{K} K}} = \frac{\delta^2 \mathcal{L}}{\delta \mathcal{A}_{\mathbf{K} K} \delta \mathcal{A}_{\mathbf{K} K}} = \frac{\delta^2 \mathcal{L}}{\delta a_{\mathbf{K} K} \delta \mathcal{A}_{\mathbf{K} K}} = 0. \]

Equation (23) describes two interacting bosonic fields and their dynamics, which is described by the Schrödinger equation [10].

\[i\hbar \frac{d\psi(t)}{dt} = \sum_i \sqrt{\hbar^2 K_i^2 + mc^2} a^+_i a_i + \sum_{\mathbf{K} a} \hbar \omega \left(b^+_{\mathbf{K} a} b_{\mathbf{K} a} + \frac{1}{2} \right) + \sum_{\mathbf{K} q \mathbf{a}} \left(g_\mathbf{q} a^+_{\mathbf{K} - \mathbf{q}} a^+_{\mathbf{K}} b_{\mathbf{q}} + g_\mathbf{q}^* a^+_{\mathbf{K}} a^+_{\mathbf{K} - \mathbf{q}} b_{\mathbf{q}} \right) \]

Introducing the notation \(H_0 \) for the sum of the Hamiltonians of the free fields of the meson and electromagnetic fields:

\[H_0 = \sum_i \sqrt{\hbar^2 K_i^2 + mc^2} a^+_i a_i + \sum_{\mathbf{K} a} \hbar \omega \left(b^+_{\mathbf{K} a} b_{\mathbf{K} a} + \frac{1}{2} \right) \]
and H_1 for the Hamiltonian of the interaction of the meson field with the electromagnetic field:

$$H_1 = \sum_{\vec{q}} \left(g a_{\vec{k} \rightarrow \vec{q}}^+ a_{\vec{k}} b_{\vec{q} a}^+ + g' a_{\vec{k}}^+ a_{\vec{k} \rightarrow \vec{q}} b_{\vec{q} a} \right)$$ \hspace{1cm} (26)$$

we rewrite equation (24) in the form:

$$i\hbar \frac{d}{dt} \langle 1 \mid t \rangle = (H_0 + H_1) \langle 1 \mid t \rangle.$$ \hspace{1cm} (27)$$

And let’s move on to the description of the interaction [10]:

$$\langle 1 \mid t \rangle = e^{-iH_0 t / \hbar} \langle 1 \mid t \rangle - e^{-iH_0 t / \hbar} \frac{d}{dt} \langle 1 \mid t \rangle = H_1(t) \langle 1 \mid t \rangle$$ \hspace{1cm} (28)$$

what gives:

$$i\hbar \frac{d}{dt} = e^{iH_0 t / \hbar} H_1 e^{-iH_0 t / \hbar} \langle 1 \mid t \rangle = H_1(t) \langle 1 \mid t \rangle$$ \hspace{1cm} (29)$$

For calculate

$$H_1(t) = e^{iH_0 t / \hbar} H_1 e^{-iH_0 t / \hbar}$$

we use [10]

$$b_{\vec{q} a}(t) = e^{iH_0 t / \hbar} b_{\vec{q} a} e^{-iH_0 t / \hbar} = e^{i\omega t} b_{\vec{q} a} b_{\vec{q} a}^+ b_{\vec{q} a} e^{-i\omega t}.$$ \hspace{1cm} (30)$$

Therefore:

$$i\hbar \frac{db_{\vec{q} a}(t)}{dt} = i\omega b_{\vec{q} a} b_{\vec{q} a}^+ b_{\vec{q} a} = -i\omega t b_{\vec{q} a}(t).$$ \hspace{1cm} (30)$$

Solution (30) has the form:

$$b_{\vec{q} a}(t) = e^{-i\omega t} b_{\vec{q} a}$$ \hspace{1cm} (31)$$

and $b_{\vec{q} a}^+(t) = e^{i\omega t} b_{\vec{q} a}^+.$ \hspace{1cm} (32)$$

Similarly:

$$i\hbar \frac{da_{\vec{k}}(t)}{dt} = -i \sqrt{\vec{k}^2 + \frac{m^2 c^2}{\hbar^2}} a_{\vec{k}}(t)$$ \hspace{1cm} (33)$$

and $a_{\vec{k}}(t) = e^{-i \sqrt{\vec{k}^2 + \frac{m^2 c^2}{\hbar^2}} t} a_{\vec{k}}, \quad a_{\vec{k}}^+(t) = e^{i \sqrt{\vec{k}^2 + \frac{m^2 c^2}{\hbar^2}} t} a_{\vec{k}}^+.$ \hspace{1cm} (34)$$
Therefore:

\[
H_1(t) = \sum_{K\alpha q} \left[g e^{i\left(\sqrt{(K-\bar{q})^2 + \frac{m^2 c^4}{\hbar^2} - \sqrt{K^2 + \frac{m^2 c^4}{\hbar^2}} + \omega q}\right)} a_{K-\bar{q}}^+ a_{\bar{q}} +
+ g^* e^{-i\left(\sqrt{(K-\bar{q})^2 + \frac{m^2 c^4}{\hbar^2} - \sqrt{K^2 + \frac{m^2 c^4}{\hbar^2}} + \omega q}\right)} a_{K-\bar{q}}^+ b_{\bar{q}a} \right].
\]

We pass from the differential equation (29) to the integral [10]:

\[
|t\rangle = |0\rangle + \frac{1}{\hbar} \int_0^t d\theta H_1(\theta) |\theta\rangle.
\]

In the first order of perturbation theory, integral equation (36) takes the form:

\[
|t\rangle \approx |0\rangle + \frac{1}{\hbar} \int_0^t d\theta H_1(\theta) |0\rangle = |0\rangle +
+ \frac{1}{\hbar} \int_0^t d\theta \sum_{K\alpha q} \left[g e^{i\left(\sqrt{(K-\bar{q})^2 + \frac{m^2 c^4}{\hbar^2} - \sqrt{K^2 + \frac{m^2 c^4}{\hbar^2}} + \omega q}\right)} a_{K-\bar{q}}^+ a_{\bar{q}}^+ b_{\bar{q}a} +
+ g^* e^{-i\left(\sqrt{(K-\bar{q})^2 + \frac{m^2 c^4}{\hbar^2} - \sqrt{K^2 + \frac{m^2 c^4}{\hbar^2}} + \omega q}\right)} a_{K-\bar{q}}^+ a_{\bar{q}}^+ b_{\bar{q}a} \right].
\]

Suppose that in the initial state |0⟩ there is a charged boson with momentum

\[
h K_1 |0\rangle = a_{K_1}^+ |\text{vacuum}\rangle.
\]

Then:

\[
|t\rangle \approx a_{K_1}^+ |\text{vacuum}\rangle + \frac{1}{\hbar} \int_0^t d\theta \sum_{K\alpha q} g e^{i\varepsilon_{K,q} \theta} a_{K-\bar{q}}^+ a_{\bar{q}}^+ b_{\bar{q}a} |\text{vacuum}\rangle =
= a_{K_1}^+ |\text{vacuum}\rangle + \frac{1}{\hbar} \sum_{\bar{q} a} \frac{g \varepsilon_{K_1 \bar{q}}}{i\varepsilon_{K_1 \bar{q}}} (e^{i\varepsilon_{K_1 \bar{q}} t} - 1) a_{K_1-\bar{q}}^+ b_{\bar{q}a} |\text{vacuum}\rangle
\]

Here:

\[
\varepsilon_{K_1 \bar{q}} = \sqrt{(K_1 - \bar{q})^2 + \frac{m^2 c^4}{\hbar^2} - \sqrt{K^2 + \frac{m^2 c^4}{\hbar^2}} + \omega \bar{q}}.
\]

Thus, we obtained a linear combination of the initial state \(a_{K_1}^+ |\text{vacuum}\rangle\) of the existence of one charged boson and the state \(\sum_{\bar{q} a} C_{\bar{q}a} a_{K_1-\bar{q}}^+ b_{\bar{q}a} |\text{vacuum}\rangle\), in which this boson emitted one photon with momentum \(\hbar \bar{q}\) and polarization \(\alpha\).

The probability of emitting a photon with \(\hbar \bar{q}\) and \(\alpha\) is \(|C_{\bar{q}a}|^2\):

\[
|C_{\bar{q}a}|^2 = \frac{1}{\hbar^2} |g \bar{q}|^2 \frac{4}{\varepsilon_{K_1 \bar{q}}} \sin^2 \frac{\varepsilon_{K_1 \bar{q}} t}{2}.
\]
In the limiting case $t \to \infty$ it takes the form:

\[
|C_{\bar{q}a}|^2 \approx \frac{\pi}{h^2} |g_{\bar{q}}|^2 \delta^2 \left(\frac{\varepsilon_{K_1}}{2} \right) = \frac{\pi}{h^2} |g_{\bar{q}}|^2 \delta \left(\frac{\varepsilon_{K_1}}{2} \right) \times \frac{1}{2\pi} \int_{-\infty}^{\infty} dt e^{-i\frac{\varepsilon_{K_1}q^2}{\hbar}t} = \frac{2\pi}{h^2} |g_{\bar{q}}|^2 \delta \left(\varepsilon_{K_1,q} \right).
\]

Differentiating $|C_{\bar{q}a}|^2$ in time, we find the probability of photon emission per unit time (per second):

\[
W_{\bar{q}} = \frac{d|C_{\bar{q}a}|^2}{dt} = \frac{2\pi}{h^2} |g_{\bar{q}}|^2 \delta \left(\varepsilon_{K_1,q} \right).
\]

If in the initial state $|0\rangle$ there is a charged boson with momentum $\hbar K_1$ and an electromagnetic field quantum with momentum $\hbar K_2$ and polarization a_1:

\[
|0\rangle = a^{+}_{K_1} b^{+}_{K_2 a_1} |\text{vacuum}\rangle.
\]

Then approximate equality (37) takes the form:

\[
|t\rangle \approx a^{+}_{K_1} b^{+}_{K_2 a_1} |\text{vacuum}\rangle +
\]

\[
\frac{1}{\hbar^2} \int_0^t d\theta \sum_{K_1 a} \frac{\hbar}{\varepsilon_{K_1,q}^2} e^{-i\varepsilon_{K_1,q}^2 t} a^{+}_{K_1} a_{K_1 - q} b^{+}_{q_1} a^{+}_{K_1} b^{+}_{K_2 a_1} |\text{vacuum}\rangle = a^{+}_{K_1} b^{+}_{K_2 a_1} |\text{vacuum}\rangle +
\]

\[
\sum_{K_1 a} \frac{\hbar}{\varepsilon_{K_1,q}^2} e^{-i\varepsilon_{K_1,q}^2 t} g^* a^{+}_{K_1} a_{K_1 - q} d_{q_1} b^{+}_{K_2 a_1} |\text{vacuum}\rangle = a^{+}_{K_1} b^{+}_{K_2 a_1} |\text{vacuum}\rangle +
\]

\[
\sum_{K_1 a} \frac{\hbar}{\varepsilon_{K_1,q}^2} e^{-i\varepsilon_{K_1,q}^2 t} g^* a^{+}_{K_1} a_{K_1 - q} d_{K_2} d_{K_1 a_1} |\text{vacuum}\rangle = a^{+}_{K_1} b^{+}_{K_2 a_1} |\text{vacuum}\rangle +
\]

\[
\sum_{K_1 a} \frac{\hbar}{\varepsilon_{K_1,q}^2} e^{-i\varepsilon_{K_1,q}^2 t} g^* a^{+}_{K_1} d_{K_1 - K_2} d_{K_1 a_1} |\text{vacuum}\rangle = a^{+}_{K_1} b^{+}_{K_2 a_1} |\text{vacuum}\rangle +
\]

\[
\sum_{K_1 a} \frac{\hbar}{\varepsilon_{K_1,q}^2} e^{-i\varepsilon_{K_1,q}^2 t} g^* a^{+}_{K_1} a_{K_1 + K_2} |\text{vacuum}\rangle = a^{+}_{K_1} b^{+}_{K_2 a_1} |\text{vacuum}\rangle
\]

Thus, we obtained a linear combination of two initial states: a boson with momentum $\hbar K_1$ and a photon with momentum $\hbar K_2$ and polarization a_1 and the final state (after interaction): the state of the boson with momentum $\hbar (K_1 + K_2)$, which describes the absorption of the photon boson. The probability of this process is W':

\[
|C'_{\bar{q}a}|^2 = \frac{1}{h^2} \frac{|g|^2}{\varepsilon_{K_1+K_2}^2} 4\sin^2 \frac{\varepsilon_{K_1+K_2}}{2} t = \frac{\pi^2}{h^2} |g|^2 \delta^2 \left(\frac{\varepsilon_{K_1+K_2}}{2} \right).
\]
Based on (46), we obtain the probability of photon absorption per unit time (per second):

$$W_q = \frac{d |C_{q\bar{q}}|^2}{dt} = \frac{2\pi}{\hbar^2} |g|^2 \delta \left(\frac{\epsilon_{K_1 + K_2, K_2}}{2} \right). \quad (47)$$

So, we have shown that the mechanics of E. Cartan allows us to formulate quantum electrodynamics in a form convenient for calculations.

3 Conclusions

For the second quantization of mesons, ideas were used [10], which lead to equation (6), by expanding the operators Ψ and Ψ^* in the creation and annihilation operators of quanta of this field - mesons we reduce the Hamiltonian (6) to the second quantization representation (7).

To quantize the electromagnetic field, we represent E and H in the form of (8) and (9) and substitute these expressions into Maxwell's equations. As a result, the Maxwell equations become the oscillation equations of the pendulums. And the energy of the electromagnetic field becomes the sum of the vibrational energies of the pendulums (14), which is easily quantized. Studying the invariance of the Lagrangian of the meson field, we find the shape of its current. The Landau and Lifshitz field theory suggests the type of interaction of the meson current with the electromagnetic field, which leads to the standard second-quantized form of this interaction. All this allows us to formulate the quantum electrodynamics of the meson field in the form of Eli Cartan mechanics (21) and (23). The Cartan equations give the Schrödinger equation (24) approximately (up to the first order of perturbation theory), solving which we obtain the probability of emission and absorption of a photon by a boson per unit time.

The modern use of the tools of Cartan mechanics for the formulation of all branches of theoretical physics: mechanics, electrodynamics, quantum mechanics [3], also involves the spread of Cartan mechanics in quantum electrodynamics asks.

This paper answers this question. To quantize the meson field, the Lagrangian and Hamiltonian formalism is used. Moreover, for quantization of the electromagnetic field, Maxwell's equations and the energy formula of the electromagnetic field are used. The type of electromagnetic current is derived from the Lagrangian invariance concerning the phase Ψ-operator of the meson field.

Also, the form of electromagnetic interaction of the electromagnetic field is A_μ with a meson current from electrodynamics.
References

17. Le cons sur les invariants int’egraux, Hermann, Paris, (1922)

