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Abstract. In this paper, we are given a new interpretation of a simple gravity and 

gauge fields as the connections to the fiber bundle, a given change in the basis 

vectors, and the base layer with an infinitely small displacement in the database. 

Introduction of the interaction of gauge fields and the quarks and leptons based 

on the interpretation of leptons and quarks as vectors and tensors in the space 

layer. The dynamics of gauge fields and gravity introduced based on the equa-

tions of mechanics Cartan using a symplectic metric that unites gravity and gauge 

fields together. 
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1 Introduction  

Attempts to build a unified theory of all interactions, a unified field theory, began before 

Einstein created the General theory of relativity. The first of the interaction theories 

was the theory of electromagnetism, created by Maxwell in 1863. In 1915, Einstein 

formulated the General theory of relativity describing the gravitational field. Just as 

Maxwell was able to create a General description of electrical and magnetic phenom-

ena, the idea of building a unified theory of fundamental interactions arose. This prob-

lem was posed by D. Gilbert. Einstein proposed a large number of options for unifica-

tion gravity and the electromagnetic field [1-7]. In the first half of the twentieth century, 

numerous attempts were made to create such a theory. However, no satisfactory models 

were put forward. This is because in General relativity, gravity is a curvature of space-

time, and electromagnetism has all the attributes of matter. However, in our opinion, 

this unification was most successfully achieved in [8], [9-11], where gravity and elec-

tromagnetism were combined in a pseudo-Riemannian metric of a 5-dimensional dif-

ferentiable manifold, and in a more modern version of the union in [12], where gravity 
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and electromagnetism were combined into a single electro-gravitational connection 

also in the space of 5-dimensions. 

In the second half of the XX century, due to the discovery of weak and strong inter-

actions, the task of building a unified theory became more complicated. In 1967, Salam 

and Weinberg created the theory of electroweak interaction, combining electromag-

netism and weak interactions. In 1973, a theory of strong interactions (quantum chro-

modynamics) was proposed. On their basis, a Standard model of elementary particles 

was built, describing the electromagnetic, weak, and strong interactions. 

After Weinberg, Salam, and Glashow created the theory of electro-weak interac-

tions, as well as quantum chromodynamics, the need for a new approach to a unified 

field theory became clear, consisting of combining electro-weak interaction with quan-

tum chromodynamics and the theory of gravity [13-16]. The possibility of such unifi-

cation lies in the analogy that exists between the Yang-Mills theory and the relativity 

theory, and the fact that both the theory of electro-weak interaction and quantum chro-

modynamics contain the Yang-Mills theory [17-20]. It is not possible to generalize the 

works [8] and [12] to electroweak interaction and chromodynamics.  

2 Field Theory of Electroweak, Strong, and Gravitational 

Interactions 

However, in 5-dimensional space, you can easily introduce electro-gravitational con-

nectivity, namely, by requiring: 

 ,




   dxd  (1) 

where 3,0 ; 3,0 , 3,0  [18-20], 

 ,44 eAed


  (2) 

thus, we set the electro-gravitational connectivity in 5-dimensional space (
A,

 ), 




 dxF  – describes infinitesimal changes in the reference vectors of space-time, 

that is, gravity, when moving from one point of space-time to another infinitely close 

point. It is assumed that a four-dimensional space-time is embedded in a 5-dimensional 

manifold.  At each point of this manifold, a linearly independent with   a , 3,0 , 

the vector 
4e


 is chosen, whose changes during the transition from one point of space-

time to another infinitely close point are described by the 1 - form of electromagnetic 

field A, d – external differential [20]. Externally differentiating the equalities (1) and 

(2), we get an expression for the curvature of space-time, that is, gravity and the 2-form 

of the electromagnetic field: 
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2 eFeAAedAed


  (4) 

in this way 

 ,













   dR  (5) 

  dAF   [20] (6) 

Thus, in space-time embedded in a 5-dimensional manifold, connectivity is introduced 

that describes both gravity and the electromagnetic field. The Hilbert-Einstein equation 

in GRT, as well as the Maxwell equations, are reduced to a single system of Cartan 

equations for the symplectic metric [21-23]: 
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Here: 3,0,,  ; 
4dx – volume differential in our 5-dimensional space;

  ,04 dx 3,0 ;   14

4 edx


; 
3210 dxdxdxdxdx  ,  – E. Cartan's ex-

ternal multiplication sign; 
gDetg  ,  

T – dark matter and dark energy energy-

momentum tensor; 
1

21 ,,,,, 



   – auxiliary tensor fields; 

,F – the covar-

iant divergence of a tensor 
F ; 

J – 4-vector of electric current. 

Cartan's equations for this symplectic metric have the form [19]: 

  

.
2

1

4

2

1

0

2

4

,2

1

4

1

1

1









































































dxdxFdA

ddxJ
c

Fd

dRddg

dxTRgRd

dddddg
















































 (8) 



303 

From Cartan's system of equations (8), a system of equations describing both gravity 

and electromagnetism is obtained.  

Hilbert-Einstein equation for the gravitational field: 

 ;
2

1  TRgR   (9) 

a condition that the connectivity 
  is metric: 

 ;  dg  (10) 

connection of connectivity 
  with the curvature of space-time 



R  : 

 ;







   dR  (11) 

Maxwell equation: 

 ,
2

1 
 dxdxFdA   (12) 

 .
4

,





J

c
F   (13) 

In contrast to [2], this version of the theory of electro-gravitational connectivity can be 

generalized to a Unified Field Theory, which includes, in addition to the theory of grav-

ity, the theory of electro-weak interactions and quantum chromodynamics. 

To prove this, consider combining the theory of gravity with two gauge fields into a 

unified gravitational-gauge connection. To do this, put a 4-dimensional GRT space-

time in the space of 4+2n dimensions. On the four space-time reference points, we set 

the connectivity (1), and on the 2n vectors that come out of space-time, we set the con-

nectivity: 

 ,~
1 ms
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s eed
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  (14) 
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where nsm ,1,  , ,1a , 
1ĝ – calibration field charge operator  1~

a

aMA , 


m

saM 1  square matrices nn . 

 ,
~

ˆ 2

2 mn

mn
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b

sn eMBgied 



 


 (16) 

here 
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where 
2ĝ – calibration field charge operator 2~

b

bMB ,  






mn

snbM 2  square matrices nn , ,1b . 

Thus, calibration fields, with accuracy to a constant, are a connectedness that de-

scribes the change of reference vectors ,se


ns 2,1  when moving from one point in 

space-time to another infinitely close point. 

The curvature of connectivity (15) and (17) is calculated in the same way as connec-

tivity (1) using the formula (5): 
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Here  
 dxdxGG dd 

2

1  are 2-form of the calibration field, we have taken into ac-

count the relations between operators of the Lie group 1

aM  [24 ], whose representation 

operates in a space stretched based on 
me


, nm ,1 : 

   ., 1111

dab
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ba MiCMM   (19) 

Similarly, you can calculate the curvature of the connection (17): 

 
 

.ˆ
2

ˆ

~

2

1
ˆ

2

2

22

22

222

m

sd

dm

sd

d

m

sd

bad

ab

dd

s

m

MFgiMdxdxF
gi

MdxdxBBCgBBgiR












 (20) 

Here 
 dxdxFF dd 

2

1
– 2-form of the calibration field, we have taken into account 

the relations between generators of the Lie group 2

aM , the representation of which op-

erates in a space stretched based on 
тne 


, nm ,1 : 

   ., 2222

dab
d

ba MiCMM   (21) 

A mathematical model of the interaction of these gauge fields with leptons and quarks 

can be constructed if we consider vector fields in a space stretched on a basis me :
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m

me


  as a mathematical model of leptons. Here these components of the vectors 

m  are bispinors. In this case  

   .~
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Consider the values of the components of this vector, which are 1-forms, on the vector 


 i : 
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Here 1g and 

m

g 1


 are eigenvectors and operator values 1ĝ . Equation (22) describes a 

fermion interacting with only one calibration field. Therefore, this is a mathematical 

model of a lepton interacting only with an electroweak gauge field. 

As a mathematical model of quarks, consider the tensor field: 
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The external differential of this field has the form: 
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Consider the values of the components of this tensor, which are 1-forms, on the vector 


 i : 
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Where ms

gg 21
  and 

1g , 
2g  are eigenvectors and values of the operators 

1ĝ and 
2ĝ  :  

   0, 21 gg


 

Equation (24) describes the interaction of a fermion with two calibration fields. This 

fermion can serve as a mathematical model of a quark interacting with two gauge fields: 

electroweak and gluon. 

We set the change in the connectivity of (1) the gravitational field and the connec-

tivity of (15) and (17) gauge fields when moving from one point in space-time to an-

other using Cartan equations for the symplectic metric 
1 : 
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Here: 
11   – density operator for the number of particles generating the calibration 

field aG
, 

22   – density operator for the number of particles generating the calibra-

tion field aF
, 

 – standard  –matrices included in the Dirac equation,  
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121 ,,,,,  – auxiliary function, 
1  and

2   are coefficients that 

link currents and the calibration fields they generate,  4x – auxiliary parameter. 

Cartan's equations for the symplectic metric (25) have the form: 
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





































 (26) 

This system of Cartan equations is equivalent to the system of gravitational field equa-

tions: 
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








































dg

Rd

TRgR
2

1

 (27) 

and a system of equations for two calibration fields [25-31] 

 


























2

2

222

2

2

2

2

1

1

11111

1

1

ˆˆ

ˆ

ˆˆ

ˆ

aabc

cb

a

bad
ab

ddd

a

bc

acba

bad
ab

ddd

MgCFBgiF

BBCgBBF

MgCGAgiG

AACgAAG






















 (28) 

Two gauge fields dG
 and dF

 are taken in the most General form with arbitrary struc-

tural constants  1

abdC  and 2

abdC  since if in our local Universe they have certain values 

and describe electro-weak and gluon gauge fields, then in other local Universes they 

can have other and arbitrary values. Quarks and leptons can also be reduced to the gauge 

fields by the transformation of supersymmetry. 

3 Conclusion 

Thus, the results obtained in this paper are similar to those obtained in [32]. That is, 

all the interactions included in the Standard model of elementary particle physics (elec-

troweak and strong interactions) and gravity are combined into a single bond in the 

stratified space, and it is indicated how fermions can be included in the theory. But, 

unlike the work [32], it is made much easier, since it is based on the famous works of 

E. Cartan [21,23]. While Lisi used complex manipulations with connections arising 

within the E8 Lie group (although such connections also go back to the works of E. 

Cartan). 
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