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Abstract. This paper considers the building of a classifier in the case of unbal-

anced training sets, which consist of very short text messages. We use machine 

learning to automatic classifier construction. High quality of classification is the 

main requirement for a classifier (we use precision and recall as the criterion of 

quality). Imbalance in sets means, that the number of texts belonging to one class 

is significantly lower than those belonging to the other classes. The development 

of classifiers on the base of unbalanced samples is a well-known complex prob-

lem in Text Mining. A lot of theoretical and experimental researches are devoted 

to searching for a solution. This is especially the case for relatively short text 

documents, for which the use of known approaches is not always effective. We 

give a brief review of methods and argue using Gradient Boosting Machine 

(GBM) for classification short text messages in the case of unbalanced training 

sets. We diagnose situations in which the classifier fails, analyze them, form a 

hypothesis on how we can improve text processing, and configure the settings of 

the classifier. Also, we investigate and compare two schemes of preprocessing - 

Bag of Words and Word2Vec. A final section is devoted to experimental results. 

Experiments were carried out on datasets collected in the process of the daily 

operation of one of the large bank's branches. These real data have a rather sig-

nificant imbalance. In the case of the unbalanced training set our voting approach 

(GBM) improves performance considerably. 

Keywords: Text Mining, Text Classification, Bag of words, Word2Vec, Gradi-

ent Boosting Machine, Preprocessing of text documents, Feature extraction, 

Precision, Recall. 

1 Introduction 

With the rapid growth of unstructured information in Internet, classification has become 
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one of the key techniques for handling and organizing text data. Methods of classifica-

tion are used to analysis of documents (scientific articles, news, e-mails, WWW-pages, 

product reviews, etc.) and dividing them into classes (or categories).  This problem 

arises in various fields of human activity. For example in large corporations (banks, 

governmental organizations, offices of e-commerce) are frequently required to auto-

matically identify the type of messages sent by customers (or users) and correctly rec-

ognize their categories and direct them to the proper department for processing. 

In this paper, we are dealing with the problem of automatically dividing service re-

quests that come through the corporate network of the Bank. The purpose is to distribute 

requests based on the content and send them for execution to the relevant department. 

These requests may have the following form: "Please replace the cartridge in office 

#12, printer – HP Color LaserJet CM 1312 MFP, suitable time – from 10 to 12 a.m.”. 

To be able to solve such a real-world problem it is necessary to develop a classifier, 

which will efficiently distribute the requests according to the classes (departments) au-

tomatically. By doing so we want to exclude an operator from the process of distribu-

tion of requests, but maintain the high quality of classification (precision and recall). 

Thus, the processing of requests should take place without any human participation 

(more correctly with no or minimum human effort). 

It is important to emphasize that the precision and recall of the classifier should not 

be lower than the precision and recall of the operator having instructions and rules for 

the direction of the request to the departments. Moreover, it is even possible to increase 

the accuracy shown by the operator due to eliminating a human impact (errors occurring 

because of fatigue, negligence, loss of concentration, etc.).  

The main approach of creating such classifiers is machine learning – the construction 

of a classification function (rules) on the examples. To develop such classifiers, we 

need labeled data (documents and their corresponding categories - labels). The labels 

are assigned by the experts (supervised learning). A set of labeled data is used to predict 

the labels of unseen data. In this research, the number of classes is six and all requests 

can belong to only one category 

A variety of methods have been proposed to categorize unstructured information. 

The most widely used classifiers are Naive Bayes, Logistic Regression, Nearest Neigh-

bor, Decision Trees, Neural Networks, Support Vector Machines, and others [1,2,3]. 

Choosing the most appropriate algorithm is still an open problem and depends on the 

different dataset or domain area. A major drawback of the already mentioned algo-

rithms is their relatively low quality of classification. In most cases, these approaches 

don’t achieve the quality of classification that is provided by the operator.  

As described above standard classifiers have a bias towards classes that have more 

texts and tend to predict the majority class. As a result, we gain misclassification of the 

minority class (in comparison with the majority class). That is way conventional ap-

proaches to classifying texts demonstrate rather bad performance when faced with im-

balanced datasets. There are two effective ways how to operate with unbalanced sets 

[4].  

First, we can change samples (data preprocessing). The goal is either to increase the 

number of documents in the minority class or to reduce the number of documents in the 

majority class. This is done to obtain approximately the same number of instances for 
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both classes. The most popular techniques are random undersampling (randomly elim-

inating majority class text examples) and oversampling (increasing the number of text 

instances in the minority class first through simulation). Our experimental studies show 

that the disadvantages of these approaches outwit the advantages, and the quality of the 

classification changes only slightly. 

Second, we can improve classifiers to make them appropriate for imbalanced data 

sets. These studies are conducted as part of the construction of ensemble classifiers to 

improve the performance of single classifiers by voting (and aggregating their predic-

tions). 

Many researchers have investigated the technique of combining the predictions of 

multiple classifiers to produce a single solution [5,6]. Nowadays the most popular and 

effective techniques of creating ensembles of classifiers are Random Forests, Ada-

Boost, and Gradient Boosting Machine – GBM [2,7,8].  

In this article, we apply and explore Gradient Boosting Machine for the categoriza-

tion of requests. The arguments in favor of usage GBM can be formulated in the fol-

lowing way: 

 In comparison with other ensemble classifiers, GBM generally performs better than 

Random Forests and AdaBoost (although there is a price for that: GBM has a few 

hyper-parameters to tune, while Random Forest and AdaBoost are almost tuning-

free). The possibility of tuning gives researchers more options to achieve better re-

sults on a particular dataset.  

 The Kaggle competitions (the most popular testing ground of machine learning tech-

niques) demonstrate high universality GBM and efficiency for a wide range of real 

applications (https://www.kaggle.com/).   

 The availability of software implementations modifications of the method for solv-

ing various practical problems (for example, algorithm XGBoost - eXtreme Gradient 

Boost – the variant of classical GBM with some additional heuristics [9]).  

 GBM meets the requirements for speed of categorization and provides paralleliza-

tion of computations. So this method is computationally cheap and easy to imple-

ment.  

This paper is organized as follows. In the first section, we consider pre-processing 

tasks (extracting text, tokenization, stop-word removal, normalization, named entity 

recognition) and give descriptions of two models of text representation (Bag of Words 

and Word2Vec). In the second section, we briefly explain Gradient Boosting Machine, 

setting its parameters on the simples and compare the quality of classification under 

using Bag of Words and Word2Vec. 

2 Preprocessing and Feature Extraction 

For the learner to compute a classification function, it needs to understand the docu-

ment. For the learner, the document is merely a string of text. Hence, there is a need to 

represent the document text in a structured manner. The most common technique to 

represent text is the Bag-Of-Words (BOW) model [1]. In this technique, the text is 

https://ru.wikipedia.org/wiki/AdaBoost
https://ru.wikipedia.org/wiki/AdaBoost
https://ru.wikipedia.org/wiki/AdaBoost
https://ru.wikipedia.org/wiki/AdaBoost
https://www.kaggle.com/
https://github.com/dmlc/xgboost
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broken down into words. Each word represents a feature. This process is also referred 

to as “Tokenization” since the document is broken down into tokens (individual words). 

A group of features extracted thus forms a feature vector for the document. Note that 

in such a model, the exact order of word occurrence is ignored. Since this vector be-

comes too large, there are several ways to prune this vector. Techniques like stop word 

removal and stemming are commonly applied. Stop word removal involves removing 

words that add no significant value to the document. However, when dealing with 

shorter text messages, traditional techniques will not perform as well as they would 

have performed on larger texts. This is primarily because there are few word occur-

rences and hence it is difficult to capture the semantics of such messages (the word 

occurrence is too small, they offer no sufficient knowledge about the text itself). That 

is why short text messages are harder to classify than the larger corpus of text.   

The other model of text representation is Word2Vec [10] 

Word2vec takes as its input a large corpus of text and produces a vector space, typ-

ically of several hundred dimensions, with each unique word in the corpus being as-

signed a corresponding vector in the space. Word vectors are positioned in the vector 

space such that words that share common contexts in the corpus are located close to 

one another in the space [10]. 

Word2vec has two main learning algorithms: CBOW (Continuous Bag of Words) 

and Skip-gram. CBOW is "a continuous bag of words" a model architecture that pre-

dicts the current word based on its surrounding context. The Skip-gram architecture 

works the other way: it uses the current word to predict the surrounding words. The 

user of Word2vec can switch and choose between the algorithms. The order of context 

words does not affect the result in any of these algorithms. Obtained at the output of 

the coordinate representation of the vectors of the words allow us to calculate the "se-

mantic distance" between words. Word2vec technology makes its predictions based on 

the contextual proximity of these words. Since Word2vec tool is based on neural net-

work training, it is necessary to use large datasets to train it to achieve its most efficient 

operation. This allows improving the quality of predictions. 

To apply models, the original samples first must be processed specially, taking into 

account the peculiarities of the language to identify the most informative features 

(Fig.1).  

This processing included: 

 Removing punctuation marks and service characters using the Re library and regular 

expressions. 

 Reducing words to lowercase. 

 Splitting the text into separate tokens using"whitespace".            

 Reduction of words to normal form. Individual tokens were normalized using the 

pymorphy2 library. 

 The addition of the negative particle to the next word. The meaning of some requests 

depends on the negative particle and affects the meaning of the entire request. There-

fore, it is important to save the negative essence. 

 Removing stop words and template phrases (clichés). It was performed using two 

dictionaries. Experts compiled the first one manually. It contained a list of words 

https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Dimensions
https://en.wikipedia.org/wiki/Corpus_linguistics
https://en.wikipedia.org/wiki/Word_vectors
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directly related to the automated system. The second dictionary was the standard 

dictionary from the NLTK library (Natural Language Toolkit). 

 Named entities recognition for further linking.  

 

Fig. 1. Informative features 

The task of named entity recognition generally involves finding named entities in the 

text and determining their types, as well as linking a named entity to an object. The 

latter is important since identical words/phrases can refer to completely different ob-

jects. For example, the word “Lena” in Russian can be: 

 The name of the person 

 The name of the river 

 The name of the town 

 The name of the highway 

The types of named entities in the work included:  

 Dates - 07.02.2019, 28 November 2018, 1995-2003; 

 Numbers – 1, 3.5, 547899.00; 

 Addresses – Novosibirskaya street, 23; 

 Time – 9:30, from 13:00 to 14:00;  

 Currency units and money amounts - 5000 rubles, $10; 

 Names of automated systems - SAP, CRM; 

 Positions - Manager, engineer, senior analyst; 

To recognize the named entities in the text, both the specificity of their entry and dic-

tionary resources are used: dictionaries of names, geographical names, monetary units, 

occupations, etc. In this work, regular expressions are used to recognize named entities, 

in addition to special dictionaries supplemented with the subject of the problem. 

It is well known that the quality of classification with GBM is significantly influ-

enced by the dimension of vectors and terms used to describe documents. Therefore, it 

is important to select the best representation of the documents. In this paper, we conduct 

a comparative analysis of two approaches to feature extraction BoW and W2V. Based 
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on our experiments, we identify an approach that provides a higher quality of classifi-

cation with Gradient Boosting Machine. We make our conclusion based on analysis of 

values of precision and recall (as well as their combination – F1-measure). 

3 Text Categorization with Gradient Boosting Machine 

Classification is a supervised data mining technique that involves assigning a label to a 

set of unlabeled input objects. Based on the number of classes present, there are two 

types of classification: binary classification (classify texts into one of the two classes) 

and multi-class classification (classify texts into one of the multiple classes). In our 

work, we consider the more complicated case of multi-class classification. We need to 

build a classifier that can correctly assign a document to one class based on its content. 

As noted earlier for the building of the classifier we use boosting technique which 

creates a highly accurate prediction rule by combining many weak and inaccurate 

rules.  Each classifier is serially trained with the goal of correctly classifying texts in 

every round that were incorrectly classified in the previous round. After each round, it 

gives more focus to texts that are harder to classify.  The quantity of focus is measured 

by a weight, which initially is equal for all instances. The most common representatives 

of the boosting family are Adaptive Boosting (AdaBoost), Gradient Boosting (GBM), 

and XGBoost (eXtreme Gradient Boost). In Gradient Boosting Machine the principle 

idea behind the algorithm is to construct the new base-learners to be maximally corre-

lated with the negative gradient of the loss function, associated with the whole ensemble 

[11]. 

Gradient Boosting is an approach to approximate a function 𝜑∗: 𝑅𝑛 → 𝑅 by a func-

tion 𝜑 of the form  

 𝜑(𝑥) =  ∑ 𝛼𝑗ℎ𝑗(𝑥) 𝑀
𝑗=1  (1) 

where 𝛼𝑗 ∈ R are real-valued weights, ℎ𝑗: 𝑅𝑛 → 𝑅 are weak learners and x ∈ 𝑅𝑛 is 

the input vector [1]. 

Gradient Boosting can be seen as a generalization of AdaBoost. The latter is de-

signed to minimize the exponential loss with stump weak learners ℎ𝑗: 𝑅𝑛 → {+1, −1},  

while Gradient Boosting can make use of real-valued weak learners and can minimize 

other loss functions [12]. Gradient Boosting has shown significant performance im-

provements in many classification problems concerning classic AdaBoost [13]. 

Let us discuss in more detail the description of the short text documents (requests 

for service) and training samples. The request that must be classified consists of two 

parts: “Information” – a brief description of the problem, written by the user and “Op-

tions” that may contain additional information about the request, for example, user’s 

department, system information, etc. As a result of combining these two parts, we ob-

tain a document for classification.  

To perform the experiments we downloaded and processed 9000 user requests. After 

that corpus was divided into two parts – training set and testing set – in the ratio of 67 

and 33 percent respectively. Each class in the dataset has a different volume, which is 

shown in table 1. 
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To perform the best classification result we need to adjust the parameters of the Gra-

dient Boosting Machine (http://xgboost.readthedocs.io). For some parameters were 

used the recommendations of the developers. But for the main parameters that have the 

greatest impact on the accuracy indicators, a special adjusting was carried out with the 

GridSearchCV module which performs an exhaustive search over specified parameter 

values for an estimator using k-fold cross-validation (k = 5). The next table shows pa-

rameters with the description, range, and selected value. 

Table 1. Dataset volume. 

Class name The volume of the training set 
The volume of a test 

set 

C1  511 260 

C2 563 295 

C3 998 520 

С4  3561 1770 

С5 163 65 

Table 2. Adjusted parameters. 

Parameter Description Range Se-

lected 

value 

eta  Step size shrinkage used in the update to pre-

vents overfitting. After each boosting step, 

we can directly get the weights of new fea-

tures, and eta shrinks the feature weights to 

make the boosting process more conserva-

tive. 

[0.1;0.3] 0.1 

max_dept

h 

Maximum depth of a tree, increase this value 

will make the model more complex/likely to 

be overfitting. 0 indicates no limit, limit is re-

quired for depth-wise grow policy. 

[1,10] 3 

objective Specify the learning task and the correspond-

ing learning objective 

[binary:lo-

gistic, reg: lo-

gistic, bi-

nary:logitraw, 

reg:linear] 

"bi-

nary: 

lo-

gistic" 

 

booster Which booster to use, can be gbtree, gblinear, 

or dart. gbtree and dart use a tree-based 

model while gblinear uses a linear function. 

[gbtree, gblin-

ear, dart] 

 

gbtree 

eval_met-

ric 

Evaluation metrics for validation data, a de-

fault metric will be assigned according to ob-

jective 

The multiclass 

classification 

error rate 

merror 

colsam-

ple_bytree 

Subsample ratio of columns when construct-

ing each tree 

[0,1] 0.7 
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To perform feature extraction first we break sentences into words. On this step, we 

had a deal with 469880 words and after preprocessing our training corpus contained 

230905  informative words which we gave to the input of BoW and W2V. 

To perform word extraction with Word2vec using CBoW algorithm we applied the 

following parameters:  

 Learning algorithm - Hierarchical softmax. 

 The minimum number of repetitions of the word in all sentences -min_word_count 

= 40.  

 The dimension of the resulting space - num_features = 300 (default value). 

 How many words "around" a particular word should be considered -  

 Context = 10  (Normally used value). 

 Parameter «sampling» makes the model choose very-frequent words less often in the 

training process - sampling = 1e-3 (default value). 

Evaluation of a classification algorithm performance is measured by the Confusion 

Matrix which contains information about the actual and the predicted class. 

Table 3. Confusion matrix 

Actual Predicted 

Positive class Negative class 

Positive class True Positive (TP) False Negative (FN) 

Negative class False Positive (FP) True Negative (TN) 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2(𝑃𝑟𝑒𝑠𝑖𝑐𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑠𝑖𝑐𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
 (4) 

 

The results of classification with GBM and two methods of feature extraction are pre-

sented in tables 4 and 52. The results are obtained on the testing set. 

Table 4. Prediction with GBM and Bag of Words 

Class Precision Recall f1-score    

C1  0,95 0,86 0,90 

C2 0,96 0,91 0,93 

C3 0,92 0,93 0,93 

С4  0,96 0,98 0,97 

С5 0,76 0,79 0,78 



328 

Table 5. Prediction with GBM and Word2Vec 

Class Precision Recall f1-score    

C1  0,92 0,89 0,90 

C2 0,91 0,92 0,89 

C3 0,89 0,90 0,90 

С4  0,95 0,97 0,93 

С5 0,88 0,86 0,85 

As we can see prediction with GBM using Bag of Words provides a slightly better 

result than Word2vec but it is still not good enough to replace a human operator. Ac-

cording to the experience of the Bank human-operators perform such task approxi-

mately with f-score = 0.92 - so our goal is to perform an average f-score of at least 0.93 

[14]. Small classes are rather poorly identified with the model, but the results on the 

biggest C4 let us expect good results if we will train our model on an extended corpus. 

Although that BoW model provides better results on average it also performs the 

worst result in C5 category. Results of W2V model are smoother than the results of 

BoW model so we could note that W2V model is more resistant to the size of the dic-

tionary. 

4 Conclusions 

Currently, the models and methods considered in the article are tested in one of the 

branches of a large bank in Russia. During testing, we focused on the analysis of the 

causes of errors. The main conclusion is that most of the errors are due to incorrect 

filling of requests, in particular, the use of slang, abbreviations that correspond to the 

vocabulary of modern messengers and social networks. To improve the prediction qual-

ity, we plan to achieve through the following:  

─ as the number of requests increases to expand the training set to achieve the more 

precise tuning of the parameters for Word2vec, and also make our sample balanced 

by extending small classes and discarding some objects of large classes; 

─ try W2V skip-gram algorithm. It is more computationally expensive than CBoW but 

performs better results in models using large corpora and a high number of dimen-

sions [10]; 

─ perform more detailed customizing of XGBoost model on an extended corpus; 

─ develop formal rules and guidelines for filling service requests.  

At the same time, the conducted testing and discussion of its results with the Bank's 

specialists allows identifying several similar processes that can be automated based on 

Text Mining techniques. 
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