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Abstract. Multilayer methods are an alternative approach to building the approx-

imate analytical solution of differential equations. This paper presents the study 

of the results obtained by the implementation of our modifications of acknowl-

edged implicit and explicit numerical methods. The homogeneous Duffing equa-

tion is of practical interest for modeling nonlinear oscillations and considered as 

a model equation. The accuracy of the obtained solutions is compared. It is shown 

that moving an initial point can significantly increase the accuracy of the solu-

tions. 
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1 Introduction  

Modeling the behavior of many real objects often reduces to initial or boundary value 

problems for differential equations. In practice, the analytical solution of differential 

equations usually cannot be built, therefore, a numerical approximate solution is often 

sought. But such solutions are not clear enough. It is complicated to use it for studying 

the effect of changing the parameters of the original problem or adjust it to the behavior 

of the simulated object using the results of observation. Another well-known approach 

is building the approximate analytical solution. A lot of different approaches to finding 

it has been developed. There are various asymptotic methods, series expansion meth-

ods, etc. [1]. Classic perturbation methods [2] are quite versatile but, like other non-

linear analytical methods, they have significant limitations and restrictions. The quality 

of the solution may directly depend on the choice of the parameter by the researcher. 

In recent decades, new methods have appeared and old ones have been improved [3]. 
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But often the higher-order analytical approximations require analytical solving of sys-

tems of complex nonlinear algebraic equations or additional restrictions on the param-

eters or the function [4-7]. Other approaches imply building a functional approximation 

in the form of broken lines or splines based on points of the numerical solution. In this 

article, we consider methods for building multilayer models that allow us to obtain an 

approximate analytical solution based on classical numerical methods. We compare the 

solutions built according to recurrence formulas of various numerical methods and in-

vestigate the possibility of increasing the accuracy of the obtained solutions on the base 

of the initial point moving. 

2  General Description of Multilayer Methods 

The essence of our approach is to apply the well-known recurrence formulas for the 

numerical integration of differential equations to an interval with a variable right end-

point. [8-12]. The result is an approximate analytical solution in the form of a function 

of this endpoint.  

Consider the Cauchy problem for a system of ordinary differential equations 

 {
𝑦′ = 𝑓(𝑥, 𝑦)

𝑦(𝑥0) = 𝑦0
𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅𝑚 (1) 

The search for a solution is carried out on the interval [𝑥0, 𝑥0 + 𝑎]. According to the 

main idea of our approach, we use well-known methods for the numerical solution of 

the problem (1) to an interval with a variable right endpoint 𝑥 ∈ [𝑥0, 𝑥0 + 𝑎]. We 

choose a partition 𝑇𝑛(𝑥) of the interval [𝑥0, 𝑥] into n subintervals 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑘 <
⋯ < 𝑥𝑛 = 𝑥, ℎ𝑘 = 𝑥𝑘+1 − 𝑥𝑘. By applying the formula 

 𝑦𝑘+1 = 𝑦𝑘 + 𝐹(𝑓, ℎ𝑘, 𝑥𝑘, 𝑦𝑘+1, 𝑦𝑘 , 𝑦𝑘−1, … , 𝑦0) (2) 

n times, we obtain an approximate solution 𝑦𝑛(𝑥). The operator 𝐹 defines a specific 

method we modify as described above. The result is a function defined on the interval 

[𝑥0, 𝑥0 + 𝑎]. We can replace an interval  [𝑥0, 𝑥0 + 𝑎] with [𝑥0 − 𝑏, 𝑥0 + 𝑎].  

3  Multilayer Methods in the Context of Solving the 

Duffing Equation 

As the model task, we consider the homogeneous Duffing equation with constant coef-

ficients [4-5, 13-16]. 

 
𝑦′′ + 𝑎𝑦 + 𝑏𝑦3 = 0

𝑦(0) = 𝑦0, 𝑦′(0) = 𝑦1
 (3) 

Higher-order differential equations can always be reduced to the form (1) by increas-

ing the dimension of the system. In our case, it is easy to make a replacement 𝑦 =
𝑣, 𝑦′ = 𝑢: 
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𝑣′ = 𝑢
𝑢′ = −𝑎𝑣 − 𝑏𝑣3

𝑣(0) = 𝑦0, 𝑢(0) = 𝑦1

 (4) 

The search for a solution is carried out on the interval [0,3], the initial conditions and 

parameters of the equation are as follows 

 𝑎 = 1,   𝑏 = 1,   𝑦0 = 1,   𝑦1 = 1 

For simplicity, the partition 𝑇𝑛(𝑥) is considered uniform for each method, namely 

ℎ𝑘 = (𝑥 − 𝑥0) 𝑛⁄ . 

 

3.1 Explicit Methods 

Euler's method. The simplest numerical method for which the operator F has the form 

𝐹(𝑓, ℎ𝑘, 𝑥𝑘, 𝑦𝑘) = ℎ𝑘𝑓(𝑥𝑘, 𝑦𝑘) 

Refined Euler's method. Another well-known numerical method in which we used 

the formula 

𝐹(𝑓, ℎ𝑘, 𝑥𝑘, 𝑦𝑘 , 𝑦𝑘−1) = 2ℎ𝑘𝑓(𝑥𝑘, 𝑦𝑘) + 𝑦𝑘−1 − 𝑦𝑘 . 

In this case, to start the algorithm, the expression 

𝑦1 = 𝑦0 + ℎ1𝑓 (𝑥0 +
ℎ1

2
, 𝑦0 +

ℎ1

2
𝑓(𝑥0, 𝑦0)) 

is used. 

  

Fig. 1. The plot of the exact solution of 

problem (3) and the approximate solution 
built by our modification of the Euler 

method in the case of n=10 

Fig. 2. The plot of the exact solution of 

problem (3) and the approximate solution 
built by our modification of the refined 

Euler method in the case of n=10 

The modified Euler method. This method works under the formula 

𝐹(𝑓, ℎ𝑘, 𝑥𝑘, 𝑦𝑘) = ℎ𝑘 [𝑓(𝑥𝑘, 𝑦𝑘) +
ℎ𝑘

2
(𝑓𝑥

′(𝑥𝑘, 𝑦𝑘) + 𝑓𝑦
′(𝑥𝑘, 𝑦𝑘)𝑓(𝑥𝑘, 𝑦𝑘))]. 
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Second-order Runge-Kutta method: 

𝐹(𝑓, ℎ𝑘, 𝑥𝑘, 𝑦𝑘) = ℎ𝑘𝑓 (𝑥𝑘, 𝑦𝑘 +
ℎ𝑘

2
𝑓(𝑥𝑘, 𝑦𝑘)). 

  

Fig. 3. The plot of the exact solution of 

problem (3) and the approximate solution built 

by our modification of the modified Euler 

method in the case of n=10 

Fig. 4. The plot of the exact solution of prob-
lem (3) and the approximate solution built by 

our modification of the Runge-Kutta method 

in the case of n=10 

Störmer Method. Since initially, the Duffing equation is a second-order differential 

equation, we can apply the Störmer method. In this case 

𝑦𝑘+1 = 2𝑦𝑘 − 𝑦𝑘−1 + ℎ𝑘
2𝑓(𝑥𝑘, 𝑦𝑘). 

This method requires 𝑦1. We calculated it approximately by the Taylor formula 

𝑦1 = 𝑦0 +
𝑦′(𝑥0)

1!
ℎ1 +

𝑦′′(𝑥0)

2!
ℎ1

2 +
𝑦′′′(𝑥0)

3!
ℎ1

3, 

where 𝑦′′(𝑥0) and 𝑦′′′(𝑥0) are easily obtained from differential equation (3). 

  

Fig. 5. The plot of the exact solution of prob-

lem (3) and the approximate solution built by 

our modification of the Störmer Method in the 
case of n=5 

Fig. 6. The plot of the exact solution of prob-

lem (3) and the approximate solution built by 

our modification of the Störmer Method in the 
case of n=10 
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3.2 Implicit Methods 

Implicit methods are applicable if the equation 𝑦𝑘+1 = 𝑦𝑘 +
𝐹(𝑓, ℎ𝑘, 𝑥𝑘, 𝑦𝑘+1, 𝑦𝑘 , 𝑦𝑘−1, … , 𝑦0) is solvable for 𝑦𝑘+1. About our problem, this means 

solving the cubic equation at each step. In some cases, it is advisable not to look for the 

exact solution of this cubic equation but to use the approximate solving methods. We 

use one step of the Newton method. The justification of this approach is demonstrated 

below. 

The implicit Euler method. The operator F for an implicit method is as follows 

𝐹(𝑓, ℎ𝑘, 𝑥𝑘, 𝑦𝑘+1) = ℎ𝑘𝑓(𝑥𝑘+1, 𝑦𝑘+1). 

Substituting this expression in (2) we obtain the system 

 {
𝑣𝑘+1 = 𝑣𝑘 + ℎ𝑘𝑢𝑘+1

𝑢𝑘+1 = 𝑢𝑘 + ℎ𝑘(−𝑎𝑣𝑘+1 − 𝑏𝑣𝑘+1
3 )

. (5) 

 

This system allows the exact expression 𝑣𝑘+1, 𝑢𝑘+1 in terms of 𝑣𝑘, 𝑢𝑘, ℎ𝑘:  

 {
𝑣𝑘+1 = 𝐵1(𝑣𝑘, 𝑢𝑘, ℎ𝑘)

𝑢𝑘+1 = 𝐵2(𝑣𝑘, 𝑢𝑘, ℎ𝑘)
. 

Then we can use formula 

 (
𝑣𝑘+1

𝑢𝑘+1
) = (

𝑣𝑘

𝑢𝑘
) + (

𝐵1(𝑣𝑘, 𝑢𝑘, ℎ𝑘)

𝐵2(𝑣𝑘, 𝑢𝑘, ℎ𝑘)
). 

to perform computations. The result of such solving is presented below. On the other 

hand, the solution of system (5) can be obtained by using one step of the Newton 

method. In this case, we obtain another expression, 

 {
𝑣𝑘+1 = 𝑁1(𝑣𝑘, 𝑢𝑘, ℎ𝑘)

𝑢𝑘+1 = 𝑁2(𝑣𝑘, 𝑢𝑘, ℎ𝑘)
. 

  
Fig. 7. The plot of the exact solution of prob-

lem (3) and the approximate solution built by 

our modification of the implicit Euler method 
in the case of the exact solution of (5) and n=5 

Fig. 8. The plot of the exact solution of prob-

lem (3) and the approximate solution built by 

our modification of the implicit Euler method 
in the case of the approximate solution of (5) 

(one step of the Newton method) and n=5 
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The maximum error in the first case is equal to 0.89163, in the second case it is 

0.96993. As we can see, there is no significant change in the plot behavior. But when 

using the Newton method an expression is easier and therefore the complexity and time 

of calculations are lower than if we solve system (5) analytically. The solutions below 

are obtained using the Newton method. 

One-step Adams method. Another implicit method, the equation has the form 

 𝑦𝑘+1 = 𝑦𝑘 +
ℎ𝑘

2
(𝑓(𝑥𝑘, 𝑦𝑘) + 𝑓(𝑥𝑘+1, 𝑦𝑘+1)). 

  

Fig. 9. The plot of the exact solution of prob-

lem (3) and the approximate solution built by 

our modification of the One-step Adams 

method in the case of the exact solution of the 

cubic equation and n=5 

Fig. 20. The plot of the exact solution of prob-

lem (3) and the approximate solution built by 

our modification of the One-step Adams 

method in the case of the approximate solution 

of the cubic equation (one step of the Newton 
method) and n=5 

The maximum error in the case of the exact solution according to the cubic equation is 

equal to 1.11217 and in the case of the approximate solution, it is 1.14777. 

3.3 Computational results 

The computational results of all methods are presented in Table1. Each method corre-

sponds to its maximum error in the specified interval. We compare the error on the 

intervals [0,1.5] and [0,3]. 

Table 1. The maximum errors of the studied methods with the number of layers n=2 and n=5. 

Number of iterations n 5 10 

Interval [0, 1.5] [0, 3] [0, 1.5] [0, 3] 

Euler method 0.17474 7.11176 0.14765 1.19331 

Refined Euler method 0.10981 11.70914 0.022633 0.19536 

Modified Euler method 0.1148 0.90283 0.026272 0.13579 

Runge-Kutta method 0.13924 1.90271 0.032397 0.19168 

Störmer Method 0.023506 0.18407 0.0058227 0.034254 

Implicit Euler method 0.30049 0.96993 0.16892 0.62051 

One-step Adams method 0.77332 1.14778 0.19285 0.67787 
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Implicit methods have no advantages over explicit methods for this task. Of the explicit 

methods we examined, the most accurate is the Störmer method. 

4 Initial Point Moving 

To improve the accuracy of the model, we investigated the following approach. Using 

the methods described above, we build a solution to the Cauchy problem (1) starting 

from the point 𝑥1 ∈ [𝑥0, 𝑥0 + 𝑎], other than 𝑥0. The unknown initial condition 𝑦(𝑥1) =
𝑦1 in this case is the parameter of the resulting solution 𝑦𝑛(𝑥, 𝑦|1). This parameter can 

be determined from the equation 𝑦𝑛(𝑥0, 𝑦|1) = 𝑦0. From the computational results be-

low, it follows that by moving an initial point in this way, it is possible to improve the 

solution on the interval. 

As an example, we consider the Störmer method, as the most accurate method of the 

previously considered. The table below shows the maximum error of the solution ob-

tained by this method on the interval [0,1.5] in the case of moving the initial point from 

zero in increments of 
1

10
. The number of layers n we took equal to 2 and 5. 

Table 2. The maximum errors in the interval [0,1.5] in the case of moving the initial point. 

𝑥1 n = 2 n = 5 𝑥1 n = 2 n = 5 

0 0.11273 0.023506 0.8 0.03919 0.0077468 

0.1 0.10936 0.022624 0.9 0.062919 0.0058778 

0.2 0.15743 0.024725 1 0.11639 0.012437 

0.3 0.20216 0.027498 1.1 0.16437 0.019892 

0.4 0.21231 0.028058 1.2 0.20177 0.027324 

0.5 0.18527 0.024551 1.3 0.23007 0.034529 

0.6 0.13004 0.017213 1.4 0.25373 0.042016 

0.7 0.063503 0.0091472 1.5 0.27807 0.050909 

As we can see, solutions with moving the initial point have significantly better accuracy 

on the interval than a conventional solution built starting from zero. 

  

Fig. 11. The plot of the exact solution of prob-
lem (3) and the approximate solution built by 

our modification of the Störmer Method in the 

case of n=2 and initial point 𝑥1 = 0.8  

Fig. 32. The plot of the exact solution of prob-
lem (3) and the approximate solution built by 

our modification of the Störmer Method in the 

case of n=2 and initial point 𝑥1 = 0  
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Next, we select new starting points from the gap between the previous best results in 

increments of 
1

100
. 1/100. From this list of models, the most accurate model can be cho-

sen. 

Table 3. The maximum errors in the interval [0,1.5] in the case of moving the initial point in 

the interval [0.8,0.9] 

𝑥1 n = 2 n = 5 

0.8 0.03919 0.0077468 

0.81 0.036768 0.007522 

0.82 0.034308 0.0072874 

0.83 0.031835 0.0070447 

0.84 0.034117 0.0067956 

0.85 0.038495 0.006542 

0.86 0.043071 0.0062857 

0.87 0.047822 0.0060285 

0.88 0.052729 0.0057722 

0.89 0.057768 0.0055186 

0.9 0.062919 0.0058778 

Thus, the approach with moving an initial point allowed us to significantly reduce the 

deviation of the solution on the interval. The plots below illustrate the difference be-

tween models with a selected initial point and models built starting from zero. 

  

Fig. 43. The plot of the approximate solution 

error module in the case of 𝑛 = 2 and initial 

point 𝑥1 = 0.83 

Fig. 54. The plot of the approximate solution 

error module in the case of 𝑛 = 2 and initial 

point 𝑥0 = 0 
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Fig. 15. The plot of the approximate solution 

error module in the case of 𝑛 = 5 and initial 

point 𝑥1 = 0.89 

Fig. 16. The plot of the approximate solution 

error module in the case of 𝑛 = 5 and initial 

point 𝑥0 = 0 

5 Conclusions and Discussion  

The study allows us to draw the following conclusions: 

1. The methods we have proposed allow us to construct an approximate solution of the 

Duffing equation in the form of a function with the required accuracy. 

2. For model equations with parameters considered, implicit methods do not have sig-

nificant advantages over explicit methods. Implicit methods make sense for those 

parameters when the task becomes stiff. 

3. Moving an initial point lets us obtain an approximate analytical solution of the model 

task which is several times more accurate than a solution obtained without moving 

an initial point. Wherein an accuracy increases with the number of layers. 

4. Our methods, without requiring additional assumptions, allow us to build parametric 

approximate analytical solutions [9] concerning the parameters of the original task. 
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