
An Analysis of Ontological Entities to Represent

Knowledge on Quantum Computing Algorithms

and Implementations

Darya Martyniuk1, Michael Falkenthal2, Naouel Karam1,

Adrian Paschke1, and Karoline Wild3

1 Data Analytics Center, Fraunhofer FOKUS, Berlin, Germany

{darya.martyniuk, naouel.karam, adrian.paschke}@fokus.fraunhofer.de
2 StoneOne AG, Berlin, Germany

michael.falkenthal@stoneone.de
3 Institute of Architecture of Application Systems, University of Stuttgart, Germany

karoline.wild@iaas.uni-stuttgart.de

Abstract. The field of quantum computing is developing rapidly. As a

result, a variety of quantum hardware, software development kits, and

quantum algorithms have been developed in recent years. However, knowl-

edge about these artifacts is either not available or spread among different

sources. Thus, to analyze, compare, and evaluate knowledge on quantum

computing an integrated knowledge base is required. In this paper, we

introduce key concepts of an ontology for quantum algorithms and their

implementations. The presented ontology serves as basis for a collabora-

tive platform for researchers and practitioners to support collection and

development of knowledge on the field of quantum computing.

Keywords: Ontology, Taxonomy, Quantum Computing, Quantum Algorithm

1 Introduction and Motivation

The advent of publicly available quantum computers in recent years has boosted

the developments of quantum software, quantum programming languages, and

quantum platforms a lot. Quantum computers are no longer just scientific experi-

ments but can be accessed even outside quantum hardware vendors’ laboratories

via application programming interfaces (API) and software development kits

(SDK) [9]. SDKs provided by vendors such as IBM, Google, D-Wave, and Rigetti,

include initial implementations of quantum algorithms, which act perfectly as

training material for people trying to gain insights into the area of quantum

information. These endeavors, combined with the huge efforts undertaken by

the scientific community around the world to find new quantum algorithms that

outperform known classical algorithms, have led to a manifold of publications and

Copyrightc © 2021 for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

2 Martyniuk et al.

exemplary programming code, which can form a valuable body of knowledge for

the development of quantum-inspired and -enhanced applications in the future.

This is important because, even being in the so-called Noisy Intermediate Scale

Quantum (NISQ) era [19], quantum computing has the potential to become a

disruptive innovation driver in many different fields, where we are facing the

limitations of execution powers of classical computers. So, for example, it is

very likely that quantum computing will allow to tackle complex problems from

molecule simulations [7], the broad topic of artificial intelligence (AI) [22], and

even the optimization of energy systems [2].

However, for companies and scientists trying to leverage quantum computing

for business, development, and research, this means hard times ahead. This is

because the knowledge about quantum computing and, especially, how to build

applications that can make use of quantum resources to gain improvements over

classical algorithms is not systematically available. Explanations of quantum

algorithms, such as estimations of the speedup over classical algorithms, theoreti-

cal considerations of required quantum resources, and actual implementations of

the algorithms are typically spread among different sources. As a consequence,

required knowledge has to be collected and obtained manually from a vast amount

of scientific publications, vendor-specific documentation pages, or public code

repositories. Yet, such information has to be analyzed holistically to understand

how to implement quantum algorithms and quantum applications for specific use

cases and scientific problems at hand. Moreover, the absence of an integrated

knowledge base hinders to establish a community bridging theoretical foundations

and research on new quantum algorithms with their usage, application, and im-

plementation for relevant and real scenarios. In this regard, an open ecosystem is

key for rapid technological progress in quantum computing via close cooperation

and steady interchange of ideas between research and industry [16].

Therefore, it is required to come up with a systematic approach to semantically

represent and curate knowledge about quantum computing algorithms along

with their implementations, as presented in this paper. We contribute with

a semantified meta-model that was engineered to provide the core knowledge

structure for semantic knowledge curation in the project PlanQK – platform and

ecosystem for quantum-enhanced AI [13, 18]. The semantic curation of knowledge

artifacts described and managed on the PlanQK platform provides the basis for

e.g. semantic search and semantic service functionalities. PlanQK aims to lay a

body of knowledge to the field of quantum-enhanced AI via a publicly accessible

platform following the mindset already taken in classical AI [23]. Besides the pure

capturing of quantum algorithms and their implementations it is also inevitable

to establish a community-based discussion and exchange around the captured

knowledge to enable continuous evolution of the knowledge.

This paper is structured as following: We introduce the PlanQK project in

Sect. 2 and discuss the key objectives of the intended knowledge platform. We

introduce the mentioned core meta-model as an ontology in Sect. 3. Finally,

we conclude this paper in Sect. 4 by an outlook to future work, which will be

conducted in PlanQK based on the presented ontology.

3

MarketplaceAnalysis and development platform for algorithms, data, and applications

Crawler
User

Interface
Expert Portal

Publication
Content Store

QAlgo-
Repository

QC-Pattern-
Repository

Data-
Repository

API

Requests/
Purchases/
Offerings

API

Customer
Portal

Deployment &
Management

API

NISQ-Analyzer

Provider
Portal

Specialist
Algorithm Developer Researcher Software Architect

and Developer

ArXiv/ GitHub / Bitbucket / GitLab / Docker Hub / Dataset Search / …

Customer
Consultant

Service Provider
System Integrator

QC-, Cloud- and On-
Premise-Infrastructure

QApp
Repository

API

QPU ProviderData Provider

Fig. 1: Architecture of the PlanQK Platform [12].

2 The PlanQK Project

The vision of a collaborative platform for the exchange of knowledge in the field

of quantum computing has already been presented in previous work [11, 12]. The

PlanQK project will realize this vision by providing a platform that enables

(i) knowledge and technology transfer between research and industry, (ii) a vendor-

agnostic access to quantum computing resources, and (iii) quantum applications

as a service. Fig. 1 depicts the PlanQK architecture with the two main components:

The analysis and development platform and the marketplace. The goal of the

first component is to provide a platform for quantum experts to collect, discuss,

evaluate, and share knowledge, e. g., publications, algorithms, or implementations.

Marketplace, on the other hand, offers solutions in form of quantum applications

and consulting services to users with a specific problem to be solved.

The key knowledge artifacts that are provided on the analysis and develop-

ment platform include Quantum Algorithms (QAlgos) and their Implementations

using different SDKs for the different quantum computing vendors, Quantum

Design Patterns (QC-Patterns) that provide best practices for quantum algo-

rithms, Datasets (Data) for specific machine learning and AI algorithm, and

Quantum Applications (QApps) that can be deployed and integrated with classical

applications. New knowledge, e. g., in form of publications, can be added using

the user interface or in an automated manner using the crawler. The knowledge

artifacts can then be extracted and linked, discussed and evaluated, and made

available to customers to identify suitable algorithms or implementations for their

specific use cases. Selected QApps can be automatically deployed and managed,

e. g., using established deployment technologies. The NISQ-Analyzer component

supports users by analyzing which implementation of a quantum algorithm and

which quantum computer are recommended for specific input data [21].

4 Martyniuk et al.

Publication Algorithm Execution
referenced by

owl:Class

owl:ObjectProperty

referenced by

Implementation
implements executes

Fig. 2: Central concepts of the PlanQK ontology.

An important goal of the PlanQK platform is to build a quantum community

and establish knowledge exchange between scientific and commercial users. The

ontology presented in this work defines an unambiguous machine-interpretable

semantic description of the platform knowledge artifacts and intend to used to

support the user exchange through (i) proving the logical consistency of the

curated data, (ii) serving as the foundation for the realization of various AI-

based features, e.g., semantic faceted search, natural language question answering

engine, or recommendation system for the selection of an appropriate quantum

algorithm in a specific use case, and (iii) providing an opportunity to document

the expert discussions held on the platform in a semantically usable way.

3 Towards a Unified Ontology for Quantum Algorithms

In developing the ontology, we followed existing ontology development guide-

lines [4, 5, 17]. As a first step towards the knowledge definition, we derived

competency questions from general platform requirements specified by potential

users (both quantum computing researchers and industry partners). Based on the

list of competency questions, we identified key concepts related to the description

of quantum algorithms and their implementations. The ontology draft has been

then presented to quantum computing experts to collect their feedback and has

been improved accordingly.

Fig. 2 depicts the connections between key concepts of the ontology, which we

specify as OWL4 classes. This design was inspired by the Algorithm-Implementati-

on-Execution Ontology Design Pattern (ODP) [10] and the ML-Schema Core

Vocabulary [20]. The class Algorithm aggregates characteristics that are common

for quantum and classical algorithms and Implementation represents a realization

of an algorithm. Publication represents publications about an algorithm or an

algorithm implementation. Since the class Execution requires in-depth knowledge

about quantum hardware and input data, it will be considered in detail in

future work. In the following, we introduce the classes Algorithm (Sect. 3.1) and

Implementation (Sect. 3.2) with their related concepts in detail.

3.1 Algorithms

Fig. 3 shows selected object properties of the class Algorithm. An algorithm

provides a solution for a specific problem. We formalize this using two classes,

4 https://www.w3.org/OWL/

https://www.w3.org/OWL/

5

Problem
Type

Algorithm Solution

Quantum
Computational

Model

provides

Quantum
Algorithm

Hybrid
Algorithm

Classical
Algorithm

achieves quantum
speedup over

has part

formalized as

Computational
Model

Classical
Computational

Model

designed for

Gate Model

Measurement-
based Quantum

Computation

Quantum
Annealing

owl:Class

owl:NamedIndividual

rdfs:subclassOf

rdf:type

improves

based on

owl:ObjectProperty

solves

belongs to

has outputComplexity
Class

has input

Output

Input

Function

Fig. 3: Description of an algorithm in the PlanQK ontology.

Solution and Problem Type, and connect them with Algorithm through object

properties “provides” and “solves”. Solution is defined as algorithmic steps to

solve a computation problem, typically pseudocode or/and circuit. Solution can

have connection to the class Function when it is an essential part of the solution,

such as an appropriate objective function is a fundamental element of optimization

algorithms or a quantum oracle is a crucial part of some quantum algorithms,

e.g., Deutsch-Jozsa algorithm. Problem Type represents types of problems that

are solvable by algorithms. Many real-world problems can be mathematically

formalized in terms of other problems, e. g., a cluster problem can be expressed as

an optimization problem. Complexity Class stores knowledge about the hardness

of a problem. The class Input represents the input accepted by an algorithm,

and Output specifies the output produced by an algorithm. The ontology is able

to express two relation types between algorithms: An algorithm can improve an

existing algorithm or be based on the idea of other algorithms.

A researcher designs an algorithm with a computational model in mind. We

distinguish between Classical and Quantum Computational Model and classify

algorithms in Quantum, Classical and Hybrid Algorithms depending on the model

for which an algorithm was designed. Quantum Algorithm is an algorithm that is

designed only for a quantum computational model. Examples of the Quantum

Computational Model are “gate model”, “measurement-based quantum computa-

tion”, “quantum annealing”. Classical Algorithm is equivalent to an algorithm that

is constructed only for a classical computational model. Hybrid Algorithm is an

algorithm that utilizes some quantum and some classical computational models.

In addition to the above presented classification of algorithms, the ontology also

forms the taxonomy of algorithms based on the underlying problem type (machine

learning, optimization, search algorithms etc.). The classes for specific algorithm

types can act in the future as connection points for linking semantically similar

knowledge bases, e. g., machine learning algorithms can be linked with such

knowledge bases as MEX [3], a lightweight vocabulary for exchanging machine

learning metadata, or ANNETT-O [6], an ontology for describing artificial neural

network evaluation, topology, and training.

6 Martyniuk et al.

Quantum
Computational

Resource

Quantum
Resource

Characteristic

realizes

Number
of Qubits

Fidelity

Qubit
Connectivity

Quantum
Processing
Unit (QPU)

Quantum
Simulator

requires

Classical
Computational

Resource

Computational
Resource

Computational
Model

Hybrid
Algorithm

Quantum
Algorithm

requires

has
characteristics

Gate
Set

qRAM
owl:Class

rdfs:subclassOf
owl:ObjectProperty

compatible
with

Fig. 4: Relations between Computational Model and Computational Resource.

By exploiting quantum-mechanical effects, such as superposition, entangle-

ment, and quantum tunneling, quantum models perform computation more

efficiently than classical ones [1]. Thus, quantum and hybrid algorithms can

achieve speedup over their best known classical counterparts. Formalizing this

consideration, we connect the classes Quantum Algorithm and Hybrid Algorithm

through the property “achieves quantum speedup over“ with the class Classical

Algorithm.

For the class Algorithm we define the following data properties (not shown

in Fig. 3):“skos:prefLabel“ and “skos:altLabel“ (algorithm name and its abbre-

viation, this properties are reused from SKOS Schema [14]), “intend“ (the idea

of the algorithm described in 1-2 sentences), “assumption“ (basic assumptions

underlying the algorithm), and “limitation“ (known limitations of the algorithm).

The classes Quantum Algorithm and Hybrid Algorithm have additional data

properties: “NISQ-ready“ from type “xsd:boolean“, which relates an expert esti-

mation whether the execution of an algorithm on NISQ-devices will be possible,

and “expected quantum speedup“, which specifies speedup (e. g., “exponential“)

obtained by the algorithm over the classical methods for the same task.

A Computational Model is realized by a Computational Resource, which col-

lects instances utilized for the execution of an implementation. Fig. 4 illustrates

relations between Computational Model and Computational Resource. We dis-

tinguish between Classical and Quantum Computational Resource that realize

only Classical and only Quantum Computational Model, respectively. Quantum

computational resources are categorized in Quantum Processing Unit (QPU)

and Quantum Simulator. Since quantum simulators run on a classical hardware,

Quantum Simulator is connected with Classical Computational Resource through

the property “compatible with”. Quantum computational resources have specific

characteristics defined by the class Quantum Resource Characteristic, which

has subclasses Gate Set, Fidelity, Quantum Access Random Memory (qRAM),

Number of Qubits, and Qubit Connectivity. Also quantum and hybrid algorithms

can specify hardware characteristics that are required for their realization, as

shown in Fig. 4. For example, an algorithm can require a specific set of gates

realizable only by some computational resources or show a theoretical speedup

but assumes the availability of a qRAM such as Grover‘s algorithm for database

search, or HHL for solving linear systems of equations. This information allows

7

Programming
Language

Implementation
Software

Tool

Quantum
Computational

Resource

depends on

Error
Correction

Quantum
Provider

supports

Classical
Programming

Language

has part has part

has part

provides

compatible withcompatible
withComputer

Language written in

Instruction
Language

owl:Class

rdfs:subclassOf
owl:ObjectProperty

Software

Data-
Preprocessing

Quantum
Programming

Language

embedded
in

Data-
Postprocessing

Fig. 5: Description of an algorithm implementation.

developers (i) to evaluate the practical usage of an algorithm, and (ii) to select

an appropriate quantum computational resource for executing an algorithm.

3.2 Algorithm Implementation

Fig. 5 presents classes connected with the class Implementation. An implemen-

tation is written in a Computer Language and can depend on a Software Tool.

The class Computer Language formalizes languages that can be used to write a

machine or programming code. Similar to Lando et al. [8] and LaRose [9], we

distinguish between Instruction and Programming Language. Instruction Lan-

guage is defined as a low-level machine language used to instruct the computer

which physical operation to perform on which bit [8]. Instruction Language has

a subclass Quantum Instruction Language with individuals such as “Quil” and

“OpenQASM”. Programming Language has subclasses Classical and Quantum

Programming Language and contains languages that have a human readable

syntax. Some quantum vendors provide quantum programming languages that

are embedded in classical host languages, e. g., PyQuil from Forest SDK or Qiskit

from Qiskit SDK are embedded in Python [9]. Others introduce new programming

languages, such as Q# from Microsoft. Software Tool collects various frameworks,

libraries, SDKs, or APIs that developers can use for implementing an algorithm.

We specify classes Implementation, Computer Language and Software Tool as sub-

classes of Software. Guided by Computer System ODP [15], Software is connected

with Computational Resource and with itself with the property “compatible with”.

The class Quantum Provider collects vendors that provide access to quantum

computational resources. Most quantum providers supply software tools for

developing and executing implementations on their quantum computational

resources [9]. Analyzing various software tools, we came to the conclusion that if

a software tool supports a specific quantum hardware provider, e. g., IBM, Rigetti,

or D-Wave, it is compatible with all quantum computational resources provided

by them. To formalize it, we connect the classes Software Tool and Quantum

Hardware Provider through the property “supports“ and define the relation

“compatible with“ as a superproperty of the chain “supports“ and “provides“.

Apart from the algorithm realization itself, an implementation can include

error correction, pre- and postprocessing. Error Correction Technique collects

8 Martyniuk et al.

methods for limiting errors that occur during information processing. Data

Preprocessing Technique specifies operations that are applied on the input data

before the actual algorithm steps will be executed. The class Data Postprocessing

Technique includes methods that are applied on the algorithm output. A common

postprocessing technique for quantum and hybrid algorithms is the Read-out

Error Correction that is specified in the ontology as a subclass of both Error

Correction Technique and Data Postprocessing Technique.

Ontology source can be found in our repository5. The first prototypical

implementation of the platform services has shown that the ontology is consistent

and can be used for the realization of semantic features.

4 Conclusion and Future Work

In this work we present the first key entities towards a unified ontology for

semantically curating knowledge about quantum algorithms and their imple-

mentations. The ontology provides a basis for the AI-powered semantic features

on the PlanQK platform, such as semantic search and semantic services. The

next steps will be to extend the ontology to not yet covered knowledge artifacts,

such as quantum applications and data, and to refine the existing artifacts. In

addition, provenance data about implementation execution and performance

will be included, which is important to identify suitable algorithms for a given

problem. Furthermore, a standard-based API for supporting the semantic access

to the curated knowledge artifacts and semantic services will be developed.

Acknowledgments This work was partially funded by the BMWi project

PlanQK (01MK20005N / 01MK20005F).

References

1. Abhijith, J., et al.: Quantum algorithm implementations for beginners. arXiv preprint

arXiv:1804.03719 (2020)

2. Ajagekar, A., You, F.: Quantum computing for energy systems optimization: Challenges

and opportunities. Energy 179, 76–89 (2019)

3. Esteves, D., Moussallem, D., Baron, C., Soru, T., Usbeck, R., Ackermann, M.,

Lehmann, J.: Mex vocabulary: a lightweight interchange format for machine learning

experiments. In: SEMANTICS ’15 (2015)

4. Garijo, D., Poveda-Villalón, M.: Best practices for implementing fair vocabularies and

ontologies on the web. ArXiv abs/2003.13084 (2020)

5. Karapiperis, S., Apostolou, D.: Consensus building in collaborative ontology engineering

processes. j-jukm 1(3), 199–216 (dec 2006)

6. Klampanos, I.A., Davvetas, A., Koukourikos, A., Karkaletsis, V.: Annett-o: An

ontology for describing artificial neural network evaluation, topology and training. Int.

J. Metadata Semant. Ontologies 13, 179–190 (2019)

5 https://github.com/PlanQK/semantic-services

https://github.com/PlanQK/semantic-services

9

7. Kühn, M., Zanker, S., Deglmann, P., Marthaler, M., Weiß, H.: Accuracy and resource

estimations for quantum chemistry on a near-term quantum computer. Journal of

Chemical Theory and Computation 15(9), 4764–4780 (2019)

8. Lando, P., Lapujade, A., Kassel, G., Fürst, F.: Towards a general ontology of computer

programs. In: ICSOFT (2007)

9. LaRose, R.: Overview and Comparison of Gate Level Quantum Software Platforms.

Quantum 3, 130 (2019)

10. Lawrynowicz, A., Esteves, D., Panov, P., Soru, T., Dzeroski, S., Vanschoren, J.: An

algorithm, implementation and execution ontology design pattern. In: Hammar, K.,

Hitzler, P., Krisnadhi, A., Lawrynowicz, A., Nuzzolese, A.G., Solanki, M. (eds.)

Advances in Ontology Design and Patterns. Studies on the Semantic Web, vol. 32, pp.

55–68. IOS Press (2016)

11. Leymann, F., Barzen, J., Falkenthal, M.: Towards a Platform for Sharing Quantum

Software. In: Proceedings of the 13th Advanced Summer School on Service Oriented

Computing (2019). pp. 70–74. IBM Technical Report (RC25685), IBM Research

Division (Sep 2019)

12. Leymann, F., Barzen, J., Falkenthal, M., Vietz, D., Weder, B., Wild, K.: Quantum in

the Cloud: Application Potentials and Research Opportunities. In: Proceedings of the

10th International Conference on Cloud Computing and Services Science (CLOSER

2020). pp. 9–24. SciTePress (May 2020)

13. Linnhoff-Popien, C.: PlanQK — Quantum Computing Meets Artificial Intelligence.

Digitale Welt 4, 28–35 (2020)

14. Miles, A., Bechhofer, S.: SKOS simple knowledge organization system reference. Tech.

rep., W3C (2009), https://www.w3.org/TR/skos-reference/
15. Mitzias, P., Kontopoulos, E., Riga, M.: Computer system ontology development pattern

(2017), http://ontologydesignpatterns.org/wiki/Submissions:Computer_System,

accessed 2020-12-01

16. Mohseni, M., et al.: Commercialize quantum technologies in five years. Nature 543,

171–175 (2017)

17. Noy, N.F., Mcguinness, D.L.: Ontology development 101: A guide to creating your first

ontology. Tech. rep., Stanford University (2001)

18. PlanQK: Planqk - platform and ecosystem for quantum-inspired artificial intelligence

(2020), https://planqk.de/en/, accessed 2020-06-15

19. Preskill, J.: Quantum Computing in the NISQ era and beyond. Quantum 2, 79

(2018)

20. Publio, G.C., Esteves, D., Ławrynowicz, A., Panov, P., Soldatova, L., Soru, T.,

Vanschoren, J., Zafar, H.: Ml-schema: Exposing the semantics of machine learning

with schemas and ontologies (2018)

21. Salm, M., Barzen, J., Breitenbücher, U., Leymann, F., Weder, B., Wild, K.: A

Roadmap for Automating the Selection of Quantum Computers for Quantum

Algorithms. arXiv preprint arXiv:2003.13409 (2020)

22. Schuld, M., Petruccione, F.: Supervised Learning with Quantum Computers. Quantum

Science and Technology, Springer International Publishing (2018)

23. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: Openml: networked science in

machine learning. SIGKDD Explorations 15(2), 49–60 (2013)

https://www.w3.org/TR/skos-reference/
http://ontologydesignpatterns.org/wiki/Submissions:Computer_System
https://planqk.de/en/

	An Analysis of Ontological Entities to Represent Knowledge on Quantum Computing Algorithms and Implementations

