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Abstract
We consider the initial-boundary value problem for nonlinear parabolic equation. This type of equation can be
classified as a parabolic equation with double degeneration: degeneration can be present in space operator, and
a nonlinear function which is under the derivative sign with respect to the variable 𝑡 , may not be separated from
zero. The space operator of the considered equation nonlinearly depends on the sought function, its gradient
and the non-local (integral) solution characteristic. This problem has an applied nature. Such equations appear,
for example, in modeling the process of bacteria population spreading. In the present paper we propose and
investigate the explicit differential scheme. A priori estimates are obtained, and the convergence of constructed
algorithm is proved. The current work is a continuation of the research begun in the works [1], [2], [3], where
the existence and uniqueness theorems for the generalized solution have been proved, the convergence of
the finite-element method scheme and the explicit difference scheme in the case when nonlinearity is present
only in the spatial operator have been investigated. In paper [4] for a problem with double degeneration, an
approximate method has been studied. That method was constructed with the use of semidiscretization with
respect to a variable 𝑡 and the finite element method in the space variable with lowering nonlocality to the
lower layer, the existence of an approximate solution and the convergence of the constructed algorithms were
proved.
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1. Statement of the problem

Let the Ω be bounded domain in the space 𝑅𝑛, Γ is its boundary, Ω, 𝑄𝑇 = Ω × (0, 𝑇 ). In the domain 𝑄𝑇
consider the initial-boundary value problem

𝜕𝜑(𝑢)
𝜕𝑡 −

𝑛
∑
𝑖=1

𝜕
𝜕𝑥𝑖 (

𝑘𝑖(𝑥, 𝑢,∇𝑢, 𝐵𝑢)) = 𝑓 , 𝑥 ∈ Ω, 𝑡 ∈ (0, 𝑇 ), (1)

𝑢(𝑥, 0) = 𝑢0(𝑥) 𝑥 ∈ Ω, 𝑢(𝑥, 𝑡) = 0, 𝑥 ∈ Γ, 𝑡 ∈ [0, 𝑇 ]. (2)

Here 𝑘𝑖 , 𝑢0 are known functions, 𝐵 is an operator of the form

𝐵𝑢(𝑡) = ∫
Ω′

𝑔(𝑥, 𝑢(𝑥, 𝑡)) 𝑑𝑥 , (3)
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𝑔 is a given function, Ω′ is a domain that is contained in Ω or coincides with it.
Lets define the operator 𝐿

𝐿𝑢 = −
𝑛
∑
𝑖=1

𝜕
𝜕𝑥𝑖 (

𝑘𝑖(𝑥, 𝑢,∇𝑢, 𝐵𝑢)).

We assume that function 𝜑(𝜉 ) is an absolutely continuous, strongly increasing function and it satisfy
the following inequalities for arbitrary 𝜉 ∈ 𝑅1,

𝑏0 ∣ 𝜉 ∣𝛼 −𝑏1 ≤ Φ(𝜉 ) ≡
𝜉

∫
0

𝜑′(𝑡)𝑡𝑑𝑡 ≤ 𝑏2 ∣ 𝜉 ∣𝛼 +𝑏3, 𝛼 > 1, (4)

∣ 𝜑(𝜉 ) ∣≤ 𝑏𝑖 ∣ 𝜉 ∣𝛼−1 +𝑏5, (5)

(𝜑′(𝜉 )𝜉 )′ ≥ 0, (6)

here 𝑏𝑖𝑗 are constants such that following inequalities are correct

𝑏0𝑖 > 0, 𝑏1𝑖 ≥ 0, 𝑏2𝑖 > 0, 𝑏3𝑖 ≥ 0, 𝑏4𝑖 > 0, 𝑏5𝑖 ≥ 0 , 𝑖 = 1, 2,

functions 𝑘𝑖(𝑥, 𝜉0, 𝜉 , 𝜈), 𝑖 = 1,… , 𝑛, are continuous with respect to 𝜉0, 𝜈 and 𝜉 , measurable with respect
to 𝑥 and for arbitrary 𝑥 ∈ Ω, 𝜉0, 𝜈 ∈ 𝑅, 𝜉 1, 𝜉 2, 𝜉 ∈ 𝑅𝑛 satisfy the following conditions

∣ 𝑘𝑖(𝑥, 𝜉0, 𝜉 , 𝜈) ∣≤ 𝑑0
𝑛
∑
𝑗=1

∣ 𝜉𝑗 ∣𝑝−1 +𝑑1 , 𝑑0 > 0, 𝑑1 ≥ 0 , 𝑝 > 1 , (7)

𝑛
∑
𝑖=1

𝑘𝑖(𝑥, 𝜉0, 𝜉 , 𝜈)𝜉𝑖 ≥ 𝑑2
𝑛
∑
𝑖=1

∣ 𝜉𝑖 ∣𝑝 −𝑑3, 𝑑2 > 0, 𝑑3 ≥ 0, (8)

𝑛
∑
𝑖=1

(𝑘𝑖(𝑥, 𝜉0, 𝜉 1, 𝜈) − 𝑘𝑖(𝑥, 𝜉0, 𝜉 2, 𝜈))(𝜉 1𝑖 − 𝜉 2𝑖 ) ≥ 0. (9)

Lets note that the condition (7) implies that the operator 𝐿, acting from
◦

𝑊 1
𝑝 (Ω) into 𝑊 −1

𝑝′ (Ω), where

𝑝 ′ = 𝑝
𝑝 − 1 , is bounded. The conditions (8), (9) provide, respectively, the coercivity and monotonicity

with respect to the gradient of the operator 𝐿.
We assume that the function 𝑔(𝑥, 𝜉 ), defining the operator 𝐵, is continuous with respect to 𝜉 ,

measurable with respect to 𝑥 and satisfies the following condition

|𝑔(𝑥, 𝜉 )| ≤ 𝑔0(𝑥) + |𝜉 |𝑠 for almost all 𝑥 ∈ Ω, (10)

where 𝑔0 is a function integrable over Ω, 𝑠 ≥ 0.
Space operators with non-localities of the form (3) arise, for example, in the mathematical describ-

ing the diffusion of bacteria population when it is assumed that the propagation speed at a point is
specified by the global state of environment (e.g., see [5], [6]).

Lets define a generalized solution for a problem (1)–(2).

A function 𝑢 ∈ 𝐿𝑝(0, 𝑇 ;
◦

𝑊 1
𝑝 (Ω))⋂ 𝐿∞(0, 𝑇 ; 𝐿𝛼 (Ω)) such that

𝑢(𝑥, 0) = 𝑢0(𝑥) almost everywhere in Ω, 𝜕𝜑(𝑢)
𝜕𝑡 ∈ 𝐿𝑝′(0, 𝑇 ;𝑊 −1

𝑝′ (Ω)), (11)



will be called a generalized solution of problem (1), (2), if for any function 𝑣 from 𝐿𝑝(0, 𝑇 ;
◦

𝑊 1
𝑝 (Ω)) the

integral identity holds

𝑇

∫
0

⟨
𝜕𝜑(𝑢)
𝜕𝑡 , 𝑣⟩𝑑𝑡 +

𝑇

∫
0

∫
Ω

𝑛
∑
𝑖=1

𝑘𝑖(𝑥, 𝑢,∇𝑢, 𝐵𝑢)
𝜕𝑣
𝜕𝑥𝑖

𝑑𝑥𝑑𝑡 =
𝑇

∫
0

⟨𝑓 , 𝑣⟩𝑑𝑡, (12)

here ⟨𝑔, 𝑣⟩ is the value of a functional 𝑔 from 𝑊 −1
𝑝′ (Ω) on element 𝑣 from

◦
𝑊 1

𝑝 (Ω).

2. Auxiliary results and notation

In what follows, we will assume that the domain Ω is a 𝑛-dimensional parallelepiped: Ω =
{
𝑥 ∈ 𝑅𝑛 ∶

0 ≤ 𝑥𝑖 ≤ 𝑙𝑖 , 𝑖 = 1, 2,… , 𝑛.
}

. OnΩ construct a uniform mesh �̄�ℎ with a mesh step ℎ𝑖 in the 𝑖-th direction,

ℎ⃗ = (ℎ1,… , ℎ𝑛), ℎ = min
1≤𝑖≤𝑛

ℎ𝑖 . We will assume that there is a constant 𝑐 such that ℎ ≤ 𝑐ℎ, ℎ = max
1≤𝑖≤𝑛

ℎ𝑖 .
We denote

𝜔ℎ =
{
𝑥 = (𝑥1,… , 𝑥𝑛) ∈ Ω ∶ 𝑥𝑖 = 𝑗ℎ𝑖 , 𝑗 = 0,… , 𝑁𝑖 , 𝑁𝑖 =

𝑙𝑖
ℎ𝑖

}
,

𝛾ℎ = �̄�ℎ ∩ Γ, 𝜔ℎ = 𝜔ℎ⧵𝛾ℎ.
On [0, 𝑇 ] we construct a uniform mesh with a step 𝜏 :

𝜔𝜏 =
{
𝑡 ∈ [0, 𝑇 ] ∶ 𝑡 = 𝑗𝜏 , 𝑗 = 0,… , 𝑀, 𝑀 = 𝑇

𝜏

}
, 𝜔𝜏 = 𝜔𝜏 ⧵{0}.

We denote by 𝐻 the set of mesh functions defined on 𝜔,
◦
𝐻 are the functions from 𝐻 , that equal

zero on 𝛾 . Let further 𝑟 is the 𝑛-dimensional vector with coordinates

𝑟𝑖 = ±1, ∇𝑟𝑦(𝑥) = (𝜕𝑟1𝑦(𝑥), 𝜕𝑟2𝑦(𝑥),… , 𝜕𝑟𝑛𝑦(𝑥)),

𝜕𝑟𝑖𝑦(𝑥) =
{

𝑦𝑥𝑖 (𝑥), 𝑟𝑖 = +1,
𝑦�̄� 𝑖 (𝑥), 𝑟𝑖 = −1.

Let us denote by 𝐻𝑟 (𝑥) a mesh cell 𝜔, , which contains all the mesh points participating in the notation
of operator ∇𝑟𝑦(𝑥), 𝜔𝑟 is the set of points 𝑥 ∈ 𝜔, at which the operator ∇𝑟𝑦(𝑥) is defined. In the space

of mesh functions
◦
𝐻 introduce the following norms and scalar products

(𝑦, 𝑣)𝑟 = ∑
𝑥∈𝜔𝑟

�̃� 𝑟 𝑦(𝑥) 𝑣(𝑥), [𝑦, 𝑣] = (1/2𝑛)∑
𝑟
(𝑦, 𝑣)𝑟 ,

∥ 𝑦 ∥𝑝= [∣ 𝑦 ∣𝑝 , 1]1/𝑝 , ∥ 𝑦 ∥𝑝+𝑝= (1/2𝑛)∑
𝑟

𝑛
∑
𝑖=1

(∣ 𝜕𝑟𝑖𝑦 ∣𝑝 , 1)𝑟 ,

∥ 𝑦 ∥−𝑝′= sup
𝑣≠0

[𝑦, 𝑣]
∥ 𝑣 ∥+𝑝

,

here �̃� 𝑟 = mes 𝐻𝑟 (𝑥).
For mesh functions, we define piecewise constant extensions 𝑥 and 𝑡 each

Π𝑟𝑧(𝑥) = {𝑧(𝑥 ′), 𝑥 ′ ∈ 𝜔𝑟 , 𝑥 ∈ 𝐻𝑟 (𝑥 ′)},



Π−𝑤(𝑡′) = {𝑤(𝑡), 𝑡 = 𝑘𝜏 , (𝑘 − 1)𝜏 < 𝑡′ ≤ 𝑘𝜏},
Π+𝑤(𝑡′) = {𝑤(𝑡), 𝑡 = 𝑘𝜏 , 𝑘𝜏 ≤ 𝑡′ < (𝑘 + 1)𝜏},

Π+
𝑟𝑤 = Π+Π𝑟𝑤, Π−

𝑟𝑤 = Π−Π𝑟𝑤.

Lemma 1. (See [7]) If 𝜑(𝜉 ) is an absolutely continuous increasing function, then the following
inequality holds

(𝜑(𝜉 ) − 𝜑(𝜂))𝜉 ≥ Φ(𝜉 ) − Φ(𝜂), ∀𝜉 , 𝜂 ∈ 𝑅1. (13)

Lemma 2. (See [7]) Let 𝛼 ≥ 2, function 𝜑 satisfies the condition (4) and besides

𝜑′(𝜉 ) ≥ 𝑏6 ∣ 𝜉 ∣𝛼−2, 𝑏6 > 0. (14)

Then for any constant 𝜃 > 1 there is �̄� = 𝑐𝑜𝑛𝑠𝑡 > 0, such that for any 𝜉 , 𝜂 ∈ 𝑅1 the inequality holds

(𝜑(𝜉 ) − 𝜑(𝜂))(𝜃𝜉 − (𝜃 − 1)𝜂) ≥ Φ(𝜉 ) − Φ(𝜂) + �̄� ∣ 𝜉 − 𝜂 ∣𝛼 . (15)

Lemma 3. (See [7]) Let 𝜑(𝜉 ) be an absolutely continuous, monotonically increasing function satis-
fying the conditions(4)–(6). Then for any function 𝑣 such that

𝑣 ∈ 𝐿𝑝(0, 𝑇 ;
◦
𝑊

1
𝑝 (Ω))⋂ 𝐿∞(0, 𝑇 ; 𝐿𝛼 (Ω)), (16)

𝜕𝜑(𝑣)
𝜕𝑡 ∈ 𝐿𝑝′(0, 𝑇 ;𝑊 −1

𝑝′ (Ω)), (17)

𝑣(𝑥, 0) ∈
◦
𝑊

1
𝑝 (Ω)⋂ 𝐿𝛼 (Ω), (18)

the following equality holds

𝑇

∫
0

⟨𝜕𝜑(𝑣)𝜕𝑡 , 𝑣⟩ 𝑑𝑡 = lim
𝜆→0

1
𝜆

𝑇

∫
𝑇−𝜆

∫
Ω

Φ(𝑣(𝑡)) 𝑑𝑥 𝑑𝑡 − ∫
Ω

Φ(𝑣(0)) 𝑑𝑥. (19)

It is easy to check the validity of the following lemma.

Lemma 4. (See [7]) For any 𝑦 ∈
◦
𝐻 the inequality holds

∥ 𝑦 ∥+𝑝≤ 𝜆𝛼 ∥ 𝑦 ∥𝛼 , (20)

where 𝜆𝛼 = 𝑐 𝑝√𝑛
ℎ1+𝑛(𝑝−𝛼)/𝛼𝑝 , if 𝑝 ≥ 𝛼 and 𝜆𝛼 = 𝑐 𝑝√𝑛

ℎ , if 1 < 𝑝 < 𝛼.

3. Construction and investigation of an explicit difference scheme

For the problem (1), (2), consider the explicit difference scheme

𝜑𝑡 (𝑦) + 𝐴𝑦(𝑥, 𝑡) = 𝑓ℎ𝜏 (𝑥, 𝑡), 𝑥 ∈ 𝜔ℎ, 𝑡 ∈ 𝜔𝜏 ⧵{𝑇}, (21)

𝑦(𝑥, 0) = 𝑦0(𝑥), 𝑦 ∣𝛾ℎ= 0.

Here 𝐴 is a difference operator acting from
◦
𝐻 to

◦
𝐻, defined by the relation

[𝐴𝑦, 𝑤] = 1
2𝑛 ∑

𝑟

𝑛
∑
𝑖=1

(𝑎𝑖(𝑥, 𝑦)𝑘𝑖(𝑥,∇𝑟𝑦, 𝐵ℎ𝑦), 𝜕𝑟 𝑖𝑤)𝑟 ,



where 𝐵ℎ𝑦(𝑡) = 𝐵(2−𝑛 ∑
𝑟
Π𝑟𝑦(𝑡)), 𝑦0 a difference analog of 𝑢0 such that

Π𝑟𝑦0 → 𝑢0 in 𝐿𝛼 (Ω), (22)

𝑓ℎ𝜏 is a mesh function, that is an approximation of the original equation right side, which we define
as follows

[𝑓ℎ𝜏 , 𝑣] =
1
2𝑛 ∑

𝑟

𝑛
∑
𝑖=0

(𝑓 𝑟ℎ𝜏 ,𝑖 , 𝜕𝑟𝑖𝑣)𝑟 ∀𝑣 ∈
◦
𝐻,

where

𝜕𝑟0𝑣 ≡ 𝑣, 𝑓 𝑟ℎ𝜏 ,𝑖(𝑡) =
1

𝜏 mes(𝐻𝑟 (𝑥))

𝑡+𝜏

∫
𝑡

∫
𝐻𝑟 (𝑥)

𝑓𝑖(𝜉 , 𝜂) 𝑑𝜉𝑑𝜂.

Conditions (7)–(8) on the coefficients 𝑘𝑖 provide continuity, boundedness:

∥ 𝐴𝑦 ∥−𝑝′≤ 𝑐0 ∥ 𝑦 ∥𝑝−1+𝑝 + �̄�0, (23)

coercivity of the operator 𝐴 ∶
[𝐴𝑦, 𝑦] ≥ 𝑑2 ∥ 𝑦 ∥𝑝+𝑝 −𝑑3, (24)

with constants 𝑑2 > 0, 𝑑3 ≥ 0, 𝑐0 > 0, �̄�0 ≥ 0, independent on ℎ̄ and 𝜏 . The unique solvability of the
difference scheme (21) follows from the condition that the function 𝜑 is strictly monotonic.

Lemma 5. Let 𝛼 ≥ 2, function 𝜑 satisfies the conditions (4)–(5) and besides

𝑢0 ∈ 𝐿𝛼 (Ω), 𝑓 ∈ 𝐿𝑞(0, 𝑇 ;𝑊 −1
𝑝′ (Ω)), 𝑞 = max{𝛼 ′, 𝑝′}.

Then for any

𝜏 ≤

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝑐 ℎ𝛼
2𝛼𝑛𝛼/𝑝 , 1 < 𝑝 < 𝛼,

𝑐 ℎ
𝑝+𝑛(𝑝−𝛼)/𝛼

2𝑝𝑛 , 𝑝 ≥ 𝛼,
(25)

for the solution of the difference scheme (21) the following a priori estimates hold

𝑡′
∑
𝑡=0

𝜏 ∥ 𝑦 ∥𝑝+𝑝≤ 𝑐𝑜𝑛𝑠𝑡, (26)

max
𝑡′∈�̄�𝜏

∥ 𝑦(𝑡′) ∥𝛼𝛼≤ 𝑐𝑜𝑛𝑠𝑡, (27)

𝑡′
∑
𝑡=0

𝜏𝛼 ∥ 𝑦𝑡 ∥𝛼𝛼≤ 𝑐𝑜𝑛𝑠𝑡 ∀𝑡′ ∈ �̄�𝜏 , (28)

1
𝑘𝜏

𝑇−𝑘𝜏
∑
𝑡=0

𝜏 [𝜑(𝑦(𝑡 + 𝑘𝜏 )) − 𝜑(𝑦(𝑡)), 𝑦(𝑡 + 𝑘𝜏 ) − 𝑦(𝑡)] ≤ 𝑐𝑜𝑛𝑠𝑡 (29)

∀𝑘 ∈ {1,… , 𝑁}.
Proof. Multiply both sides of (21) scalarly in 𝐻 by 𝜏 (𝜃�̂� − (𝜃 − 1)𝑦), where the constant 𝜃 > 1. As a
result, we get

𝜏 [𝜑𝑡 (𝑦), 𝜃�̂� − (𝜃 − 1)𝑦] + 𝜏 [𝐴𝑦, 𝜃�̂� − (𝜃 − 1)𝑦] = 𝜏 [𝑓ℎ𝜏 , 𝜃�̂� − (𝜃 − 1)𝑦]



or

𝜏 [𝜑𝑡 (𝑦), 𝜃�̂� − (𝜃 − 1)𝑦] + 𝜏 [𝐴𝑦, 𝑦] = 𝜏 [𝑓ℎ𝜏 , 𝑦] + 𝜏 2𝜃[𝑓ℎ𝜏 , 𝑦𝑡 ] − 𝜏 2𝜃[𝐴𝑦, 𝑦𝑡 ]. (30)

Using lemma 2, we estimate the first summand in the left-hand side of the equation ( 30)

𝜏 [𝜑𝑡 (𝑦), 𝜃�̂� − (𝜃 − 1)𝑦] ≥ [Φ(�̂�) − Φ(𝑦), 1] + �̄�𝜏𝛼 ∥ 𝑦𝑡 ∥𝛼𝛼 . (31)

To estimate the first two summands on the right-hand side of (30) we use Hölder inequality, 𝜀 –
inequality and a difference analogue of the Friedrichs inequality, as a result we have

𝜏 [𝑓ℎ𝜏 , 𝑦] ≤ 1
𝜀𝑝′1 𝑝′

𝜏
𝑛
∑
𝑗=0

∥ 𝑓ℎ𝜏 ,𝑗 ∥𝑝
′

𝑝′ +
𝜀𝑝1
𝑝 (1 + 𝑐Ω)𝜏 ∥ 𝑦 ∥𝑝+𝑝 , (32)

𝜏 2[𝑓ℎ𝜏 , 𝑦𝑡 ] ≤ 1
𝜀𝛼′2 𝛼 ′ 𝜏

𝑛
∑
𝑗=0

∥ 𝑓ℎ𝜏 ,𝑗 ∥𝛼
′

𝑝′ +
𝜀𝛼2 𝜏𝛼+1

𝛼 (∥ 𝑦𝑡 ∥𝛼+𝑝 + ∥ 𝑦𝑡 ∥𝛼𝑝 ) ≤ (33)

≤ 1
𝜀𝛼 ′
2 𝛼 ′ 𝜏

𝑛
∑
𝑗=0

∥ 𝑓ℎ𝜏 ,𝑗 ∥𝛼
′

𝑝′ +
𝜀𝛼2 𝜏𝛼+1

𝛼 (1 + 𝑐Ω)𝜆𝛼𝛼 ∥ 𝑦𝑡 ∥𝛼𝛼 +𝑐1𝜏 ,

here 𝑐Ω is the constant from the difference analog of the Friedrichs inequality. From (23) follows that

𝜏 2𝜃[𝐴𝑦, 𝑦𝑡 ] ≤ 𝜏 2𝜃(𝑐0 ∥ 𝑦 ∥𝑝−1+𝑝 +�̄�0) ∥ 𝑦𝑡 ∥+𝑝 ≡ 𝐼 + 𝜏 2𝜃�̄�0 ∥ 𝑦𝑡 ∥+𝑝 . (34)

Further, using (31)–(34) and the coercivity of the operator 𝐴, from (30) is easy to obtain

[Φ(�̂�) − Φ(𝑦), 1] + �̄�𝜏𝛼 ∥ 𝑦𝑡 ∥𝛼𝛼 +𝑑2𝜏 ∥ 𝑦 ∥𝑝+𝑝 −𝑑3𝜏 ≤

≤ 1
𝜀𝑝′1 𝑝′

𝜏
𝑛
∑
𝑗=0

∥ 𝑓ℎ𝜏 ,𝑗 ∥𝑝
′

𝑝′ +
𝜀𝑝1
𝑝 (1 + 𝑐Ω)𝜏 ∥ 𝑦 ∥𝑝+𝑝 +

+ 1
𝜀𝛼 ′
2 𝛼 ′ 𝜏

𝑛
∑
𝑗=0

∥ 𝑓ℎ𝜏 ,𝑗 ∥𝛼
′

𝑝′ +
𝜀𝛼2 𝜏𝛼+1

𝛼 (2 + 𝑐Ω)𝜆𝛼𝛼 ∥ 𝑦𝑡 ∥𝛼𝛼 +𝐼 + 𝑐1𝜏 . (35)

Let 𝑝 ≥ 𝛼. We estimate 𝐼 using Hölder’s inequality and lemma 2, as a result we obtain

𝐼 ≤ 𝜏 2𝑐0𝜃 ∥ 𝑦 ∥𝑝/𝛼
′

+𝑝 ∥ 𝑦 ∥(𝑝−𝛼)/𝛼+𝑝 𝜆𝛼 ∥ 𝑦𝑡 ∥𝛼≤ 𝜏 2𝑐0𝜃 ∥ 𝑦 ∥𝑝/𝛼
′

+𝑝 𝜆𝑝/𝛼𝛼 ∥ 𝑦 ∥(𝑝−𝛼)/𝛼𝛼 ∥ 𝑦𝑡 ∥𝛼≤

≤ 𝜏𝜀𝛼 ′
3

𝛼 ′ ∥ 𝑦 ∥𝑝+𝑝 +
𝜏𝛼+1(𝑐0𝜃)𝛼𝜆𝑝𝛼

𝛼𝜀𝛼3
∥ 𝑦 ∥𝑝−𝛼𝛼 ∥ 𝑦𝑡 ∥𝛼𝛼 . (36)

Substituting (36) into (35) and summing the resulting inequalities over 𝑡 from 0 to 𝑡′ ∈ �̄�𝜏 , we will
have

[Φ(𝑦(𝑡′)), 1] +(𝑀2 −
𝜀𝑝1
𝑝 (1+𝑝Ω) −

𝜀𝛼 ′
3
𝛼 ′ )

𝑡′
∑
𝑡=0

𝜏 ∥ 𝑦 ∥𝑝+𝑝 +

+
𝑡′
∑
𝑡=0(

�̄� − 𝜏 𝜀
𝛼
2
𝛼 (2 + 𝑐Ω)𝜆𝛼𝛼 − (𝑐0𝜃)𝛼

𝜏𝜆𝑝𝛼
𝛼𝜀𝑝3

∥ 𝑦(𝑡) ∥𝑝−𝛼𝛼 )𝜏𝛼 ∥ 𝑦𝑡 ∥𝛼𝛼≤

≤ 1
𝜀𝑝′1 𝑝′

𝑡′
∑
𝑡=0

𝜏
𝑛
∑
𝑗=0

∥ 𝑓ℎ𝜏 ,𝑗(𝑡) ∥𝑝
′

𝑝′ +
1

𝜀𝛼 ′
2 𝛼 ′

𝑡′
∑
𝑡=0

𝜏
𝑛
∑
𝑗=0

∥ 𝑓ℎ𝜏 ,𝑗(𝑡) ∥𝛼
′

𝑝′ +[Φ(𝑦(0)), 1] + 𝑐3. (37)



First, let us prove that (37) implies the estimate

∥ 𝑦(𝑡′) ∥𝛼𝛼 ≤ 𝑐(
𝑇
∑
𝑡=0

𝜏
𝑛
∑
𝑗=0

∥ 𝑓ℎ𝜏 ,𝑗(𝑡) ∥𝑝
′

𝑝′ +
𝑇
∑
𝑡=0

𝜏
𝑛
∑
𝑗=0

∥ 𝑓ℎ𝜏 ,𝑗(𝑡) ∥𝛼
′

𝑝′ +

+[Φ(𝑦(0)), 1] + 1) = 𝑚𝛼 ∀𝑡′ ∈ �̄�𝜏 , (38)

where 𝑐, 𝑚 are constants independent of ℎ̄ and 𝜏 . For 𝑡′ = 0 estimate (38) holds. We assume that (38)
is valid for all 𝑡′ ≤ 𝑡1; 𝑡′, 𝑡1 ∈ 𝜔𝜏 . Let us prove that (38) holds for 𝑡′ = 𝑡1 + 𝜏 . To do this, write inequality
(37) for 𝑡′ = 𝑡1 + 𝜏 , considering, that ∥ 𝑦(𝑡) ∥𝛼𝛼≤ 𝑚𝛼 ∀𝑡 ≤ 𝑡1,

[Φ(𝑦(𝑡1 + 𝜏 )), 1] +(𝑑2 −
𝜀𝑝1
𝑝 (1 + 𝑐𝑝Ω) −

𝜀𝛼 ′
3
𝛼 ′ )

𝑡1
∑
𝑡=0

𝜏 ∥ 𝑦 ∥𝑝+𝑝 +

+(�̄� − 𝜏 𝜀
𝛼
2
𝛼 (2 + 𝑐Ω)𝜆𝛼𝛼 − (𝑐0𝜃)𝛼

𝜏𝜆𝑝𝛼
𝛼𝜀𝑝3

𝑚𝑝−𝛼
)

𝑡1
∑
𝑡=0

𝜏𝛼 ∥ 𝑦𝑡 ∥𝛼𝛼≤

≤ 1
𝜀𝑝′1 𝑝′

𝑡1
∑
𝑡=0

𝜏
𝑛
∑
𝑗=0

∥ 𝑓ℎ𝜏 ,𝑗(𝑡) ∥𝑝
′

𝑝′ +
1

𝜀𝛼 ′
2 𝛼 ′

𝑡1
∑
𝑡=0

𝜏
𝑛
∑
𝑗=0

∥ 𝑓ℎ𝜏 ,𝑗(𝑡) ∥𝛼
′

𝑝′ +[Φ(𝑦(0)), 1] + 𝑐3. (39)

Choosing 𝜀1, 𝜀2, 𝜀3, ℎ̄ and 𝜏 so that

𝑑2 −
𝜀𝑝1
𝑝 (1 + 𝑐𝑝Ω) −

𝜀𝛼 ′
3
𝛼 ′ ≥ 𝛿1 > 0,

�̄� − 𝜏 𝜀
𝛼
2
𝛼 (2 + 𝑐Ω)𝜆𝛼𝛼 − (𝑐0𝜃)𝛼

𝜏𝜆𝑝𝛼
𝛼𝜀𝑝3

𝑚𝑝−𝛼 ≥ 𝛿2 > 0 , (40)

and using the condition (4), of (39) is easy to obtain (38) for 𝑡′ = 𝑡1 + 𝜏 . Therefore, the estimate (38)
will be valid for any 𝑡′ ∈ �̄�𝜏 . From (37) and (38) the estimates (26)–(28) follow. Note that the constant
𝑐 in (25) is chosen so that the inequality (40) holds.

Similarly to the way above, it is easy to verify the validity of estimates(26)–(28) in the case 1 < 𝑝 < 𝛼.
Let us further prove the validity of the estimate (29).To do this, we sum both sides (21) over 𝑡 from

𝑡 to 𝑡 + (𝑘 − 1)𝜏 , then multiply the resulting equality scalarly in 𝐻 by 𝜏 (𝑦(𝑡 + 𝑘𝜏 ) − 𝑦(𝑡)) and again sum
over 𝑡 from 0 to 𝑇 − 𝑘𝜏 , as a result we will have

1
𝑘𝜏

𝑇−𝑘𝜏
∑
𝑡=0

𝜏 [𝜑(𝑦(𝑡 + 𝑘𝜏 )) − 𝜑(𝑦(𝑡)), 𝑦(𝑡 + 𝑘𝜏 ) − 𝑦(𝑡)] =

= −1𝑘
𝑇−𝑘𝜏
∑
𝑡=0

𝑡+(𝑘−1)𝜏
∑
𝑡=𝑡

𝜏 [𝐴𝑦(𝑡), 𝑦(𝑡 + 𝑘𝜏 ) − 𝑦(𝑡)] + 1
𝑘

𝑇−𝑘𝜏
∑
𝑡=0

𝑡+(𝑘−1)𝜏
∑
𝑡=𝑡

𝜏 [𝑓 , 𝑦(𝑡 + 𝑘𝜏 ) − 𝑦(𝑡)]. (41)

Using the boundedness property of the operator 𝐴, Hölder’s inequalities and (34), from (41) it is easy
to obtain

1
𝑘𝜏

𝑇−𝑘𝜏
∑
𝑡=0

𝜏 [𝜑(𝑦(𝑡 + 𝑘𝜏 )) − 𝜑(𝑦(𝑡)), 𝑦(𝑡 + 𝑘𝜏 ) − 𝑦(𝑡)] ≤ 𝑐1
𝑇−𝑘𝜏
∑
𝑡=0

𝜏 ∥ 𝑦(𝑡) ∥𝑝+𝑝 +
2
𝑝′

𝑇
∑
𝑡=0

𝜏
𝑛
∑
𝑗=0

∥ 𝑓ℎ𝜏 ,𝑗(𝑡) ∥𝑝
′

𝑝′ .

From the last inequality and (26) it follows (29). The lemma is proved.



The a priori estimates (26), (27) imply the boundedness of the set {Π±
𝑟 𝑦} in the spaces 𝐿𝑝(𝑄𝑇 )

and 𝐿∞(0, 𝑇 ; 𝐿2(Ω), as well as the boundedness of the set {Π±
𝑟 𝜕𝑟𝑖𝑦} in the space 𝐿𝑝(𝑄𝑇 ). Due to the

weak compactness of bounded sets in reflexive spaces and the *-weak compactness of bounded sets

in 𝐿∞(0, 𝑇 ; 𝐿𝛼 (Ω) there exists subsequences
{
ℎ⃗(𝑚)}∞

𝑚=1,
{
𝜏𝑚

}∞
𝑚=1

1 and the element 𝑢, which belongs

to 𝐿𝑝(0, 𝑇 ;
◦

𝑊 1
𝑝 (Ω))⋂ 𝐿∞(0, 𝑇 ; 𝐿2(Ω), such that for ℎ⃗(𝑚), 𝜏𝑚 → 0

Π±
𝑟 𝑦 ⇀ 𝑢 in 𝐿𝑝(𝑄𝑇 ), (42)

Π±
𝑟 𝜕𝑟𝑖𝑦 ⇀ 𝜕𝑢

𝜕𝑥𝑖
in 𝐿𝑝(𝑄𝑇 ), (43)

Π±
𝑟 𝑦 → 𝑢 *-weak in 𝐿∞(0, 𝑇 ; 𝐿𝛼 (Ω). (44)

Using the estimates (27), (28), (30) and the mesh analogue of the compactness theorem (see [7], lemma

9), it is easy to confirm the existence of subsequences
{
ℎ⃗(𝑚)}∞

𝑚=1,
{
𝜏𝑚

}∞
𝑚=1, for which, along with

(42)– (44) the limit relation of the form below holds

Π±
𝑟 𝑦 → 𝑢 almost everywhere in 𝑄𝑇 . (45)

Further, the condition (7) and the estimate (26) imply the boundedness in the space 𝐿𝑝′(𝑄𝑇 ) of the
set

{
Π±
𝑟 𝑘𝑖(𝑥, 𝑦,∇𝑟𝑦, 𝐵ℎ𝑦)

}
for any 𝑖 ∈ {1, 2,… , 𝑛}. Therefore, there are 𝐾𝑖 ∈ 𝐿𝑝′(𝑄𝑇 ) and sequences

{
ℎ⃗(𝑚)}∞

𝑚=1,
{
𝜏𝑚

}∞
𝑚=1 such that

Π±
𝑟 𝑘𝑖(𝑥, 𝑦,∇𝑟𝑦, 𝐵ℎ𝑦) ⇀ 𝐾𝑖 in 𝐿𝑝′(𝑄𝑇 ). (46)

For 𝑠 ≤ 𝛼 from (27), (45) and Lebesgue’s theorem on passage to the limit, it is easy to show that

Π±𝐵(𝑦) → 𝐵𝑢 in 𝐿1(0, 𝑇 ). (47)

Theorem 1. Let the functions 𝜑, 𝑘𝑖 satisfy conditions (7)–(9), (14), 𝛼 ≥ 2 and the inequality (25)
holds. Let, in addition, for 𝜏 , ℎ̄ → 0

𝜏𝜆𝑝𝛼 → 0, if 𝑝 ≥ 𝛼, 𝜏𝜆𝛼𝛼 → 0, if 1 < 𝑝 < 𝛼. (48)

Then for any function 𝑓 ∈ 𝐿𝑞(0, 𝑇 ;𝑊 −1
𝑝′ (Ω)), where 𝑞 = max{𝛼 ′, 𝑝′}, and 𝑢0, ∈ 𝐿𝛼 (Ω)⋂

◦
𝑊

1
𝑝 (Ω)

subsequence of piecewise constant extensions of the solution to the difference scheme (21), defined
by the relations (42)–(47), converges to a generalized solution of the problem (1)–(2).
Proof of this theorem is close to the proof of Lemma 3 from ([3]). Therefore, we present here only

fragments of reasoning different from Lemma 3.
Let’s scalarly multiply the difference scheme (21) by 𝜏𝑧, where 𝑧 – drift of the function �̄� from

𝐶∞(0, 𝑇 ;𝐶∞
0 (Ω)), �̄�(𝑥, 𝑇 ) = 0 and sum over 𝑡 from 0 to 𝑇 − 𝜏 . As a result we get

𝑇−𝜏
∑
𝑡=0

𝜏 [𝜑𝑡 , 𝑧] +
𝑇−𝜏
∑
𝑡=0

𝜏 [𝐴𝑦, 𝑧] =
𝑇−𝜏
∑
𝑡=0

𝜏 [𝑓ℎ𝜏 , 𝑧].

We transform the first summand by using the formula for summation by parts. We write the resulting
equality using piecewise constant extensions in the form of the integral identity

1
2𝑛 ∑

𝑟

{
−

𝑇

∫
0

∫
Ω

Π−
𝑟 𝜑(𝑦)Π−

𝑟 (𝑧𝑡 )𝑑𝑥𝑑𝑡 +
𝑛
∑
𝑖=1

𝑇

∫
0

∫
Ω

Π+
𝑟 𝑘𝑖(𝑥, 𝑦,∇𝑟𝑦, 𝐵ℎ𝑦)Π+

𝑟 𝜕𝑟𝑖𝑧𝑑𝑥𝑑𝑡
}
=

1In what follows, for the selected subsequences we will keep the notation of the sequences themselves.



= 1
2𝑛 ∑

𝑟

𝑛
∑
𝑖=1

𝑇

∫
0

∫
Ω

Π+
𝑟 𝑓ℎ𝜏 ,𝑖Π+

𝑟 𝜕𝑟𝑖𝑧𝑑𝑥𝑑𝑡. (49)

In the equality (49) , we pass to the limit as 𝜏 , ℎ → 0. As a result, we will have

−
𝑇

∫
0

∫
Ω

𝜑(𝑢)𝜕�̄�𝜕𝑡 𝑑𝑥𝑑𝑡 − ∫
Ω

𝜑(𝑢0)�̄�(𝑥, 0)𝑑𝑥 +
𝑛
∑
𝑖=1

𝑇

∫
0

∫
Ω

𝐾𝑖
𝜕�̄�
𝜕𝑥𝑖

𝑑𝑥𝑑𝑡 =
𝑇

∫
0

⟨𝑓 , �̄�⟩𝑑𝑡. (50)

Following ([3], lemma 3), from (50) it is easy to obtain that

𝑇

∫
0

⟨𝜕𝜑(𝑢)𝜕𝑡 , �̄�⟩ 𝑑𝑡 +
𝑛
∑
𝑖=1

𝑇

∫
0

∫
Ω

𝐾𝑖
𝜕�̄�
𝜕𝑥𝑖

𝑑𝑥𝑑𝑡 =
𝑇

∫
0

⟨𝑓 , �̄�⟩ 𝑑𝑡 ∀�̄� ∈ 𝐿𝑝(0, 𝑇 ;
◦
𝑊

1
𝑝 (Ω)) (51)

and, besides, 𝑢(𝑥, 0) = 𝑢0(𝑥) almost everywhere in Ω. Let us prove further that

𝑛
∑
𝑖=1

𝑇

∫
0

∫
Ω

𝐾𝑖
𝜕�̄�
𝜕𝑥𝑖

𝑑𝑥𝑑𝑡 =
𝑛
∑
𝑖=1

𝑇

∫
0

∫
Ω

𝑘𝑖(𝑥, 𝑢,∇𝑢, 𝐵𝑢)
𝜕�̄�
𝜕𝑥𝑖

𝑑𝑥𝑑𝑡 (52)

for any function �̄� from 𝐿𝑝(0, 𝑇 ;
◦
𝑊

1
𝑝 (Ω)). To do this, we consider the following inequality

[𝜑(�̂�) − 𝜑(𝑦), �̂�] +
𝑛
∑
𝑖=1

𝜏 [(𝑘𝑖(𝑥, 𝑦,∇𝑦, 𝐵ℎ𝑦) − 𝑘𝑖(𝑥,∇�̂�, 𝐵ℎ𝑦)), 𝜕𝑟𝑖 (𝑦 − �̂�)] ≥ [Φ(�̂�) − Φ(𝑦), 1], (53)

where function 𝑦 is the solution of the difference scheme (21), 𝑣(𝑥, 𝑡) is the drift of the function
�̄�(𝑥, 𝑡) ∈ 𝐶∞(0, 𝑇 ;𝐶∞

0 (Ω)) to the points of the mesh �̄�𝜏 × �̄�. The validity of (53) follows from (9) and the
lemma 1. Considering that the function 𝑦 satisfies equality (21), we rewrite inequality (53) as follows

[𝑓ℎ𝜏 , �̂�] + 𝜏 [𝐴𝑦, 𝑦𝑡 ] −
𝑛
∑
𝑖=1

[𝑘𝑖(𝑥, 𝑦∇�̂�, 𝐵ℎ𝑦), 𝜕𝑟𝑖 (𝑦 − �̂�)] −
𝑛
∑
𝑖=1

[𝑘𝑖(𝑥, 𝑦∇𝑦, 𝐵ℎ𝑦), 𝜕𝑟𝑖 �̂�] ≥
1
𝜏 [Φ(�̂�) − Φ(𝑦), 1].

Using the extension Π+
𝑟 , we write the last inequality for all 𝑡 ∈ [0, 𝑇 ] and integrate the resulting

inequality over the segment [0, 𝑡′], 𝑡′ ∈ [0, 𝑇 ]. As a result we will have

𝐽1(𝑡′) = 1
2𝑛 ∑

𝑟

𝑡′

∫
0

{⟨Π+
𝑟 𝑓ℎ𝜏 ,Π+

𝑟 𝑦⟩ −
𝑛
∑
𝑖=1

∫
Ω

Π+
𝑟 𝑘𝑖(𝑥, 𝑦,∇𝑦, 𝐵ℎ𝑦)Π+

𝑟 𝜕𝑟𝑖 �̂�𝑑𝑥 −

−
𝑛
∑
𝑖=1

∫
Ω

Π+
𝑟 𝑘𝑖(𝑥,∇�̂�, 𝐵ℎ𝑦)Π+

𝑟 𝜕𝑟𝑖 (𝑦 − �̂�)𝑑𝑥}𝑑𝑡 + (54)

+
𝑇−𝜏
∑
𝑡=0

𝜏 2 ∣ [𝐴𝑦, 𝑦𝑡 ] ∣≥
1
2𝑛 ∑

𝑟

1
𝜏

𝑡′

∫
0

∫
Ω

{Φ(Π+
𝑟 �̂�) − Φ(Π+

𝑟 𝑦)}𝑑𝑥𝑑𝑡.

Further, using the [3] methodology, when the condition (48) holds we establish the validity of the
limit equality

lim
𝜏 ,ℎ→0

𝑇−𝜏
∑
𝑡=0

𝜏 2|| [𝐴𝑦, 𝑦𝑡 ] || = 0. (55)



Lets notice, that

1
𝜏

𝑡′

∫
0

∫
Ω

{Φ(Π+
𝑟 �̂�) − Φ(Π+

𝑟 𝑦)}𝑑𝑥𝑑𝑡 =
1
𝜏

𝑡′+𝜏

∫
𝑡′

∫
Ω

Φ(Π+
𝑟 𝑦)𝑑𝑥𝑑𝑡 − ∫

Ω

Φ(𝑢0(𝑥))𝑑𝑥.

Let further 𝑡 ∗ be a mesh point 𝜔𝜏 , belonging to (𝑡′, 𝑡′ + 𝜏 ], 𝜇(𝑡′) = (𝑡′ + 𝜏 − 𝑡 ∗)/𝜏 , Λ𝜏− linear extension
with respect to 𝑡. Using the convexity of the function Φ, we have

1
𝜏

𝑡′+𝜏

∫
𝑡′

∫
Ω

Φ(Π+
𝑟 𝑦(𝑡))𝑑𝑥𝑑𝑡 =

1
𝜏

{ 𝑡′+𝜏

∫
𝑡∗

∫
Ω

Φ(Π+
𝑟 𝑦(𝑡))𝑑𝑥𝑑𝑡 +

𝑡∗

∫
𝑡′

∫
Ω

Φ(Π+
𝑟 𝑦(𝑡))𝑑𝑥𝑑𝑡

}
=

= 𝜇(𝑡′) ∫
Ω

Φ(Π𝑟𝑦(𝑡 ∗))𝑑𝑥 + (1 − 𝜇(𝑡′)) ∫
Ω

Φ(Π𝑟𝑦(𝑡 ∗ − 𝜏 ))𝑑𝑥 = (56)

= ∫
Ω

{
𝜇(𝑡′)Φ(Π𝑟𝑦(𝑡 ∗))𝑑𝑥 + (1 − 𝜇(𝑡′))Φ(Π𝑟𝑦(𝑡 ∗ − 𝜏 ))

}
𝑑𝑥 ≥

≥ ∫
Ω

Φ(Π𝑟 (𝜇(𝑡′)𝑦(𝑡 ∗) + (1 − 𝜇(𝑡′))𝑦(𝑡 ∗ − 𝜏 )))𝑑𝑥 = ∫
Ω

Φ(Λ𝜏Π𝑟 (𝑦(𝑡′))) 𝑑𝑥.

Let us prove further that

Π+
𝑟 (𝑘𝑖(𝑥, 𝑦,∇𝑟 �̂�, 𝐵ℎ𝑦)) → 𝑘𝑖(𝑥, 𝑢,∇�̄�, 𝐵𝑢) in 𝐿𝑝′(𝑄𝑇 ). (57)

We denote
𝐽 = ∫

𝑄𝑇

|||Π
+
𝑟 (𝑘𝑖(𝑥, 𝑦,∇𝑟 �̂�, 𝐵ℎ𝑦)) − 𝑘𝑖(𝑥, 𝑢∇�̄�, 𝐵𝑢)|||

𝑝′
𝑑𝑥 𝑑𝑡 . (58)

Limit relations (45), (47), smoothness of the function 𝑣 and continuity of 𝑘𝑖(𝑥, 𝜉 , 𝜂, 𝜈) for each of
the arguments allow us to assert that the integrand function in (58) tends to 0 as ℎ, 𝜏 → 0 almost
everywhere in 𝑄𝑇 . In addition, from the estimate (7) it follows that

|||Π
+
𝑟 (𝑘𝑖(𝑥, 𝑦,∇𝑟 �̂�, 𝐵ℎ𝑦)) − 𝑘𝑖(𝑥, 𝑢,∇�̄�, 𝐵𝑢)|||

𝑝′
≤ (𝑑0

𝑛
∑
𝑖=1

{
||𝜕𝑟𝑖 �̄�||

𝑝−1 + ||
𝜕�̄�
𝜕𝑥𝑖

||
𝑝−1

}
+ 2 𝑑1)

𝑝′

.

The right-hand side of the last inequality, due to the smoothness of 𝑣 is a function integrable over
𝑄𝑇 , therefore, by the Lebesgue theorem on the passage to the limit 𝐽 → 0 for 𝜏 , ℎ → 0, it means
that (57) holds.

From the inequalities (54)–(56) it follows that

lim
𝜏 ,ℎ→0

𝐽𝜏 (𝑡′) ≥ lim
𝜏 ,ℎ→0 ∫

Ω

Φ(Λ𝜏Π𝑟 (𝑦(𝑡′))𝑑𝑥 − ∫
Ω

Φ(𝑢0(𝑥))𝑑𝑥. (59)

From the relations (42)–(47), (57) it follows that

lim
𝜏 ,ℎ→0

𝐽𝜏 (𝑡′) = lim
𝜏 ,ℎ→0

𝐽𝜏 (𝑡′) = 𝐽 (𝑡′) ≡
𝑡′

∫
0

{⟨𝑓 , 𝑢⟩−



−
𝑛
∑
𝑖=1

∫
Ω

𝐾𝑖
𝜕𝑣
𝜕𝑥𝑖

𝑑𝑥 −
𝑛
∑
𝑖=1

∫
Ω

𝑘𝑖(𝑥, 𝑢∇�̄�, 𝐵𝑢)
𝜕(𝑢 − �̄�)

𝜕𝑥𝑖
𝑑𝑥}𝑑𝑡. (60)

Considering (51), we will obtain

𝐽 (𝑡′) =
𝑡′

∫
0

{⟨𝜕𝜑(𝑢)𝜕𝑡 , 𝑢⟩ +
𝑛
∑
𝑖=1

∫
Ω

(𝐾𝑖 − 𝑘𝑖(𝑥,∇�̄�, 𝐵𝑢)
𝜕(𝑢 − �̄�)

𝜕𝑥𝑖
𝑑𝑥}𝑑𝑡. (61)

Substituting (60), (61) in the inequality (59) and integrating the result over 𝑡′ from 𝑇 − 𝜆 to 𝑇 ,
𝜆 = 𝑐𝑜𝑛𝑠𝑡 > 0, we will have

𝑇

∫
𝑇−𝜆

𝐽 (𝑡′)𝑑𝑡′ ≥
𝑇

∫
𝑇−𝜆

lim
𝜏 ,ℎ→0 ∫

Ω

Φ(Λ𝜏Π𝑟 (𝑦(𝑡′))𝑑𝑥𝑑𝑡′ − 𝜆 ∫
Ω

Φ(𝑢0(𝑥))𝑑𝑥. (62)

The convexity of the function Φ(𝜉 ) implies the weak lower semicontinuity on 𝐿𝛼 (Ω) of the functional

∫
Ω

Φ(𝑤(𝑥))𝑑𝑥. Therefore

𝑇

∫
𝑇−𝜆

lim
𝜏 ,ℎ→0 ∫

Ω

Φ(Λ𝜏Π𝑟 (𝑦(𝑡′))𝑑𝑥𝑑𝑡′ ≥
𝑇

∫
𝑇−𝜆

∫
Ω

Φ(𝑢(𝑡′))𝑑𝑥𝑑𝑡′. (63)

We transform the left-hand side of inequality (62) using the mean value theorem. The application
of this theorem is admissible, since the function 𝐽 (𝑡′) is absolutely continuous with respect to 𝑡′.
Considering (63), we will obtain

𝜆𝐽 (𝑡) =
𝑇

∫
𝑇−𝜆

∫
Ω

Φ(𝑢(𝑡′))𝑑𝑥𝑑𝑡′ − 𝜆 ∫
Ω

Φ(𝑢0(𝑥))𝑑𝑥,

here 𝑡 ∈ [𝑇 − 𝜆, 𝑇 ]. We divide both sides of the last inequality by 𝜆 and pass to the limit as 𝜆 → 0, as
a result we get

𝑇

∫
0

⟨𝜕𝜑(𝑢)𝜕𝑡 , 𝑢⟩𝑑𝑡 +
𝑇

∫
0

∫
Ω

𝑛
∑
𝑖=1

(𝐾𝑖 − 𝑘𝑖(𝑥, 𝑢,∇�̄�, 𝐵𝑢))
𝜕(𝑢 − �̄�)

𝜕𝑥𝑖
𝑑𝑥𝑑𝑡 ≥

≥ lim
𝜆→0

1
𝜆

𝑇

∫
𝑇−𝜆

∫
Ω

Φ(𝑢(𝑡′))𝑑𝑥𝑑𝑡′ − ∫
Ω

Φ(𝑢0(𝑥))𝑑𝑥.

The last inequality and lemma 3 imply

𝑇

∫
0

𝑇

∫
0

∫
Ω

𝑛
∑
𝑖=1

(𝐾𝑖 − 𝑘𝑖(𝑥, 𝑢,∇�̄�, 𝐵𝑢))
𝜕(𝑢 − �̄�)

𝜕𝑥𝑖
𝑑𝑥𝑑𝑡 ≥ 0. (64)

Assuming in the inequality (64) first �̄� = 𝑢 + 𝜆𝑤, and then �̄� = 𝑢 − 𝜆𝑤, where 𝜆 = 𝑐𝑜𝑛𝑠𝑡 > 0, 𝑤 is an

arbitrary function from 𝐿𝑝(0, 𝑇 ;
◦
𝑊

1
𝑝 (Ω)), it is easy to obtain equality (52). The theorem is proved.



References

[1] M. Pavlova, On the solvability of nonlocal nonstationary problems with double degeneration,
Differential Equations 47 (2011) 1161–1175. doi:10.1134/S0012266111080106.

[2] O. Glazyrina, M. Pavlova, Study of the convergence of the finite-element method for solving
parabolic equations with nonlineal nonlocal space operator, Differential Equations 51 (2015) 876–
889. doi:10.1134/S001226611507006X.

[3] O. Glazyrina, M. Pavlova, Issledovanie shodimosti javnoy raznostnoy shemy dlja parabolich-
eskogo uravnenija s nelokal’nym prostranstvennym operatorom, Uchenye Zapiski Kazanskogo
Universiteta. Seriya Fiziko-Matematicheskie Nauki 155 (2013) 24–39. doi:10.26907/2541-7746,
(In Russian).

[4] L. Glazyrina, O. Glazyrina, M. Pavlova, On convergence of implicit finite element method scheme
for a solution of a parabolic equation with double degeneration and nonlocal space operator, in:
IOP Conference Series: Journal of Physics, volume 1158, 2019.

[5] M. Chipot, L. Molinet, Asymptotic behavior of some nonlocal diffusion problems, Applicable
Analysis 80 (2001) 279–315. doi:10.1080/00036810108840994.

[6] M. Chipot, B. Lovat, Existence and uniqueness results for a class of nonlocal elliptic problems,
advances in quenching, Dynamics of continuous discrete and impulsive systems, series A: Math-
imatical Analysis 8 (2001) 35–51.

[7] H. Alt, S. Luckhaus, Quasilinear elliptic-parabolic differential equation, Mathematische
Zeitschrift 183 (1983) 311–341. doi:10.1007/BF01176474.

http://dx.doi.org/10.1134/S0012266111080106
http://dx.doi.org/10.1134/S001226611507006X
http://dx.doi.org/10.26907/2541-7746
http://dx.doi.org/10.1080/00036810108840994
http://dx.doi.org/10.1007/BF01176474

	1 Statement of the problem
	2 Auxiliary results and notation
	3 Construction and investigation of an explicit difference scheme

