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Abstract
The steady Navier-Stokes equations governing the flow of an incompressible viscous fluid in the rotation form
in 𝐿-shaped domain is considered. The weighted finite element method based on the definition of an 𝑅𝜈 -
generalized solution is constructed. The advantage of the proposed approach over classical approximations
is numerically established. The modern elements of computational technologies to find the optimal parameters
of the proposed method are used.
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1. Introduction

Most of the mathematical models representing natural processes are described using boundary value
problems for the systems of partial differential equations with a singularity. The peculiarity of the
solution is as follows systems in a bounded, connected domain of the Euclidean space 𝐑2 can be
attributed to the presence of obtuse corners on its boundary, to the degeneration of initial data, or
to internal characteristics of the solution. If the solution of the boundary value problem does not
belong to the Sobolev space 𝑊 1

2 (Ω), then it is called strong singular. If the solution of the boundary
value problem belongs to 𝑊 1

2 (Ω), but does not belong to 𝑊 2
2 (Ω), then the boundary value problem is

called weakly singular. The generalized solution of such problems in Ω with a boundary containing a
reentrant corner 𝜎 ∈ (𝜋, 2𝜋] belongs to the space𝑊 1+𝛼−𝜖

2 (Ω), 𝛼 < 1. Moreover, the approximate finite
element or finite difference solution by classical method converges to the exact one with a (ℎ𝛼 ) rate.

In [1], it was proposed to define the solution of elliptic boundary value problems with a singularity
as an 𝑅𝜈 -generalized one. The approach allows us to introduce a weight space or a set, depending
on the geometry of the domain and input data (right-hand sides, equation coefficients, boundary
and initial data) to which an 𝑅𝜈 -generalized solution belongs. In [2, 3, 4], the existence, uniqueness
and differential properties of the elliptic problems solution are proved. In [5], a weighted analogue
of the Ladyzhenskaya-Babuska-Brezzi condition for the Stokes problem is established. In [6, 7, 8, 9,
10], a weighted finite element method (FEM) for an approximate solution of elliptic problems with a
singularity has been developed.
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In the paper, an 𝑅𝜈 -generalized solution of the steady Navier-Stokes equations governing the flow of
an incompressible viscous fluid in the rotation form in 𝐿-shaped domain is defined. We use Picard’s
iterative procedure [11] to find a solution of a nonlinear problem. Then, we construct a weighted
finite element scheme based on the definition of an 𝑅𝜈 -generalized solution: 1) the functions of the
finite element spaces satisfy the mass conservation law in a strong sense — Scott-Vogelius (SV) pair
of 2nd order [12]; 2) basis functions are the product of SV functions and weight functions in some
degree. This construction allows us better take into account the behavior of the solution in the 𝛿-
neighborhood of the singularity point and increase the convergence rate of the approximate solution
to the exact one to the first order with respect to the grid step ℎ, i. e. (ℎ) rate in 𝑊 1

2,𝜈 (Ω) norm.
Thus, we develop the numerical method overcomes the so-called pollution effect (see [13]). The same
advantage for other hydrodynamics problems was achieved in [14, 15, 16]. The optimal values 𝜈, 𝜈 ∗
and 𝛿 of the presented weighted FEM using the modern elements of computational technologies were
derived numerically.

The paper consists of six sections. Section 2 is devoted to the definition of an 𝑅𝜈 -generalized solu-
tion. In Section 3, we present the weighted FEM. The iterative procedure for solving the systems of
linear algebraic equations is constructed in Section 4. In Section 5, we shaw and discuss the results of
computational experiments. Necessary conclusions are made in last section.

2. The problem statement

Let Ω be a bounded, connected domain in the Euclidean space 𝐑2. Denote by Ω̄ and Γ the closure and
boundary of Ω, respectively, Ω̄ = Ω ∪ Γ. Let 𝐱 = (𝑥1, 𝑥2) be an element of 𝐑2, where 𝑑𝐱 = 𝑑𝑥1 𝑑𝑥2 and
‖𝐱‖ =

√
𝑥21 + 𝑥22 are the measure and norm of 𝐱, respectively.

We write the steady Navier-Stokes equations governing the flow of an incompressible viscous fluid
in the convection form: find a velocity field 𝐮 = 𝐮(𝐱) = (𝑢1(𝐱), 𝑢2(𝐱)) and a kinematic pressure 𝑝 = 𝑝(𝐱)
from

− 𝜈̄ △ 𝐮 + (𝐮 ⋅ ∇)𝐮 + 𝛼𝐮 + ∇𝑝 = 𝐟, div 𝐮 = 𝟎 in Ω, (1)

𝐮 = 𝐠 on Γ, (2)

where 𝜈̄ > 0 is the kinematic viscosity coefficient (inversely proportional to the Reynolds number),
𝛼 > 0, 𝐟 = 𝐟(𝐱) = (𝑓1(𝐱), 𝑓2(𝐱)) and 𝐠 = 𝐠(𝐱) = (𝑔1(𝐱), 𝑔2(𝐱)) are given force field in Ω and boundary
data on Γ, respectively. Denote by △, ∇ and div the Laplace, gradient and divergence operators in 𝐑2,
respectively.

Further, we introduce the necessary notation. Let 𝐰 = (𝑤1, 𝑤2), 𝐯 = (𝑣1, 𝑣2) and 𝑏 – scalar, then

𝐰 ⋅ 𝐯 = 𝑤1 𝑣1 + 𝑤2 𝑣2, 𝑏 × 𝐰 = (−𝑏𝑤2, 𝑏𝑤1)𝑇 , curl 𝐰 = −𝜕𝑤1
𝜕𝑥2

+ 𝜕𝑤2
𝜕𝑥1

.

We have the identity

(𝐮 ⋅ ∇)𝐮 = ( curl 𝐮) × 𝐮 + 1
2∇𝐮

2. (3)

It follows from the equality (𝐰 ⋅∇)𝐮+(𝐮 ⋅∇)𝐰 = ∇(𝐰⋅𝐮)+ ( curl 𝐰)×𝐮+( curl 𝐮)×𝐰 and assumption
that 𝐰 = 𝐮.

Using (3), with 𝑃 = 𝑝 + 1
2𝐮2 for the system (1), (2) we get the rotation form of the steady Navier-

Stokes equations: find a velocity field 𝐮 and a Bernoulli pressure 𝑃 such that

− 𝜈̄ △ 𝐮 + ( curl 𝐮) × 𝐮 + 𝛼𝐮 + ∇𝑃 = 𝐟, div 𝐮 = 0 in Ω, (4)



𝐮 = 𝐠 on Γ. (5)

The system (4), (5) as well as (1), (2) is nonlinear due to the presence of the rotation term ( curl 𝐮)×𝐮
in the momentum equations. The system on (4), (5) and term in particular we linearized by Picard’s
procedure (see [11]).

Starting with an initial approximation 𝐮(0) for which

div 𝐮(0) = 0 in Ω and 𝐮(0) = 𝐠 on Γ (6)

Picard’s iteration constructs a sequence of solutions (𝐮(𝑘), 𝑃 (𝑘)) by solving the linear system:

− 𝜈̄ △ 𝐮(𝑘) + ( curl 𝐮(𝑘−1)) × 𝐮(𝑘) + 𝛼𝐮(𝑘) + ∇𝑃 (𝑘) = 𝐟, div 𝐮(𝑘) = 0 in Ω, (7)

𝐮(𝑘) = 𝐠 on Γ. (8)

Note that the initial Bernoulli pressure in (7) need not be specified. If 𝜈̄ be a not too small and 𝐟 be a
not too large, the steady Navier-Stokes equations (4), (5) have a unique solution (𝐮, 𝑃) and the iterates
(𝐮(𝑘), 𝑃 (𝑘)), 𝑘 = 1, 2, in (7), (8) converge to it as 𝑘 → ∞ for any choice of the arbitrary 𝐮(0) satisfying
(6) (see [11]).

Note that for a linearized system (7), (8) the conservation laws of the mass and momentum remain
in force.

In the article, we consider the special case of a bounded polygon domain Ω. Let Ω be a 𝐿-shaped
domain with one reentrant obtuse corner equals to 3𝜋

2 on the boundary and its vertex coincides with
the origin. We define an 𝑅𝜈 -generalized solution in each Picard’s iteration of the problem (7), (8) and
construct the effective weighted FEM. Thus, we solve the nonlinear problem (4), (5) governing the
flow of a incompressible viscous fluid in the rotation form and show the advantage of our approximate
method over the classical approaches in a 𝐿-shaped domain by the computational simulations.

Let us introduce the notation and define necessary spaces of generalized functions. Denote by
Ω′
𝛿 = {𝐱 ∈ Ω̄ ∶ ‖𝐱‖ ≤ 𝛿 < 1, 𝛿 > 0} a part of a 𝛿-neighborhood of a point (0, 0) contained in Ω̄. Let

𝜌(𝐱) =
{
‖𝐱‖, 𝐱 ∈ Ω′

𝛿 ,
𝛿 , 𝐱 ∈ Ω̄ ⧵ Ω′

𝛿
be a weight function.

Denote by 𝐿2,𝛽 (Ω) and 𝑊 1
2,𝛽 (Ω) the spaces of functions 𝑣(𝐱) with a bounded norms

‖𝑣‖𝐿2,𝛽 (Ω) =
√

∫
Ω

𝜌2𝛽 (𝐱)𝑣2(𝐱)𝑑𝐱

and
‖𝑣‖𝑊 1

2,𝛽 (Ω) =
√
‖𝜌𝛽 (𝐱)|𝑣(𝐱)|‖2𝐿2(Ω) + ‖𝜌𝛽 (𝐱)|𝐷1𝑣(𝐱)|‖2𝐿2(Ω),

respectively, where 𝐷𝑚𝑣(𝐱) = 𝜕 |𝑚| 𝑣
𝜕𝑥𝑚1

1 𝜕𝑥𝑚2
2
, |𝑚| = 𝑚1 + 𝑚2, 𝑚𝑖 ≥ 0 - integer.

Let 𝑊 1
2,𝛽 (Ω, 𝛿) for 𝛽 > 0 be a set of functions from the space 𝑊 1

2,𝛽 (Ω), meets the conditions

∫
Ω̄⧵Ω′

𝛿

𝜌2𝛽 (𝐱)𝑣2(𝐱)𝑑𝐱 ≥ 𝐶1 > 0, |𝐷𝑚𝑣(𝐱)| ≤ 𝐶2(
𝛿
𝜌(𝐱))

𝛽+𝑚
𝐱 ∈ Ω′

𝛿 , (9)

where 𝑚 = 0, 1 and 𝐶2 a positive constant which is not depend on 𝑚, with the norm of a space
𝑊 1

2,𝛽 (Ω). Denote by 𝐿2,𝛽 (Ω, 𝛿) a set of functions from the space 𝐿2,𝛽 (Ω) which subject to conditions (9)
(only for 𝑚 = 0) with a norm of a space 𝐿2,𝛽 (Ω). Let 𝐿02,𝛽 (Ω, 𝛿) = {𝑞 ∈ 𝐿2,𝛽 (Ω, 𝛿) ∶ ∫

Ω
𝜌𝛽 𝑞𝑑𝐱 = 0}.



Let
𝑜

𝑊 1
2,𝛽 (Ω, 𝛿) (

𝑜
𝑊 1

2,𝛽 (Ω, 𝛿) ⊂ 𝑊 1
2,𝛽 (Ω, 𝛿)) be a closure by 𝑊 1

2,𝛽 (Ω) norm of a set of the infinitely-
differentiable functions with a compact support in Ω comply with the conditions (9). We will say
𝜑(𝐱) ∈ 𝑊 1/2

2,𝛽 (Γ, 𝛿), if exists a function Φ(𝐱) ∈ 𝑊 1
2,𝛽 (Ω, 𝛿) such that Φ(𝐱)|Γ = 𝜑(𝐱) and ‖𝜑‖𝑊 1/2

2,𝛽 (Γ,𝛿) =
inf
Φ|Γ=𝜑

‖Φ‖𝑊 1
2,𝛽 (Ω).

For the vector field 𝐯 = (𝑣1, 𝑣2) we define sets 𝐋2,𝛽 (Ω, 𝛿) and 𝐖1
2,𝛽 (Ω, 𝛿) such that 𝑣𝑖 ∈ 𝐿2,𝛽 (Ω, 𝛿) and

𝑣𝑖 ∈ 𝑊 1
2,𝛽 (Ω, 𝛿), respectively, with a bounded norms ‖𝐯‖𝐋2,𝛽 (Ω) =

√
‖𝑣1‖2𝐿2,𝛽 (Ω) + ‖𝑣2‖2𝐿2,𝛽 (Ω) for the first set

and ‖𝐯‖𝐖1
2,𝛽 (Ω) =

√
‖𝑣1‖2𝑊 1

2,𝛽 (Ω)
+ ‖𝑣2‖2𝑊 1

2,𝛽 (Ω)
for the second one. Similarly, we define the sets of vector

fields 𝐖1/2
𝛽 (Γ, 𝛿) and

𝑜
𝐖1

2,𝛽 (Ω, 𝛿) on Γ and in Ω, respectively.
We introduce the concept of an 𝑅𝜈 -generalized solution for the linearized problem (7), (8).
Definition 1. The pair 𝐮(𝑘)𝜈 ∈ 𝐖1

2,𝜈 (Ω, 𝛿) and 𝑃 (𝑘)𝜈 ∈ 𝐿02,𝜈 (Ω, 𝛿) is called an 𝑅𝜈 -generalized solution

of the problem (7), (8), where 𝐮(𝑘)𝜈 satisfies a condition (8) on Γ for any pair 𝐯 ∈
𝑜

𝐖1
2,𝜈 (Ω, 𝛿) and 𝑞 ∈

𝐿02,𝜈 (Ω, 𝛿)
𝑎𝑘(𝐮(𝑘)𝜈 , 𝐯) + 𝑏(𝐯, 𝑃 (𝑘)𝜈 ) = 𝑙(𝐯), 𝑐(𝐮(𝑘)𝜈 , 𝑞) = 0

hold, where bilinear and linear forms are as follows

𝑎𝑘(𝐮(𝑘)𝜈 , 𝐯) = ∫
Ω

[𝛼𝜌
2𝜈𝐮(𝑘)𝜈 ⋅ 𝐯 + 𝜈̄∇𝐮(𝑘)𝜈 ⋅ ∇(𝜌2𝜈𝐯) + 𝜌2𝜈 (( curl 𝐮(𝑘−1)𝜈 ) × 𝐮(𝑘)𝜈 ) ⋅ 𝐯]𝑑𝐱,

𝑏(𝐯, 𝑃 (𝑘)𝜈 ) = − ∫
Ω

𝑃 (𝑘)𝜈 div (𝜌2𝜈𝐯)𝑑𝐱, 𝑐(𝐮(𝑘)𝜈 , 𝑞) = − ∫
Ω

(𝜌2𝜈 𝑞) div 𝐮(𝑘)𝜈 𝑑𝐱, 𝑙(𝐯) = ∫
Ω

𝜌2𝜈 𝐟 ⋅ 𝐯𝑑𝐱

and 𝐟 ∈ 𝐋2,𝛽 (Ω, 𝛿), 𝐠 ∈ 𝐖1/2
2,𝛽 (Γ, 𝛿), 𝜈 ≥ 𝛽 ≥ 0.

3. The weighted finite element method

Perform triangulation Υℎ based on the barycentric partition of the elements 𝐿𝑖 of the quasi-uniform
triangulation 𝑇ℎ of the domain Ω. Then, we divide each element 𝐿𝑖 ∈ 𝑇ℎ (macroelement) into three
triangles 𝐾𝑖𝑗 (finite element), 𝐾𝑖𝑗 ∈ Υℎ (their common vertex is in the barycenter of the macroelement
𝐿𝑖). Let 𝑅𝑙 and 𝑆𝑚 be the vertices and midpoints of the sides 𝐾𝑠 ∈ Υℎ, respectively. Introduce the
notation of sets:
1)𝑍𝑣𝑒𝑙 = 𝑍𝑣𝑒𝑙

Ω ∪ 𝑍𝑣𝑒𝑙
Γ = {𝑅𝑙 ∪ 𝑆𝑚}, where 𝑍𝑣𝑒𝑙

Ω and 𝑍𝑣𝑒𝑙
Γ are triangulation nodes subsets for the velocity

field components in Ω and on Γ, respectively;
2)𝑍 𝑝𝑟𝑒𝑠 = {𝑄𝑙} of triangulation nodes for the Bernoulli pressure, where the node 𝑄𝑙 an exact match
to the node 𝑅𝑚 at the appropriate 𝐾𝑖𝑗 .

We denote by Ωℎ = ⋃
𝐾𝑠∈Υℎ

𝐾𝑠 the totality of the finite elements with sides of order ℎ. Next, we

describe the Scott-Vogelius (SV) element pair (see [12]). For the components of the velocity field, we
use polynomials of the second degree (𝑋 ℎ), and for the pressure — the first one (𝑍ℎ):
𝑋 ℎ = {𝑣ℎ ∈ 𝐶(Ω) ∶ 𝑣ℎ|𝐾 ∈ 𝑃2(𝐾), ∀𝐾 ∈ Υℎ}, 𝐗ℎ = 𝑋 ℎ × 𝑋 ℎ;
𝑍ℎ = {𝑧ℎ ∈ 𝐿2(Ω) ∶ 𝑧ℎ|𝐾 ∈ 𝑃1(𝐾), ∀𝐾 ∈ Υℎ, ∫

Ω
𝑧ℎ𝑑𝐱 = 0}.

The SV pair has useful feature, namely div 𝐗ℎ ⊂ 𝑍ℎ. Next, we represent special basis functions and
construct a scheme of the weighted finite element method. To each node 𝑀𝑚 ∈ 𝑍𝑣𝑒𝑙

Ω (𝑄𝑙 ∈ 𝑍 𝑝𝑟𝑒𝑠) we



associate the basis function

𝜃𝑚(𝐱) = 𝜌𝜈
∗(𝐱) ⋅ 𝜑𝑚(𝐱), (𝜒𝑙 (𝐱) = 𝜌

𝜇∗(𝐱) ⋅ 𝜓𝑙 (𝐱)),𝑚 = 0, 1, … , ( 𝑙 = 0, 1, …),

where 𝜑𝑚 ∈ 𝑋 ℎ, 𝜑𝑚(𝑀𝑗) = 𝛿𝑚𝑗 𝑚, 𝑗 = 0, 1, … (𝜓𝑙 ∈ 𝑍ℎ, 𝜓𝑙 (𝑄𝑗) = 𝛿𝑙𝑗 , 𝑙, 𝑗 = 0, 1, …); 𝛿𝑙𝑗 =
{
1, 𝑙 = 𝑗,
0, 𝑙 ≠ 𝑗,

, 𝜈 ∗

and 𝜇∗ are real parameters.
The spaces 𝑉 ℎ and 𝑄ℎ for the components of the velocity field and pressure are defined as linear

span of the basis functions {𝜃𝑚}𝑚 and {𝜒𝑙}𝑙 , respectively. Let 𝑉 ℎ
0 be a subspace of 𝑉 ℎ ∶ 𝑉 ℎ

0 = {𝑣ℎ ∈
𝑉 ℎ ∶ 𝑣ℎ(𝑀𝑚)|𝑀𝑚∈𝑍𝑣𝑒𝑙Γ

= 0}. The approximate components of the velocity field 𝐮(𝑘)𝜈,ℎ = (𝑢(𝑘)𝜈,ℎ,1, 𝑢
(𝑘)
𝜈,ℎ,2) and

pressure 𝑃 (𝑘)𝜈,ℎ we seek as a

𝑢(𝑘)𝜈,ℎ,1(𝐱) = ∑
𝑚
𝑑 (𝑘)2𝑚 𝜃𝑚(𝐱), 𝑢(𝑘)𝜈,ℎ,2(𝐱) = ∑

𝑚
𝑑 (𝑘)2𝑚+1 𝜃𝑚(𝐱), 𝑃 (𝑘)𝜈,ℎ(𝐱) = ∑

𝑙
𝑒(𝑘)𝑙 𝜒𝑙 (𝐱), (10)

where 𝑑 (𝑘)𝑗 = 𝜌−𝜈 ∗(𝑀[𝑗/2]) 𝑑̃
(𝑘)
𝑗 , 𝑒(𝑘)𝑖 = 𝜌−𝜇∗(𝑄𝑖) 𝑒̃(𝑘)𝑖 . The coefficients 𝑑 (𝑘)𝑗 and 𝑒(𝑘)𝑖 in (10) are found as

a result of solving a system (11), (12) (see below). Let 𝐕ℎ = 𝑉 ℎ × 𝑉 ℎ, 𝐕ℎ0 = 𝑉 ℎ
0 × 𝑉 ℎ

0 and 𝐕ℎ ⊂
𝐖1

2,𝜈 (Ωℎ, 𝛿), 𝐕ℎ0 ⊂
𝑜

𝐖1
2,𝜈 (Ωℎ, 𝛿), 𝑄ℎ ⊂ 𝐿02,𝜈 (Ωℎ, 𝛿).

Definition 2. The pair 𝐮(𝑘)𝜈,ℎ ∈ 𝐕ℎ and 𝑃 (𝑘)𝜈,ℎ ∈ 𝑄ℎ is called an approximate 𝑅𝜈 -generalized solution of
the problem (7), (8) for any pair 𝐯ℎ ∈ 𝐕ℎ0 and 𝑞ℎ ∈ 𝑄ℎ the equalities

𝑎𝑘(𝐮(𝑘)𝜈,ℎ, 𝐯ℎ) + 𝑏(𝐯ℎ, 𝑃
(𝑘)
𝜈,ℎ) = 𝑙(𝐯ℎ) and 𝑐(𝐮(𝑘)𝜈,ℎ, 𝑞ℎ) = 0 (11)

hold, where 𝐟 ∈ 𝐋2,𝛽 (Ω, 𝛿), 𝐠 ∈ 𝐖1/2
2,𝛽 (Γ, 𝛿), 𝜈 ≥ 𝛽 ≥ 0.

Thus, we construct a weighted FEM to find an 𝑅𝜈 -generalized solution for the problem (7), (8). We
get a system of linear algebraic equation:

𝐀𝑘𝐝(𝑘) + 𝐁𝐞(𝑘) = 𝜔 and 𝐂𝑇𝐝(𝑘) = 𝟎, (12)

where 𝐝(𝑘) = (𝑑 (𝑘)0 , 𝑑 (𝑘)2 , … , 𝑑 (𝑘)1 , 𝑑 (𝑘)3 , …)𝑇 , 𝐞(𝑘) = (𝑒(𝑘)0 , 𝑒(𝑘)1 , 𝑒(𝑘)2 , …)𝑇 and 𝜔 be a vector of values of the
linear form 𝑙(𝜃𝑚).

4. Iterative procedure

Now, we present an iterative procedure for solving the sequences of systems view (12), 𝑘 = 1, 2, 3, …
and thus we will approximately solve the original nonlinear problem in rotation form (4), (5):
1. Let 𝐝(0) and 𝐞(0) be an arbitrary vectors such that 𝐮(0)𝜈,ℎ(𝑀𝑙 )|𝑀𝑙∈𝑍𝑣𝑒𝑙Γ

= 𝐠(𝑀𝑙 ), div 𝐮(0)𝜈,ℎ(𝑀𝑙 )|𝑀𝑙∈𝑍𝑣𝑒𝑙 = 0
(for example 𝐮(0)𝜈,ℎ(𝑀𝑙 )|𝑀𝑙∈𝑍𝑣𝑒𝑙Ω

= 𝟎) and 𝑃 (0)𝜈,ℎ(𝑀𝑙 )|𝑀𝑙∈𝑍 𝑝𝑟𝑒𝑠 = 0.
2. Realize the Picard’s procedure 𝑘 = 0, 1, 2, … until the stopping condition is fulfilled:
a) Let 𝜁 (𝑘)0 ∶= 𝐝(𝑘) and 𝜂(𝑘)0 ∶= 𝐞(𝑘);
b) We construct an internal convergent iterative process (see [17]). For 𝑛 = 0, 1, … , 𝑁𝑘 − 1 ∶

𝜁 (𝑘)𝑛+1 = 𝜁 (𝑘)𝑛 + 𝐀̂−1
𝑘 (𝜔 − 𝐀𝑘𝜁 (𝑘)𝑛 − 𝐁𝜂(𝑘)𝑛 )

𝜂(𝑘)𝑛+1 = 𝜂(𝑘)𝑛 + 𝐒̂−1𝑘 𝐂𝑇 𝜁 (𝑘)𝑛+1;



c) Let 𝐝(𝑘+1) ∶= 𝜁 (𝑘)𝑁𝑘 and 𝐞(𝑘+1) ∶= 𝜂(𝑘)𝑁𝑘 ,
where 𝐀̂𝑘 and 𝐒̂𝑘 are the preconditioning matrices to 𝐀𝑘 and 𝐒𝑘 = 𝐂𝑇𝐀−1

𝑘 𝐁, respectively.
At first, we build a preconditioner 𝐀̂𝑘 applying an incomplete LU factorization. We employ the

GMRES(5)-method (see [18]). If we have error 𝐫0 = 𝐀̂−1
𝑘 (𝐬 − 𝐀𝑘𝐯) for the problem 𝐀𝑘𝐯 = 𝐬, then the

Arnoldi procedure will build an orthonormal basis of the subspace: Span{𝐫0, 𝐀̂
−1
𝑘 𝐀𝑘𝐫0, … , (𝐀̂−1

𝑘 𝐀𝑘)4𝐫0}.
Further, we construct an auxiliary matrix 𝐒̃𝑘 to 𝐒̂𝑘 , which is the weight mass matrix 𝐌𝜈,𝜇∗,𝜈̄ , such

that on each 𝐿 ∈ Υℎ ∶

(𝐌𝜈,𝜇∗,𝜈̄ )𝑙𝑚 = 1
𝜈̄ ∫

𝐿

𝜌2(𝜈+𝜇∗) 𝜓𝑙 (𝐱) 𝜓𝑚(𝐱)𝑑𝐱, 𝑙, 𝑚 = 0, 1, … .

After that, we define a diagonal matrix 𝐒̄𝑘 = 𝐌̄𝜈,𝜇∗,𝜈̄ , where (𝐌̄𝜈,𝜇∗,𝜈̄)𝑖𝑖 = ∑
𝑙
(𝐌𝜈,𝜇∗,𝜈̄)𝑖𝑙 .

It is known (see [19]), that such diagonal lumping 𝐒̄𝑘 is a good preconditioner to matrix 𝐒̃𝑘 . In order
to determining the vector 𝜓 ⋄ ∶= 𝐒̂−1𝑘 𝜃 we need to find a solution of the internal procedure:
1) 𝜙0 = 𝟎;
2) 𝜙𝑚 = 𝜙𝑚−1 + 𝐒̄−1𝑘 (𝜃 − 𝐒̃𝑘𝜙𝑚−1) (𝑚 = 1,… ,𝑀);
3) 𝜓 ⋄ = 𝜙𝑀 .
We use the GMRES(5)-method: (Span{𝐫̄, (𝐒̄−1𝑘 𝐒̃𝑘)𝐫̄, … , (𝐒̄−1𝑘 𝐒̃)4𝑘 𝐫̄}, 𝐫̄ = 𝐒̄−1𝑘 (𝜃 − 𝐒̃𝑘𝜙𝑚−1)).

5. Results of numerical experiments

Let Ω = (−1, 1)×(−1, 1)⧵[0, 1]×[−1, 0]. Then we split Ω̄ by the horizontal and vertical lines 𝑥 (𝑗)1 = −1+𝑗 ℎ,
and 𝑥 (𝑖)2 = −1 + 𝑖 ℎ, respectively, into elementary squares 𝑆𝑙 , where 𝑗, 𝑖 = 0, … , 𝑁 , ℎ = 2

𝑁 , 𝑁 – even
number. After that, we divide each 𝑆𝑙 by the diagonal (the lower left corner connects to the upper
right corner) into two triangles 𝐿𝑚 (macroelements). Further, each macroelement 𝐿𝑚 is partitioned
into three triangles 𝐾𝑠 (barycentric partition). Consider a solution (𝐮, 𝑃) of nonlinear problem (4), (5)
which has a singularity in the vicinity of the reentrant corner 𝜎 = 3 𝜋

2 with apex at the origin (0, 0) ∶

𝑢1(𝑥1, 𝑥2) = (𝑥21 + 𝑥22)
𝜆
2 ((1 + 𝜆) 𝐸(𝑥1, 𝑥2) ⋅ sin(arctg

𝑥2
𝑥1
) + 𝐺(𝑥1, 𝑥2) ⋅ cos(arctg

𝑥2
𝑥1
)),

𝑢2(𝑥1, 𝑥2) = (𝑥21 + 𝑥22)
𝜆
2 (𝐺(𝑥1, 𝑥2) ⋅ sin(arctg

𝑥2
𝑥1
) − (1 + 𝜆) 𝐸(𝑥1, 𝑥2) ⋅ cos(arctg

𝑥2
𝑥1
)),

𝑃(𝑥1, 𝑥2) = (𝑥21 + 𝑥22)
𝜆−1
2 (

(1 + 𝜆)2 𝐺(𝑥1, 𝑥2) + 𝐻(𝑥1, 𝑥2)
𝜆 − 1 ),

where
𝐸(𝑥1, 𝑥2) = cos((1 − 𝜆) arctg

𝑥2
𝑥1
) − cos((1 + 𝜆) arctg

𝑥2
𝑥1
)+

+
sin((1 + 𝜆) arctg 𝑥2

𝑥1 ) ⋅ cos(𝜆 𝜎)
𝜆 + 1 +

sin((1 − 𝜆) arctg 𝑥2
𝑥1 ) ⋅ cos(𝜆 𝜎)

𝜆 − 1 ,

𝐺(𝑥1, 𝑥2) = (1 + 𝜆) sin((1 + 𝜆) arctg
𝑥2
𝑥1
) − (1 − 𝜆) sin((1 − 𝜆) arctg

𝑥2
𝑥1
)+

+cos((1 + 𝜆) arctg
𝑥2
𝑥1
) ⋅ cos(𝜆 𝜎) − cos((1 − 𝜆) arctg

𝑥2
𝑥1
) ⋅ cos(𝜆 𝜎),



Table 1
The error between the generalized solution 𝐮ℎ and exact one 𝐮 in the 𝐖1

2(Ω) norm.

N= 280 140 70

1.379e-1 1.988e-1 2.848e-1

Table 2
The error between an 𝑅𝜈 -generalized solution 𝐮𝜈,ℎ and exact one 𝐮 in the 𝐖1

2,𝜈 (Ω) norm, for different values
𝜈, 𝛿 and 𝜈∗(𝜇∗ = 𝜈∗).

(𝜈, 𝜈∗, 𝛿), 𝑁 = 280 140 70

(2.0, −0.5, 0.015) 1.627e-5 3.295e-5 6.629e-5
(2.0, 𝜆 − 1, 0.015) 1.394e-5 2.796e-5 5.626e-5
(2.0, −0.4, 0.015) 1.181e-5 2.355e-5 4.760e-5

(1.9, −0.5, 0.016) 2.785e-5 5.624e-5 1.131e-4
(1.9, 𝜆 − 1, 0.016) 2.331e-5 4.672e-5 9.368e-5
(1.9, −0.4, 0.016) 1.869e-5 3.759e-5 7.549e-5

Table 3
The number of grid nodes 𝑀𝑖 ∈ 𝑍𝑣𝑒𝑙Ω (in percentage of their total number), where the errors 𝛽 𝑖𝑗 are more than
the given limit values 𝜀𝑙 , 𝑙 = 1, 2, of the generalized solution 𝜈 = 𝜈∗ = 0, 𝛿 = 1.

N= 280 140

𝜀1 = 10−5 64.51% 77.82%
𝜀2 = 10−6 90.97% 94.81%

Table 4
The number of grid nodes 𝑀𝑖 ∈ 𝑍𝑣𝑒𝑙Ω (in percentage of their total number), where the errors 𝛽 𝑖𝜈,𝑗 are more than
the given limit values 𝜀𝑙 , 𝑙 = 1, 2, of an 𝑅𝜈 - generalized solution 𝜈 = 1.8, 𝜈∗ = −0.31, 𝛿 = 0.014.

N= 280 140

𝜀1 = 10−5 28.33% 54.30%
𝜀2 = 10−6 77.32% 85.76%

𝐻(𝑥1, 𝑥2) = (1 − 𝜆)3 sin((1 − 𝜆) arctg
𝑥2
𝑥1
) − (1 + 𝜆)3 sin((1 + 𝜆) arctg

𝑥2
𝑥1
)+

+(𝜆 − 1)2 cos((1 − 𝜆) arctg
𝑥2
𝑥1
) ⋅ cos(𝜆 𝜎) − (𝜆 + 1)2 cos((1 + 𝜆) arctg

𝑥2
𝑥1
) ⋅ cos(𝜆 𝜎).

Let 𝛼 = 𝜈̄ = 1 and 𝜆 = 0.54448. The pair of functions (𝐮, 𝑃) is analytic in Ω̄ ⧵ (0, 0), but 𝐮 ∉ 𝐖2
2(Ω)

and 𝑃 ∉ 𝑊 1
2 (Ω). It is a typical situation in non-convex polygonal domains.

Numerical experiments were carried out on grids with different steps ℎ. The errors of the gen-
eralized (classical FEM with 𝜈 = 0, 𝛿 = 1, 𝜈 ∗ = 𝜇∗ = 0) and 𝑅𝜈 -generalized (presented weighted
FEM) solutions were determined using the modulus of the difference between the exact solution
and approximate one at the nodes 𝑀𝑖 , i. e. 𝛽 𝑖𝑗 = |𝑢𝑗(𝑀𝑖) − 𝑢ℎ,𝑗(𝑀𝑖)| for the generalized solution and
𝛽 𝑖𝜈,𝑗 = |𝑢𝑗(𝑀𝑖) − 𝑢𝜈,ℎ,𝑗(𝑀𝑖)| for an 𝑅𝜈 -generalized one, where 𝑀𝑖 ∈ 𝑍𝑣𝑒𝑙

Ω , 𝑗 = 1, 2, and also in the norms
of generalized functions. See Figures 1-2 and Tables 1-4. The optimal values of parameters 𝜈, 𝜈 ∗ and
𝛿 were derived numerically.



Figure 1: Distribution of the points 𝑀𝑖 with errors 𝛽 of the generalized solution (𝜈 = 0, 𝛿 = 1, 𝜈∗ = 𝜇∗ = 0):
𝑎) 𝑁 = 140, 𝑐) 𝑁 = 280 and 𝑏) 𝑁 = 140, 𝑑) 𝑁 = 280 for the 1st and 2nd components of 𝐮ℎ, respectively.

6. Conclusions

The results of computational experiments for the steady Navier-Stokes equations (4), (5) lead to the
following conclusions:

1) An approximate 𝑅𝜈 -generalized solution by the weighted FEM converges to the exact one with
a (ℎ) rate in the 𝐖1

2,𝜈 (Ω) norm (see Table 2), while the approximate generalized solution by the
classical FEM converges to the exact one with a (ℎ0.54) rate in the 𝐖1

2(Ω) norm (see Table 1). In
other words, the proposed method suppresses the so-called pollution effect [13].

2) For all values of 𝛿, 𝜈 and 𝜈 ∗ from the range of optimal values (𝛿 ∼ ℎ, 𝜈 ∼ 2 and 𝜈 ∗ ∼ 1 − 𝜆) an
approximate 𝑅𝜈 -generalized solution converges to the exact one with a (ℎ) rate in the 𝐖1

2,𝜈 (Ω) norm.
3) The number of nodes and their surroundings by using a weighted FEM, in which the values of

the absolute errors 𝛽 𝑖𝜈,𝑗 , 𝑗 = 1, 2, do not exceed the given values, increases with 𝑁 and is much more
then by using the classical FEM (see Tables 3-4) and Figures 1-2.
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Figure 2: Distribution of the points 𝑀𝑖 with errors 𝛽𝜈 of the 𝑅𝜈 -generalized solution (𝜈 = 1.9, 𝛿 = 0.014, 𝜈∗ =
𝜇∗ = −0.35): 𝑎) 𝑁 = 140, 𝑐) 𝑁 = 280 and 𝑏) 𝑁 = 140, 𝑑) 𝑁 = 280 for the 1st and 2nd components of 𝐮𝜈,ℎ,
respectively.
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