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Abstract
A one-dimensional initial-boundary value problem modelling the process of joint motion of a viscoelastic
porous medium and a liquid saturating the medium is considered. In the filtration theory, this process is called
filtration consolidation. A finite element in spatial variable and time-implicit difference scheme is constructed.
Its solvability is established, the convergence piecewise-constant filling of an approximate solution in the vari-
able 𝑡 to generalized solution of problem is proved.
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1. Problem statement

An initial-boundary value problem is considered, which is described by the following system of non-
linear partial differential equations for the unknown functions 𝑢(𝑥, 𝑡), 𝑝(𝑥, 𝑡):

− 𝜕
𝜕𝑥 (

𝜕𝑢
𝜕𝑥 + 𝜕2𝑢

𝜕𝑥𝜕𝑡) + 𝜕𝑝
𝜕𝑥 = 𝑓 (𝑥, 𝑡), 0 < 𝑥 < 𝐿, 0 < 𝑡 < 𝑇 , (1)

𝜕2𝑢
𝜕𝑥𝜕𝑡 −

𝜕
𝜕𝑥 (𝑔 (

||||
𝜕𝑝
𝜕𝑥

||||)
𝜕𝑝
𝜕𝑥) = 0, 0 < 𝑥 < 𝐿, 0 < 𝑡 < 𝑇 . (2)

We assume that for 𝑡 ∈ (0, 𝑇 ] the following boundary conditions are satisfied

𝑢(0, 𝑡) = 0, 𝜕𝑢
𝜕𝑥 (𝐿, 𝑡) +

𝜕2𝑢
𝜕𝑥𝜕𝑡 (𝐿, 𝑡) = 0, (3)

𝑝(0, 𝑡) = 𝑝(𝐿, 𝑡) = 0. (4)

The initial conditions are given as

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑝(𝑥, 0) = 𝑝0(𝑥), 0 ≤ 𝑥 ≤ 𝐿. (5)

The problem (1)–(5) is of an applied nature: relations (1)–(5) can be used to describe an one-
dimensional process of filtration consolidation with a limiting gradient (see, eg, [1]). In this case,
𝑝 is liquid pressure in the pores, 𝑢 is motion of the skeleton particles, 𝑓 (𝑥, 𝑡), 𝑔(𝜉 ) are given functions.
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The foundations of the theory of filtration consolidation were laid in such works as [2, 3, 4, 5].
In these works mathematical models of filtration consolidation were built, and studies of the models
from the standpoint of continuum mechanics were carried out. A rigorous mathematical analysis of
problems of filtration consolidation was carried out in [6, 7], where the solvability of these problems
in the class of generalized functions is established. The works [8, 9, 10] are devoted to experimental
study using numerical methods.

This paper considers the problem of filtration consolidation with limiting gradient in the case when
the function 𝑔 is defining the law filtration as follows:

𝑔(|𝜉 |) =
{

0, |𝜉 | ≤ 𝜉0,
1, |𝜉 | > 𝜉0.

In what follows, we assume that the functions 𝑔(𝜉 ), 𝑓 (𝑥, 𝑡) satisfy the following conditions:
𝐴1. 𝑔(𝜉 ), 𝜉 ≥ 0 is an absolutely continuous in 𝜉 , nonnegative, nondecreasing function and there exist
𝜉0 ≥ 0, 𝜂, 𝜇 > 0, such that at 𝜉 ≥ 𝜉0 the following inequality holds

𝜂(𝜉 − 𝜉0) ≤ 𝑔(|𝜉 |)𝜉 ≤ 𝜇(𝜉 − 𝜉0). (6)

𝐴2. The function 𝑓 (𝑥, 𝑡) is continuous at (𝑥, 𝑡) ∈ 𝑄𝑇 , where 𝑄𝑇 = (0, 𝐿) × (0, 𝑇 ].
Conditions (6) imposed on the function g mean that the filtration rate will be zero for small values

of the gradient modulus.

2. Defining a generalized solution

Let
◦
𝑉 be the closure of smooth functions equal to zero at 𝑥 = 0 in the norm of the space 𝑊 (1)

2 (0, 𝐿),
and let

◦
𝑉1 be the closure of smooth functions equal to zero on the boundary of the interval [0, 𝐿], in

the norm of the same space.
Definition. By a generalized solution to problem (1)–(5), we imply functions (𝑢, 𝑝), for which the

following conditions hold:

𝑢 ∈ 𝑊 (1)
2 (0, 𝑇 ;

◦
𝑉 ), 𝑝 ∈ 𝐿2(0, 𝑇 ;

◦
𝑉1),

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑝(𝑥, 0) = 𝑝0(𝑥) almost everywhere on 𝑥 ∈ (0, 𝐿),

and for any functions 𝑣 ∈ 𝑊 (1)
2 (0, 𝑇 ;

◦
𝑉 ), 𝑧 ∈ 𝐿2(0, 𝑇 ;

◦
𝑉 1) the following equality is true:

𝑇

∫
0

𝐿

∫
0

{

(
𝜕𝑢
𝜕𝑥 + 𝜕2𝑢

𝜕𝑥𝜕𝑡)
𝜕2𝑣
𝜕𝑥𝜕𝑡 − 𝑝

𝜕2𝑣
𝜕𝑥𝜕𝑡 +

𝜕2𝑢
𝜕𝑥𝜕𝑡 𝑧+

+ 𝑔 (
||||
𝜕𝑝
𝜕𝑥

||||)
𝜕𝑝
𝜕𝑥

𝜕𝑧
𝜕𝑥

}
𝑑𝑥𝑑𝑡 =

𝑇

∫
0

𝐿

∫
0

𝑓 (𝑥, 𝑡) 𝜕𝑣𝜕𝑡 𝑑𝑥𝑑𝑡. (7)

3. The discrete problem

The problem (1)–(5) will be solved by the semi-discretization method in combination with the finite
element method. Let us construct an arbitrary unequally-spaced grid on the interval [0, L]

�̄�ℎ = {𝑥0 = 0 < 𝑥1 < ... < 𝑥𝑛 = 𝐿}.



Let 𝑉 𝑛 and 𝑉 𝑛
1 be finite-dimensional function spaces, continuous on the interval [0, 𝐿], satisfying the

conditions (3) and (4), respectively, and are polynomials of the first degree on each grid cell 𝛿𝑖 =
[𝑥𝑖−1, 𝑥𝑖], 𝑖 = 1, 2, ..., 𝑛. Let also

�̄�𝜏 = {𝑡 = 𝑘𝜏 , 0 ≤ 𝑘 ≤ 𝑀, 𝑀𝜏 = 𝑇},

𝜔𝜏 = �̄�𝜏 ⧵ {0}.
Definition. By the approximate solution to the problem (1)–(5) constructed by the method of semi-

discretization in combination with the finite element method, we imply the functions (�̂�𝑛(𝑡), �̂�𝑛(𝑡)) for
which the following conditions hold:

�̂�𝑛(𝑡) ∈ 𝑉 𝑛, �̂�𝑛(𝑡) ∈ 𝑉 𝑛
1 ∀𝑡 ∈ 𝜔𝜏 ,

𝑢𝑛(𝑥, 0) = 𝑢0(𝑥), 𝑝𝑛(𝑥, 0) = 𝑝0(𝑥) almost everywhere on 𝑥 ∈ (0, 𝐿),
and for any functions 𝑣𝑛 ∈ 𝑉 𝑛, 𝑧𝑛 ∈ 𝑉 𝑛

1 the following equality is true

𝐿

∫
0

{

(
𝜕�̂�𝑛
𝜕𝑥 + 𝜕𝑢𝑛𝑡

𝜕𝑥 )
𝜕𝑣𝑛𝑡
𝜕𝑥 − �̂�𝑛 𝜕𝑣

𝑛
𝑡

𝜕𝑥 + 𝜕𝑢𝑛𝑡
𝜕𝑥 �̂�𝑛 + 𝑔(

|||||
𝜕�̂�𝑛
𝜕𝑥

|||||)
𝜕�̂�𝑛
𝜕𝑥

𝜕�̂�𝑛
𝜕𝑥

}
𝑑𝑥 =

𝐿

∫
0

𝑓 (𝑥, 𝑡) 𝑣𝑛𝑡 𝑑𝑥. (8)

Here �̂� = 𝑣(𝑡 + 𝜏 ), 𝑣𝑡 =
�̂� − 𝑣
𝜏 .

Theorem 1. Approximate solution of the problem (1)–(5) exists.
Proof. Obviously, it suffices to establish the existence of �̂�𝑛, �̂�𝑛 satisfying (8), under the assumption

that 𝑝𝑛, 𝑢𝑛 are known.
Since the choice of the functions 𝑣𝑛, 𝑧𝑛 is arbitrary, the equality (8) is equivalent to the following

system
𝐿

∫
0

{

(
𝜕�̂�𝑛
𝜕𝑥 + 𝜕𝑢𝑛𝑡

𝜕𝑥 )
𝜕𝑣𝑛𝑡
𝜕𝑥 − �̂�𝑛 𝜕𝑣

𝑛
𝑡

𝜕𝑥

}
𝑑𝑥 =

𝐿

∫
0

𝑓 (𝑥, 𝑡) 𝑣𝑛𝑡 𝑑𝑥, (9)

𝐿

∫
0

{
𝜕𝑢𝑛𝑡
𝜕𝑥 �̂�𝑛 + 𝑔(

|||||
𝜕�̂�𝑛
𝜕𝑥

|||||)
𝜕�̂�𝑛
𝜕𝑥

𝜕�̂�𝑛
𝜕𝑥

}
𝑑𝑥 = 0. (10)

We will look for approximate solutions in the form

�̂�𝑛 =
𝑛
∑
𝑘=0

𝜁 (1)𝑘 𝜑𝑘 , �̂�𝑛 =
𝑛
∑
𝑘=0

𝜁 (2)𝑘 𝜓𝑘 ,

where 𝜑𝑘 , 𝜓𝑘 are linear on each element, continuous on the interval [0, 𝐿] functions satisfying the
conditions

𝜑𝑘(𝑥𝑗) =
{

1, 𝑘 = 𝑗,
0, 𝑘 ≠ 𝑗, 𝑘 = 0, 1,… , 𝑛, 𝜓𝑘(𝑥𝑗) =

{
1, 𝑘 = 𝑗,
0, 𝑘 ≠ 𝑗, 𝑘 = 0, 1,… , 𝑛.

The unknown coefficients 𝜁 (𝑖)𝑘 , 𝑘 = 1, 2,… , 𝑛 𝑖 = 1, 2 are determined by the following system of
equations:

𝐿

∫
0

{

(
𝜕�̂�𝑛
𝜕𝑥 + 𝜕𝑢𝑛𝑡

𝜕𝑥 )
𝜕(𝜑𝑘)𝑡
𝜕𝑥 − �̂�𝑛 𝜕(𝜑𝑘)𝑡𝜕𝑥

}
𝑑𝑥 =

𝐿

∫
0

𝑓 (𝑥, 𝑡) (𝜑𝑘)𝑡𝑑𝑥, (11)



𝐿

∫
0

{
𝜕𝑢𝑛𝑡
𝜕𝑥 �̂� 𝑘 + 𝑔(

|||||
𝜕�̂�𝑛
𝜕𝑥

|||||)
𝜕�̂�𝑛
𝜕𝑥

𝜕�̂� 𝑘
𝜕𝑥

}
𝑑𝑥 = 0. (12)

Let H ∶ 𝑅2𝑛 → 𝑅2𝑛 be a nonlinear operator such that the equation

H(𝜁 ) = 0

is equivalent to system (11)–(12). Let us make sure that 𝑅2𝑛 contains a sphere centered at zero of finite
radius, on which

(H(𝜁 ), 𝜁 )𝑅2𝑛 ≥ 0. (13)

We have

(H(𝜁 ), 𝜁 )𝑅2𝑛 =
𝐿

∫
0

(
𝜕�̂�𝑛
𝜕𝑥 + 𝜕𝑢𝑛𝑡

𝜕𝑥 )
𝜕𝑢𝑛𝑡
𝜕𝑥 𝑑𝑥+

+
𝐿

∫
0

𝑔(
|||||
𝜕�̂�𝑛
𝜕𝑥

|||||)(
𝜕�̂�𝑛
𝜕𝑥 )

2
𝑑𝑥 −

𝐿

∫
0

𝑓 (𝑥, 𝑡) 𝑢𝑛𝑡 𝑑𝑥. (14)

The first term on the right-hand side of equality (14) can be transformed to the form:

𝐿

∫
0

(
𝜕�̂�𝑛
𝜕𝑥 + 𝜕𝑢𝑛𝑡

𝜕𝑥 )
𝜕𝑢𝑛𝑡
𝜕𝑥 𝑑𝑥 = (

1
𝜏 + 1

𝜏 2) ∥ �̂�𝑛 ∥21 −(
1
𝜏 + 2

𝜏 2)
𝐿

∫
0

𝜕�̂�𝑛
𝜕𝑥

𝜕𝑢𝑛
𝜕𝑥 𝑑𝑥 + 1

𝜏 2 ∥ 𝑢𝑛 ∥21 . (15)

Here ∥ 𝑣 ∥21=
𝐿

∫
0

(
𝜕𝑣
𝜕𝑥)

2
𝑑𝑥 .

Using the Cauchy-Bunyakovsky inequality

(𝑥, 𝑦) ≤ 𝛿 ||𝑥 ||2 + 1
4𝛿 ||𝑦 ||

2, (16)

from (15) it is easy to obtain the following estimate

𝐿

∫
0

(
𝜕�̂�𝑛
𝜕𝑥 + 𝜕𝑢𝑛𝑡

𝜕𝑥 )
𝜕𝑢𝑛𝑡
𝜕𝑥 𝑑𝑥 ≥ (

1
𝜏 + 1

𝜏 2 − 𝛿) ∥ �̂�𝑛 ∥21 −
1
4𝛿 (

1
𝜏 + 2

𝜏 2)
2
∥ 𝑢𝑛 ∥21 . (17)

Using (16) and inequality (6), for the second term in equality (14) we have

𝐿

∫
0

𝑔(
|||||
𝜕�̂�𝑛
𝜕𝑥

|||||)(
𝜕�̂�𝑛
𝜕𝑥 )

2
𝑑𝑥 ≥ (𝜂 − 𝛿) ∥ �̂�𝑛 ∥21 −

𝜂2𝜉 20 𝐿2
4𝛿 .

To estimate the last term of (14), we use the boundedness of the function 𝑓 (𝜉 ), inequality (16), and
the Friedrichs inequality. As a result, we obtain

|||||||

𝐿

∫
0

𝑓 (𝑥, 𝑡) ⋅ 𝑢𝑛𝑡 𝑑𝑥
|||||||
≤ 𝛿 ∥ �̂�𝑛 ∥21 +

𝐶2𝐶2
𝐹𝐿2

4𝛿𝜏 2 + 𝐶𝐶𝐹
𝜏 ∥ 𝑢𝑛 ∥21,



here 𝐶𝐹 is a constant of the Friedrichs inequality, 𝐶 is a constant such that

|𝑓 (𝜉 , 𝜁 )| ≤ 𝐶 ∀𝜉 ∈ [0, 𝐿], ∀𝜁 ∈ [0, 𝑇 ].

Substituting the estimates obtained in (14), we have

(H(𝜁 ), 𝜁 )𝑅2𝑛 ≥ 𝐾 (𝛿) (∥ �̂�𝑛 ∥21 + ∥ �̂�𝑛 ∥21) − 𝑅(𝛿) , (18)

where

𝐾 (𝛿) = min
{
(
1
𝜏 + 1

𝜏 2 − 2𝛿) , 𝜂 − 𝛿
}
,

𝑅(𝛿) = (
𝐶𝐶𝐹
𝜏 + 1

4𝛿 (
1
𝜏 + 2

𝜏 2)
2

) ∥ 𝑢𝑛 ∥21 +
𝐶2𝐶2

𝐹𝐿2
4𝛿𝜏 2 + 𝜂2𝜉 20 𝐿2

4𝛿 .

Let 𝛿 ∗ be a constant such that for all 0 < 𝛿 ≤ 𝛿 ∗ the following inequality holds

𝐾 (𝛿) ≥ 𝛽 = 𝑐𝑜𝑛𝑠𝑡 > 0 ,

and 𝑆 ⊂ 𝑅2𝑛 be a sphere centered at zero at which the right-hand side of inequality (18) is non-negative.
Then, by the topological lemma ([11], p. 66), there is at least one solution to the system inside this
sphere. The proof of Theorem 1 is complete.

Lemma 1. For the approximate solution (8), the following a priori estimates are valid

max
𝑡′

‖𝑢𝑛(𝑡′)‖21 ≤ 𝐶,
𝑡′
∑
𝑡=0

𝜏 ‖𝑝𝑛(𝑡)‖21 ≤ 𝐶, (19)

𝑡′−𝜏
∑
𝑡=0

𝜏 ‖(𝑢𝑛)𝑡 ‖21 ≤ 𝐶,
𝑡′
∑
𝑡=0

𝜏
‖‖‖‖
𝜕𝑢𝑛𝑡
𝜕𝑥

‖‖‖‖
2

𝐿2(0,𝐿)
≤ 𝐶, (20)

𝑡′−𝜏
∑
𝑡=0

𝜏
‖‖‖‖‖‖
𝑔(

|||||
𝜕�̂�𝑛
𝜕𝑥

|||||)
𝜕�̂�𝑛
𝜕𝑥

‖‖‖‖‖‖

2

𝐿2(0,𝐿)

≤ 𝐶. (21)

Proof. Let us assume in (8) 𝑣𝑛 = 𝑢𝑛, 𝑧𝑛 = 𝑝𝑛 and obtain

𝐿

∫
0

{

(
𝜕�̂�𝑛
𝜕𝑥 + 𝜕𝑢𝑛𝑡

𝜕𝑥 )
𝜕𝑢𝑛𝑡
𝜕𝑥 + 𝑔(

|||||
𝜕�̂�𝑛
𝜕𝑥

|||||)(
𝜕�̂�𝑛
𝜕𝑥 )

2 }
𝑑𝑥 =

𝐿

∫
0

𝑓 (𝑥, 𝑡) 𝑢𝑛𝑡 𝑑𝑥. (22)

Note that

𝜕�̂�𝑛
𝜕𝑥

𝜕𝑢𝑛𝑡
𝜕𝑥 = 𝜕�̂�𝑛

𝜕𝑥
𝜕
𝜕𝑥 (

�̂�𝑛 − 𝑢𝑛
𝜏 ) = 𝜕�̂�𝑛

𝜕𝑥 ⋅ 1𝜏 (
𝜕�̂�𝑛
𝜕𝑥 − 𝜕𝑢𝑛

𝜕𝑥 ) =

= 1
2 (

𝜕�̂�𝑛
𝜕𝑥 )

2
− 1
2 (

𝜕𝑢𝑛
𝜕𝑥 )

2
+ 𝜏 2

2 (
𝜕𝑢𝑛𝑡
𝜕𝑥 )

2
. (23)

We substitute equality (23) into (22), multiply by 𝜏 and sum the resulting relation over 𝑡 from 0 to
𝑡′ − 𝜏 and obtain

1
2 ‖𝑢

𝑛(𝑡′)‖21 −
1
2 ‖𝑢

𝑛(0)‖21 +
1
2
𝑡′−𝜏
∑
𝑡=0

𝜏 2‖𝑢𝑛𝑡 (𝑡)‖21 +
𝑡′−𝜏
∑
𝑡=0

𝜏
‖‖‖‖
𝜕𝑢𝑛𝑡
𝜕𝑥

‖‖‖‖
2

𝐿2(0,𝐿)
+



+
𝑡′−𝜏
∑
𝑡=0

𝜏
𝐿

∫
0

𝑔(
|||||
𝜕�̂�𝑛
𝜕𝑥

|||||)(
𝜕�̂�𝑛
𝜕𝑥 )

2
𝑑𝑥 =

𝑡′−𝜏
∑
𝑡=0

𝜏
𝐿

∫
0

𝑓 (𝑥, 𝑡) ⋅ 𝑢𝑛𝑡 𝑑𝑥. (24)

From (24), taking into account inequality (6), we have a priori estimates (19)–(20). Also, considering
that

‖‖‖‖‖‖
𝑔(

|||||
𝜕�̂�𝑛
𝜕𝑥

|||||)
𝜕�̂�𝑛
𝜕𝑥

‖‖‖‖‖‖

2

𝐿2(0,𝐿)

≤
‖‖‖‖‖
𝜕�̂�𝑛
𝜕𝑥

‖‖‖‖‖

2

𝐿2(0,𝐿)
.

we have estimate (21). The proof of Lemma 1 is complete.
Lemma 2. There exist function

𝑢 ∈ 𝑊 (1)
2 (0, 𝑇 ;

◦
𝑉 ), 𝑝 ∈ 𝐿2(0, 𝑇 ;

◦
𝑉 1)

and sequences {𝜏}, {𝑛} such that at 𝜏 → 0, 𝑛 → ∞

Π+𝑢𝑛 ⇀ 𝑢, Π+𝑢𝑛𝑡 ⇀ 𝜕𝑢
𝜕𝑡 in 𝐿2(0, 𝑇 ;

◦
𝑉 ), (25)

𝜕Π+𝑢𝑛𝑡
𝜕𝑥 ⇀ 𝜕2𝑢

𝜕𝑥𝜕𝑡 in 𝐿2(0, 𝑇 ; 𝐿2(0, 𝐿)), (26)

Π+𝑝𝑛 ⇀ 𝑝 in 𝐿2(0, 𝑇 ;
◦
𝑉 1). (27)

Here Π+𝑧 is piecewise-constant filling of 𝑧 ∶

Π+𝑧(𝑡) =
{
𝑧(𝑘𝜏 ) ∶ 𝑘𝜏 ≤ 𝑡 < (𝑘 + 1)𝜏

}
.

The validity of statements (25)–(27) follows from a priori estimates (19)–(20) and the weak com-
pactness of bounded sets in a reflexive Banach space. The proof of Lemma 2 is complete.

Theorem 2. Functions 𝑢, 𝑝 satisfying relations (25)–(27) are a generalized solution to problem
(1)–(5).

Proof. Let the functions 𝑢, 𝑝 satisfy relations (25)–(27), it is required to prove that 𝑢, 𝑝 satisfy
identity (7). To do this, in (8) we put

𝑣𝑛(𝑥, 𝑡) = 1
𝜏

𝑡+𝜏

∫
𝑡

�̃�𝑛(𝑥, 𝜉 )𝑑𝜉 , 𝑧𝑛(𝑥, 𝑡) = 1
𝜏

𝑡+𝜏

∫
𝑡

�̃�𝑛(𝑥, 𝜉 )𝑑𝜉 ,

where �̃�𝑛, �̃�𝑛 are functions from 𝐶∞(0, 𝑇 ;
◦
𝑉 𝑛) and 𝐶∞(0, 𝑇 ;

◦
𝑉 𝑛
1 ) respectively, such that �̃�𝑛(𝑥, 𝑇 ) =

�̃�𝑛(𝑥, 𝑇 ) = 0. We multiply (8) by 𝜏 , sum over 𝑡 from 0 to 𝑇 − 𝜏 . The result, using the filling opera-
tor Π+, can be written in the form

𝑇

∫
0

𝐿

∫
0

{

(
𝜕Π+�̂�𝑛
𝜕𝑥 + 𝜕Π+𝑢𝑛𝑡

𝜕𝑥 )
𝜕Π+𝑣𝑛𝑡
𝜕𝑥 − Π+�̂�𝑛 𝜕Π

+𝑣𝑛𝑡
𝜕𝑥 + 𝜕Π+𝑢𝑛𝑡

𝜕𝑥 Π+�̂�𝑛+

+ 𝑔(
|||||
𝜕Π+�̂�𝑛
𝜕𝑥

|||||)
𝜕Π+�̂�𝑛
𝜕𝑥

𝜕Π+�̂�𝑛
𝜕𝑥

}
𝑑𝑥𝑑𝑡 =

𝑇

∫
0

𝐿

∫
0

𝑓 (𝑥, 𝑡) Π+𝑣𝑛𝑡 𝑑𝑥𝑑𝑡. (28)



From the boundedness of 𝑔 and estimate (21) it follows that there exists a function 𝜒 from the space
𝐿2(0, 𝑇 ; 𝐿2(0, 𝐿)) such that

𝑔(
|||||
𝜕Π+�̂�𝑛
𝜕𝑥

|||||)
𝜕Π+�̂�𝑛
𝜕𝑥 ⇀ 𝜒 in 𝐿2(0, 𝑇 ; 𝐿2(0, 𝐿)). (29)

Taking into account (25)–(27) and (29) in equality (28), we pass to the limit in 𝜏 → 0 and 𝑛 → ∞
and obtain

𝑇

∫
0

𝐿

∫
0

{

(
𝜕𝑢
𝜕𝑥 + 𝜕2𝑢

𝜕𝑥𝜕𝑡)
𝜕2𝑣
𝜕𝑥𝜕𝑡 − 𝑝

𝜕2𝑣
𝜕𝑥𝜕𝑡 +

𝜕2𝑢
𝜕𝑥𝜕𝑡 𝑧 + 𝜒

𝜕𝑧
𝜕𝑥

}
𝑑𝑥𝑑𝑡 =

=
𝑇

∫
0

𝐿

∫
0

𝑓 (𝑥, 𝑡) 𝜕𝑣𝜕𝑡 𝑑𝑥𝑑𝑡. (30)

Let us prove that 𝜒 = 𝑔 (
||||
𝜕𝑝
𝜕𝑥

||||)
𝜕𝑝
𝜕𝑥 . To do this, we use the monotonicity method. We write down

the apparent inequality

𝑇−𝜏
∑
𝑡=0

𝜏
𝐿

∫
0

(
𝜕𝑢𝑛
𝜕𝑥 − 𝜕𝑣𝑛

𝜕𝑥 )𝑡 (
𝜕�̂�𝑛
𝜕𝑥 − 𝜕�̂�𝑛

𝜕𝑥 ) 𝑑𝑥 ≥

≥ 1
2 ‖𝑢

𝑛(𝑇 ) − 𝑣𝑛(𝑇 )‖21
𝜕2𝑢
𝜕𝑥𝜕𝑡 𝑧 −

1
2 ‖𝑢

𝑛(0) − 𝑣𝑛(0)‖21 ≥ −12 ‖𝑢0 − 𝑣
𝑛(𝑥, 0)‖21,

where 𝑣𝑛 is an arbitrary smooth function 𝑣 ∈ 𝐶∞(0, 𝑇 ;
◦
𝑉 𝑛). From this inequality and the monotonicity

of the function 𝑔(𝜉 ) it follows that

𝑇−𝜏
∑
𝑡=0

𝜏
𝐿

∫
0

(
𝜕𝑢𝑛
𝜕𝑥 − 𝜕𝑣𝑛

𝜕𝑥 )𝑡 (
𝜕�̂�𝑛
𝜕𝑥 − 𝜕�̂�𝑛

𝜕𝑥 ) 𝑑𝑥+

+
𝑇−𝜏
∑
𝑡=0

𝜏
𝐿

∫
0

{
𝑔(

|||||
𝜕�̂�𝑛
𝜕𝑥

|||||)
𝜕�̂�𝑛
𝜕𝑥 − 𝑔 (

||||
𝜕�̂�𝑛
𝜕𝑥

||||)
𝜕�̂�𝑛
𝜕𝑥

}
𝜕 (�̂�𝑛 − �̂�𝑛)

𝜕𝑥 𝑑𝑥 ≥ −12 ‖𝑢0 − 𝑣
𝑛(𝑥, 0)‖21.

The last relation is equivalent to the following integral inequality

𝐼𝜏 ,𝑛 =
𝑇

∫
0

𝐿

∫
0

(
𝜕Π+𝑢𝑛𝑡
𝜕𝑥 − 𝜕Π+𝑣𝑛𝑡

𝜕𝑥 )
𝜕Π+ (�̂�𝑛 − �̂�𝑛)

𝜕𝑥 𝑑𝑥𝑑𝑡+

+
𝑇

∫
0

𝐿

∫
0

𝑔(
|||||
𝜕Π+�̂�𝑛
𝜕𝑥

|||||)
𝜕Π+�̂�𝑛
𝜕𝑥

𝜕Π+ (�̂�𝑛 − �̂�𝑛)
𝜕𝑥 𝑑𝑥𝑑𝑡−

−
𝑇

∫
0

𝐿

∫
0

𝑔 (
||||
𝜕Π+�̂�𝑛
𝜕𝑥

||||)
𝜕Π+�̂�𝑛
𝜕𝑥

𝜕Π+ (�̂�𝑛 − �̂�𝑛)
𝜕𝑥 𝑑𝑥𝑑𝑡 ≥ −12 ‖𝑢0 − 𝑣

𝑛(𝑥, 0)‖21. (31)



We represent 𝐼𝜏 ,𝑛 as the sum 𝐼 = 𝐼 (1)𝜏 ,𝑛 + 𝐼 (2)𝜏 ,𝑛, where

𝐼 (1)𝜏 ,𝑛 =
𝑇

∫
0

𝐿

∫
0

{
𝜕Π+𝑢𝑛𝑡
𝜕𝑥

𝜕Π+ (�̂�𝑛 − �̂�𝑛)
𝜕𝑥 + 𝑔(

|||||
𝜕Π+�̂�𝑛
𝜕𝑥

|||||)
𝜕Π+�̂�𝑛
𝜕𝑥

𝜕Π+ (�̂�𝑛 − �̂�𝑛)
𝜕𝑥

}
𝑑𝑥𝑑𝑡,

𝐼 (2)𝜏 ,𝑛 = −
𝑇

∫
0

𝐿

∫
0

{
𝜕Π+𝑣𝑛𝑡
𝜕𝑥

𝜕Π+ (�̂�𝑛 − �̂�𝑛)
𝜕𝑥 +𝑔 (

||||
𝜕Π+�̂�𝑛
𝜕𝑥

||||)
𝜕Π+�̂�𝑛
𝜕𝑥

𝜕Π+ (�̂�𝑛 − �̂�𝑛)
𝜕𝑥

}
𝑑𝑥𝑑𝑡.

To transform the first relation 𝐼 (1)𝜏 ,𝑛, we use equality (28) at 𝑣𝑛 = 𝑢𝑛 − 𝑣𝑛, 𝑝𝑛 = 𝑝𝑛 − 𝑧𝑛 and obtain

𝐼 (1)𝜏 ,𝑛 =
𝑇

∫
0

𝐿

∫
0

{
−𝜕Π

+𝑢𝑛𝑡
𝜕𝑥

𝜕Π+ (𝑢𝑛𝑡 − 𝑣𝑛𝑡 )
𝜕𝑥 − Π+�̂�𝑛 𝜕Π

+𝑣𝑛𝑡
𝜕𝑥 + 𝜕Π+𝑢𝑛𝑡

𝜕𝑥 Π+�̂�𝑛 − 𝜕Π+𝑢𝑛𝑡
𝜕𝑥

𝜕Π+𝑣𝑛
𝜕𝑥 +

+ 𝜕Π+𝑢𝑛
𝜕𝑥

𝜕Π+𝑣𝑛𝑡
𝜕𝑥 + 𝑓 (𝑥, 𝑡) Π+ (𝑢𝑛 − 𝑣𝑛)𝑡

}
𝑑𝑥𝑑𝑡. (32)

In (32) ), we make the passage to the limit as 𝜏 → 0, 𝑛 → ∞, taking into account (25)–(27), (29).
As a result, we obtain

𝐼 (1)𝜏 ,𝑛 →
𝑇

∫
0

𝐿

∫
0

{
− 𝜕2𝑢
𝜕𝑥𝜕𝑡

𝜕2 (𝑢 − 𝑣)
𝜕𝑥𝜕𝑡 − 𝑝 𝜕2𝑣

𝜕𝑥𝜕𝑡 +
𝜕2𝑢
𝜕𝑥𝜕𝑡 𝑧−

− 𝜕2𝑢
𝜕𝑥𝜕𝑡

𝜕𝑣
𝜕𝑥 + 𝜕𝑢

𝜕𝑥
𝜕2𝑣
𝜕𝑥𝜕𝑡 + 𝑓 (𝑥, 𝑡)

𝜕 (𝑢 − 𝑣)
𝜕𝑡

}
𝑑𝑥𝑑𝑡. (33)

Using equality (30), the right-hand side of relation (33) takes the following form

𝐼 (1)𝜏 ,𝑛 →
𝑇

∫
0

𝐿

∫
0

{ 𝜕2𝑢
𝜕𝑥𝜕𝑡

𝜕(𝑢 − 𝑣)
𝜕𝑥 + 𝜒 𝜕(𝑝 − 𝑧)𝜕𝑥

}
𝑑𝑥𝑑𝑡. (34)

Apparently, from (25)–(27), (29) for 𝜏 → 0, 𝑛 → ∞ we obtain

𝐼 (2)𝜏 ,𝑛 → −
𝑇

∫
0

𝐿

∫
0

{ 𝜕2𝑣
𝜕𝑥𝜕𝑡

𝜕 (𝑢 − 𝑣)
𝜕𝑥 + 𝑔 (

||||
𝜕𝑧
𝜕𝑥

||||)
𝜕𝑧
𝜕𝑥

𝜕 (𝑝 − 𝑧)
𝜕𝑥

}
𝑑𝑥𝑑𝑡. (35)

Thus, it follows from the definition of 𝐼𝜏 ,𝑛 that

𝑇

∫
0

𝐿

∫
0

{𝜕2(𝑢 − 𝑣)
𝜕𝑥𝜕𝑡

𝜕 (𝑢 − 𝑣)
𝜕𝑥 +(𝜒 − 𝑔 (

||||
𝜕𝑧
𝜕𝑥

||||)
𝜕𝑧
𝜕𝑥)

𝜕 (𝑝 − 𝑧)
𝜕𝑥

}
𝑑𝑥𝑑𝑡 ≥

≥ −12 ‖𝑢0 − 𝑣(𝑥, 0)‖
2
1. (36)

In (36), we choose 𝑣 = 𝑢 + 𝜆𝑤, 𝑧 = 𝑝 + 𝜆𝑞, where 𝜆 = const > 0, and 𝑤, 𝑞 are arbitrary functions from
𝐶∞(0, 𝑇 ;𝐶∞(0, 𝐿)), where 𝑤(𝑥, 0) = 0 for 𝑥 ∈ (0, 𝐿). As a result, we obtain



𝜆
𝑇

∫
0

𝐿

∫
0

(𝜒 − 𝑔 (
||||
𝜕(𝑝 + 𝜆𝑞)

𝜕𝑥
||||)

𝜕(𝑝 + 𝜆𝑞)
𝜕𝑥 )

𝜕𝑞
𝜕𝑥 𝑑𝑥𝑑𝑡+

+ 𝜆2
𝑇

∫
0

𝐿

∫
0

𝜕2𝑤
𝜕𝑥𝜕𝑡

𝜕𝑤
𝜕𝑥 𝑑𝑥𝑑𝑡 ≥ −𝜆2 ‖𝑤(𝑥, 0)‖

2
1 = 0. (37)

We divide inequality (37) by 𝜆 and pass to the limit as 𝜆 → 0, we obtain

𝑇

∫
0

𝐿

∫
0

(𝜒 − 𝑔 (
||||
𝜕𝑝
𝜕𝑥

||||)
𝜕𝑝
𝜕𝑥)

𝜕𝑞
𝜕𝑥 𝑑𝑥𝑑𝑡 ≥ 0. (38)

Since 𝑞 is an arbitrary function, the inequality holds at 𝑞 = 𝑣 and 𝑞 = −𝑣, where 𝑣 ∈ 𝐿2(0, 𝑇 ;𝑊 1
2 (0, 𝐿))

is an arbitrary function; therefore, we have

𝜒 = 𝑔 (
||||
𝜕𝑝
𝜕𝑥

||||)
𝜕𝑝
𝜕𝑥 .

The proof of theorem 2 is complete.
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