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Abstract
A one-dimensional initial-boundary value problem modelling the process of joint motion of a viscoelastic
porous medium and a liquid saturating the medium is considered. In the filtration theory, this process is called
filtration consolidation. A finite element in spatial variable and time-implicit difference scheme is constructed.
Its solvability is established, the convergence piecewise-constant filling of an approximate solution in the vari-
able 𝑡 to generalized solution of problem is proved.
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1. Problem statement

An initial-boundary value problem is considered, which is described by the following system of non-
linear partial differential equations for the unknown functions 𝑢(𝑥, 𝑡), 𝑝(𝑥, 𝑡):

− 𝜕
𝜕𝑥 (

𝜕𝑢
𝜕𝑥 + 𝜕2𝑢

𝜕𝑥𝜕𝑡 ) + 𝜕𝑝
𝜕𝑥 = 𝑓 (𝑥, 𝑡), 0 < 𝑥 < 𝐿, 0 < 𝑡 < 𝑇 , (1)

𝜕2𝑢
𝜕𝑥𝜕𝑡 −

𝜕
𝜕𝑥 (𝑔 (

||||
𝜕𝑝
𝜕𝑥

||||)
𝜕𝑝
𝜕𝑥 ) = 0, 0 < 𝑥 < 𝐿, 0 < 𝑡 < 𝑇 . (2)

We assume that for 𝑡 ∈ (0, 𝑇 ] the following boundary conditions are satisfied

𝑢(0, 𝑡) = 0, 𝜕𝑢
𝜕𝑥 (𝐿, 𝑡) +

𝜕2𝑢
𝜕𝑥𝜕𝑡 (𝐿, 𝑡) = 0, (3)

𝑝(0, 𝑡) = 𝑝(𝐿, 𝑡) = 0. (4)

The initial conditions are given as

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑝(𝑥, 0) = 𝑝0(𝑥), 0 ≤ 𝑥 ≤ 𝐿. (5)

The problem (1)–(5) is of an applied nature: relations (1)–(5) can be used to describe an one-
dimensional process of filtration consolidation with a limiting gradient (see, eg, [1]). In this case,
𝑝 is liquid pressure in the pores, 𝑢 is motion of the skeleton particles, 𝑓 (𝑥, 𝑡), 𝑔(𝜉 ) are given functions.
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The foundations of the theory of filtration consolidation were laid in such works as [2, 3, 4, 5].
In these works mathematical models of filtration consolidation were built, and studies of the models
from the standpoint of continuum mechanics were carried out. A rigorous mathematical analysis of
problems of filtration consolidation was carried out in [6, 7], where the solvability of these problems
in the class of generalized functions is established. The works [8, 9, 10] are devoted to experimental
study using numerical methods.

This paper considers the problem of filtration consolidation with limiting gradient in the case when
the function 𝑔 is defining the law filtration as follows:

𝑔(|𝜉 |) =
{

0, |𝜉 | ≤ 𝜉0,
1, |𝜉 | > 𝜉0.

In what follows, we assume that the functions 𝑔(𝜉 ), 𝑓 (𝑥, 𝑡) satisfy the following conditions:
𝐴1. 𝑔(𝜉 ), 𝜉 ≥ 0 is an absolutely continuous in 𝜉 , nonnegative, nondecreasing function and there exist
𝜉0 ≥ 0, 𝜂, 𝜇 > 0, such that at 𝜉 ≥ 𝜉0 the following inequality holds

𝜂(𝜉 − 𝜉0) ≤ 𝑔(|𝜉 |)𝜉 ≤ 𝜇(𝜉 − 𝜉0). (6)

𝐴2. The function 𝑓 (𝑥, 𝑡) is continuous at (𝑥, 𝑡) ∈ 𝑄𝑇 , where 𝑄𝑇 = (0, 𝐿) × (0, 𝑇 ].
Conditions (6) imposed on the function g mean that the filtration rate will be zero for small values

of the gradient modulus.

2. Defining a generalized solution

Let
◦
𝑉 be the closure of smooth functions equal to zero at 𝑥 = 0 in the norm of the space 𝑊 (1)

2 (0, 𝐿),
and let

◦
𝑉1 be the closure of smooth functions equal to zero on the boundary of the interval [0, 𝐿], in

the norm of the same space.
Definition. By a generalized solution to problem (1)–(5), we imply functions (𝑢, 𝑝), for which the

following conditions hold:

𝑢 ∈ 𝑊 (1)
2 (0, 𝑇 ;

◦
𝑉 ), 𝑝 ∈ 𝐿2(0, 𝑇 ;

◦
𝑉1),

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑝(𝑥, 0) = 𝑝0(𝑥) almost everywhere on 𝑥 ∈ (0, 𝐿),

and for any functions 𝑣 ∈ 𝑊 (1)
2 (0, 𝑇 ;

◦
𝑉 ), 𝑧 ∈ 𝐿2(0, 𝑇 ;

◦
𝑉 1) the following equality is true:

𝑇

∫
0

𝐿

∫
0

{

(
𝜕𝑢
𝜕𝑥 + 𝜕2𝑢

𝜕𝑥𝜕𝑡 )
𝜕2𝑣
𝜕𝑥𝜕𝑡 − 𝑝

𝜕2𝑣
𝜕𝑥𝜕𝑡 +

𝜕2𝑢
𝜕𝑥𝜕𝑡 𝑧+

+ 𝑔 (
||||
𝜕𝑝
𝜕𝑥

||||)
𝜕𝑝
𝜕𝑥

𝜕𝑧
𝜕𝑥

}
𝑑𝑥𝑑𝑡 =

𝑇

∫
0

𝐿

∫
0

𝑓 (𝑥, 𝑡) 𝜕𝑣𝜕𝑡 𝑑𝑥𝑑𝑡. (7)

3. The discrete problem

The problem (1)–(5) will be solved by the semi-discretization method in combination with the finite
element method. Let us construct an arbitrary unequally-spaced grid on the interval [0, L]

𝜔̄ℎ = {𝑥0 = 0 < 𝑥1 < ... < 𝑥𝑛 = 𝐿}.



Let 𝑉 𝑛 and 𝑉 𝑛
1 be finite-dimensional function spaces, continuous on the interval [0, 𝐿], satisfying the

conditions (3) and (4), respectively, and are polynomials of the first degree on each grid cell 𝛿𝑖 =
[𝑥𝑖−1, 𝑥𝑖], 𝑖 = 1, 2, ..., 𝑛. Let also

𝜔̄𝜏 = {𝑡 = 𝑘𝜏 , 0 ≤ 𝑘 ≤ 𝑀, 𝑀𝜏 = 𝑇},

𝜔𝜏 = 𝜔̄𝜏 ⧵ {0}.
Definition. By the approximate solution to the problem (1)–(5) constructed by the method of semi-

discretization in combination with the finite element method, we imply the functions (𝑢̂𝑛(𝑡), 𝑝̂𝑛(𝑡)) for
which the following conditions hold:

𝑢̂𝑛(𝑡) ∈ 𝑉 𝑛, 𝑝̂𝑛(𝑡) ∈ 𝑉 𝑛
1 ∀𝑡 ∈ 𝜔𝜏 ,

𝑢𝑛(𝑥, 0) = 𝑢0(𝑥), 𝑝𝑛(𝑥, 0) = 𝑝0(𝑥) almost everywhere on 𝑥 ∈ (0, 𝐿),
and for any functions 𝑣𝑛 ∈ 𝑉 𝑛, 𝑧𝑛 ∈ 𝑉 𝑛

1 the following equality is true

𝐿

∫
0

{

(
𝜕𝑢̂𝑛
𝜕𝑥 + 𝜕𝑢𝑛𝑡

𝜕𝑥 )
𝜕𝑣𝑛𝑡
𝜕𝑥 − 𝑝̂𝑛 𝜕𝑣

𝑛
𝑡

𝜕𝑥 + 𝜕𝑢𝑛𝑡
𝜕𝑥 𝑧̂𝑛 + 𝑔 (

|||||
𝜕𝑝̂𝑛
𝜕𝑥

|||||)
𝜕𝑝̂𝑛
𝜕𝑥

𝜕𝑧̂𝑛
𝜕𝑥

}
𝑑𝑥 =

𝐿

∫
0

𝑓 (𝑥, 𝑡) 𝑣𝑛𝑡 𝑑𝑥. (8)

Here 𝑣̂ = 𝑣(𝑡 + 𝜏), 𝑣𝑡 =
𝑣̂ − 𝑣
𝜏 .

Theorem 1. Approximate solution of the problem (1)–(5) exists.
Proof. Obviously, it suffices to establish the existence of 𝑝̂𝑛, 𝑢̂𝑛 satisfying (8), under the assumption

that 𝑝𝑛, 𝑢𝑛 are known.
Since the choice of the functions 𝑣𝑛, 𝑧𝑛 is arbitrary, the equality (8) is equivalent to the following

system
𝐿

∫
0

{

(
𝜕𝑢̂𝑛
𝜕𝑥 + 𝜕𝑢𝑛𝑡

𝜕𝑥 )
𝜕𝑣𝑛𝑡
𝜕𝑥 − 𝑝̂𝑛 𝜕𝑣

𝑛
𝑡

𝜕𝑥

}
𝑑𝑥 =

𝐿

∫
0

𝑓 (𝑥, 𝑡) 𝑣𝑛𝑡 𝑑𝑥, (9)

𝐿

∫
0

{
𝜕𝑢𝑛𝑡
𝜕𝑥 𝑧̂𝑛 + 𝑔 (

|||||
𝜕𝑝̂𝑛
𝜕𝑥

|||||)
𝜕𝑝̂𝑛
𝜕𝑥

𝜕𝑧̂𝑛
𝜕𝑥

}
𝑑𝑥 = 0. (10)

We will look for approximate solutions in the form

𝑢̂𝑛 =
𝑛
∑
𝑘=0

𝜁 (1)𝑘 𝜑𝑘 , 𝑝̂𝑛 =
𝑛
∑
𝑘=0

𝜁 (2)𝑘 𝜓𝑘 ,

where 𝜑𝑘 , 𝜓𝑘 are linear on each element, continuous on the interval [0, 𝐿] functions satisfying the
conditions

𝜑𝑘(𝑥𝑗) =
{

1, 𝑘 = 𝑗,
0, 𝑘 ≠ 𝑗, 𝑘 = 0, 1, … , 𝑛, 𝜓𝑘(𝑥𝑗) =

{
1, 𝑘 = 𝑗,
0, 𝑘 ≠ 𝑗, 𝑘 = 0, 1, … , 𝑛.

The unknown coefficients 𝜁 (𝑖)𝑘 , 𝑘 = 1, 2, … , 𝑛 𝑖 = 1, 2 are determined by the following system of
equations:

𝐿

∫
0

{

(
𝜕𝑢̂𝑛
𝜕𝑥 + 𝜕𝑢𝑛𝑡

𝜕𝑥 )
𝜕(𝜑𝑘)𝑡
𝜕𝑥 − 𝑝̂𝑛 𝜕(𝜑𝑘)𝑡𝜕𝑥

}
𝑑𝑥 =

𝐿

∫
0

𝑓 (𝑥, 𝑡) (𝜑𝑘)𝑡𝑑𝑥, (11)



𝐿

∫
0

{
𝜕𝑢𝑛𝑡
𝜕𝑥 𝜓̂ 𝑘 + 𝑔 (

|||||
𝜕𝑝̂𝑛
𝜕𝑥

|||||)
𝜕𝑝̂𝑛
𝜕𝑥

𝜕𝜓̂ 𝑘
𝜕𝑥

}
𝑑𝑥 = 0. (12)

Let H ∶ 𝑅2𝑛 → 𝑅2𝑛 be a nonlinear operator such that the equation

H(𝜁 ) = 0

is equivalent to system (11)–(12). Let us make sure that 𝑅2𝑛 contains a sphere centered at zero of finite
radius, on which

(H(𝜁 ), 𝜁 )𝑅2𝑛 ≥ 0. (13)

We have

(H(𝜁 ), 𝜁 )𝑅2𝑛 =
𝐿

∫
0

(
𝜕𝑢̂𝑛
𝜕𝑥 + 𝜕𝑢𝑛𝑡

𝜕𝑥 )
𝜕𝑢𝑛𝑡
𝜕𝑥 𝑑𝑥+

+
𝐿

∫
0

𝑔 (
|||||
𝜕𝑝̂𝑛
𝜕𝑥

|||||)(
𝜕𝑝̂𝑛
𝜕𝑥 )

2
𝑑𝑥 −

𝐿

∫
0

𝑓 (𝑥, 𝑡) 𝑢𝑛𝑡 𝑑𝑥. (14)

The first term on the right-hand side of equality (14) can be transformed to the form:

𝐿

∫
0

(
𝜕𝑢̂𝑛
𝜕𝑥 + 𝜕𝑢𝑛𝑡

𝜕𝑥 )
𝜕𝑢𝑛𝑡
𝜕𝑥 𝑑𝑥 = (

1
𝜏 + 1

𝜏 2) ∥ 𝑢̂𝑛 ∥21 −(
1
𝜏 + 2

𝜏 2)
𝐿

∫
0

𝜕𝑢̂𝑛
𝜕𝑥

𝜕𝑢𝑛
𝜕𝑥 𝑑𝑥 + 1

𝜏 2 ∥ 𝑢𝑛 ∥21 . (15)

Here ∥ 𝑣 ∥21=
𝐿

∫
0

(
𝜕𝑣
𝜕𝑥 )

2
𝑑𝑥 .

Using the Cauchy-Bunyakovsky inequality

(𝑥, 𝑦) ≤ 𝛿||𝑥||2 + 1
4𝛿 ||𝑦||

2, (16)

from (15) it is easy to obtain the following estimate

𝐿

∫
0

(
𝜕𝑢̂𝑛
𝜕𝑥 + 𝜕𝑢𝑛𝑡

𝜕𝑥 )
𝜕𝑢𝑛𝑡
𝜕𝑥 𝑑𝑥 ≥ (

1
𝜏 + 1

𝜏 2 − 𝛿) ∥ 𝑢̂𝑛 ∥21 −
1
4𝛿 (

1
𝜏 + 2

𝜏 2)
2
∥ 𝑢𝑛 ∥21 . (17)

Using (16) and inequality (6), for the second term in equality (14) we have

𝐿

∫
0

𝑔 (
|||||
𝜕𝑝̂𝑛
𝜕𝑥

|||||)(
𝜕𝑝̂𝑛
𝜕𝑥 )

2
𝑑𝑥 ≥ (𝜂 − 𝛿) ∥ 𝑝̂𝑛 ∥21 −

𝜂2𝜉 20 𝐿2
4𝛿 .

To estimate the last term of (14), we use the boundedness of the function 𝑓 (𝜉 ), inequality (16), and
the Friedrichs inequality. As a result, we obtain

|||||||

𝐿

∫
0

𝑓 (𝑥, 𝑡) ⋅ 𝑢𝑛𝑡 𝑑𝑥
|||||||
≤ 𝛿 ∥ 𝑢̂𝑛 ∥21 +

𝐶2𝐶2
𝐹𝐿2

4𝛿𝜏 2 + 𝐶𝐶𝐹
𝜏 ∥ 𝑢𝑛 ∥21,



here 𝐶𝐹 is a constant of the Friedrichs inequality, 𝐶 is a constant such that

|𝑓 (𝜉 , 𝜁 )| ≤ 𝐶 ∀𝜉 ∈ [0, 𝐿], ∀𝜁 ∈ [0, 𝑇 ].

Substituting the estimates obtained in (14), we have

(H(𝜁 ), 𝜁 )𝑅2𝑛 ≥ 𝐾(𝛿) (∥ 𝑢̂𝑛 ∥21 + ∥ 𝑝̂𝑛 ∥21) − 𝑅(𝛿) , (18)

where

𝐾(𝛿) = min
{
(
1
𝜏 + 1

𝜏 2 − 2𝛿) , 𝜂 − 𝛿
}
,

𝑅(𝛿) = (
𝐶𝐶𝐹
𝜏 + 1

4𝛿 (
1
𝜏 + 2

𝜏 2)
2

) ∥ 𝑢𝑛 ∥21 +
𝐶2𝐶2

𝐹𝐿2
4𝛿𝜏 2 + 𝜂2𝜉 20 𝐿2

4𝛿 .

Let 𝛿 ∗ be a constant such that for all 0 < 𝛿 ≤ 𝛿 ∗ the following inequality holds

𝐾(𝛿) ≥ 𝛽 = 𝑐𝑜𝑛𝑠𝑡 > 0 ,

and 𝑆 ⊂ 𝑅2𝑛 be a sphere centered at zero at which the right-hand side of inequality (18) is non-negative.
Then, by the topological lemma ([11], p. 66), there is at least one solution to the system inside this
sphere. The proof of Theorem 1 is complete.

Lemma 1. For the approximate solution (8), the following a priori estimates are valid

max
𝑡′

‖𝑢𝑛(𝑡′)‖21 ≤ 𝐶,
𝑡′
∑
𝑡=0

𝜏 ‖𝑝𝑛(𝑡)‖21 ≤ 𝐶, (19)

𝑡′−𝜏
∑
𝑡=0

𝜏 ‖(𝑢𝑛)𝑡 ‖21 ≤ 𝐶,
𝑡′
∑
𝑡=0

𝜏
‖‖‖‖
𝜕𝑢𝑛𝑡
𝜕𝑥

‖‖‖‖
2

𝐿2(0,𝐿)
≤ 𝐶, (20)

𝑡′−𝜏
∑
𝑡=0

𝜏
‖‖‖‖‖‖
𝑔 (

|||||
𝜕𝑝̂𝑛
𝜕𝑥

|||||)
𝜕𝑝̂𝑛
𝜕𝑥

‖‖‖‖‖‖

2

𝐿2(0,𝐿)

≤ 𝐶. (21)

Proof. Let us assume in (8) 𝑣𝑛 = 𝑢𝑛, 𝑧𝑛 = 𝑝𝑛 and obtain

𝐿

∫
0

{

(
𝜕𝑢̂𝑛
𝜕𝑥 + 𝜕𝑢𝑛𝑡

𝜕𝑥 )
𝜕𝑢𝑛𝑡
𝜕𝑥 + 𝑔 (

|||||
𝜕𝑝̂𝑛
𝜕𝑥

|||||)(
𝜕𝑝̂𝑛
𝜕𝑥 )

2 }
𝑑𝑥 =

𝐿

∫
0

𝑓 (𝑥, 𝑡) 𝑢𝑛𝑡 𝑑𝑥. (22)

Note that

𝜕𝑢̂𝑛
𝜕𝑥

𝜕𝑢𝑛𝑡
𝜕𝑥 = 𝜕𝑢̂𝑛

𝜕𝑥
𝜕
𝜕𝑥 (

𝑢̂𝑛 − 𝑢𝑛
𝜏 ) = 𝜕𝑢̂𝑛

𝜕𝑥 ⋅ 1𝜏 (
𝜕𝑢̂𝑛
𝜕𝑥 − 𝜕𝑢𝑛

𝜕𝑥 ) =

= 1
2 (

𝜕𝑢̂𝑛
𝜕𝑥 )

2
− 1
2 (

𝜕𝑢𝑛
𝜕𝑥 )

2
+ 𝜏 2

2 (
𝜕𝑢𝑛𝑡
𝜕𝑥 )

2
. (23)

We substitute equality (23) into (22), multiply by 𝜏 and sum the resulting relation over 𝑡 from 0 to
𝑡′ − 𝜏 and obtain

1
2‖𝑢

𝑛(𝑡′)‖21 −
1
2‖𝑢

𝑛(0)‖21 +
1
2
𝑡′−𝜏
∑
𝑡=0

𝜏 2‖𝑢𝑛𝑡 (𝑡)‖21 +
𝑡′−𝜏
∑
𝑡=0

𝜏
‖‖‖‖
𝜕𝑢𝑛𝑡
𝜕𝑥

‖‖‖‖
2

𝐿2(0,𝐿)
+



+
𝑡′−𝜏
∑
𝑡=0

𝜏
𝐿

∫
0

𝑔 (
|||||
𝜕𝑝̂𝑛
𝜕𝑥

|||||)(
𝜕𝑝̂𝑛
𝜕𝑥 )

2
𝑑𝑥 =

𝑡′−𝜏
∑
𝑡=0

𝜏
𝐿

∫
0

𝑓 (𝑥, 𝑡) ⋅ 𝑢𝑛𝑡 𝑑𝑥. (24)

From (24), taking into account inequality (6), we have a priori estimates (19)–(20). Also, considering
that

‖‖‖‖‖‖
𝑔 (

|||||
𝜕𝑝̂𝑛
𝜕𝑥

|||||)
𝜕𝑝̂𝑛
𝜕𝑥

‖‖‖‖‖‖

2

𝐿2(0,𝐿)

≤
‖‖‖‖‖
𝜕𝑝̂𝑛
𝜕𝑥

‖‖‖‖‖

2

𝐿2(0,𝐿)
.

we have estimate (21). The proof of Lemma 1 is complete.
Lemma 2. There exist function

𝑢 ∈ 𝑊 (1)
2 (0, 𝑇 ;

◦
𝑉 ), 𝑝 ∈ 𝐿2(0, 𝑇 ;

◦
𝑉 1)

and sequences {𝜏}, {𝑛} such that at 𝜏 → 0, 𝑛 → ∞

Π+𝑢𝑛 ⇀ 𝑢, Π+𝑢𝑛𝑡 ⇀ 𝜕𝑢
𝜕𝑡 in 𝐿2(0, 𝑇 ;

◦
𝑉 ), (25)

𝜕Π+𝑢𝑛𝑡
𝜕𝑥 ⇀ 𝜕2𝑢

𝜕𝑥𝜕𝑡 in 𝐿2(0, 𝑇 ; 𝐿2(0, 𝐿)), (26)

Π+𝑝𝑛 ⇀ 𝑝 in 𝐿2(0, 𝑇 ;
◦
𝑉 1). (27)

Here Π+𝑧 is piecewise-constant filling of 𝑧 ∶

Π+𝑧(𝑡) =
{
𝑧(𝑘𝜏) ∶ 𝑘𝜏 ≤ 𝑡 < (𝑘 + 1)𝜏

}
.

The validity of statements (25)–(27) follows from a priori estimates (19)–(20) and the weak com-
pactness of bounded sets in a reflexive Banach space. The proof of Lemma 2 is complete.

Theorem 2. Functions 𝑢, 𝑝 satisfying relations (25)–(27) are a generalized solution to problem
(1)–(5).

Proof. Let the functions 𝑢, 𝑝 satisfy relations (25)–(27), it is required to prove that 𝑢, 𝑝 satisfy
identity (7). To do this, in (8) we put

𝑣𝑛(𝑥, 𝑡) = 1
𝜏

𝑡+𝜏

∫
𝑡

𝑣̃𝑛(𝑥, 𝜉 )𝑑𝜉 , 𝑧𝑛(𝑥, 𝑡) = 1
𝜏

𝑡+𝜏

∫
𝑡

𝑧̃𝑛(𝑥, 𝜉 )𝑑𝜉 ,

where 𝑣̃𝑛, 𝑧̃𝑛 are functions from 𝐶∞(0, 𝑇 ;
◦
𝑉 𝑛) and 𝐶∞(0, 𝑇 ;

◦
𝑉 𝑛
1 ) respectively, such that 𝑣̃𝑛(𝑥, 𝑇 ) =

𝑧̃𝑛(𝑥, 𝑇 ) = 0. We multiply (8) by 𝜏 , sum over 𝑡 from 0 to 𝑇 − 𝜏 . The result, using the filling opera-
tor Π+, can be written in the form

𝑇

∫
0

𝐿

∫
0

{

(
𝜕Π+𝑢̂𝑛
𝜕𝑥 + 𝜕Π+𝑢𝑛𝑡

𝜕𝑥 )
𝜕Π+𝑣𝑛𝑡
𝜕𝑥 − Π+𝑝̂𝑛 𝜕Π

+𝑣𝑛𝑡
𝜕𝑥 + 𝜕Π+𝑢𝑛𝑡

𝜕𝑥 Π+𝑧̂𝑛+

+ 𝑔 (
|||||
𝜕Π+𝑝̂𝑛
𝜕𝑥

|||||)
𝜕Π+𝑝̂𝑛
𝜕𝑥

𝜕Π+𝑧̂𝑛
𝜕𝑥

}
𝑑𝑥𝑑𝑡 =

𝑇

∫
0

𝐿

∫
0

𝑓 (𝑥, 𝑡) Π+𝑣𝑛𝑡 𝑑𝑥𝑑𝑡. (28)



From the boundedness of 𝑔 and estimate (21) it follows that there exists a function 𝜒 from the space
𝐿2(0, 𝑇 ; 𝐿2(0, 𝐿)) such that

𝑔 (
|||||
𝜕Π+𝑝̂𝑛
𝜕𝑥

|||||)
𝜕Π+𝑝̂𝑛
𝜕𝑥 ⇀ 𝜒 in 𝐿2(0, 𝑇 ; 𝐿2(0, 𝐿)). (29)

Taking into account (25)–(27) and (29) in equality (28), we pass to the limit in 𝜏 → 0 and 𝑛 → ∞
and obtain

𝑇

∫
0

𝐿

∫
0

{

(
𝜕𝑢
𝜕𝑥 + 𝜕2𝑢

𝜕𝑥𝜕𝑡 )
𝜕2𝑣
𝜕𝑥𝜕𝑡 − 𝑝

𝜕2𝑣
𝜕𝑥𝜕𝑡 +

𝜕2𝑢
𝜕𝑥𝜕𝑡 𝑧 + 𝜒

𝜕𝑧
𝜕𝑥

}
𝑑𝑥𝑑𝑡 =

=
𝑇

∫
0

𝐿

∫
0

𝑓 (𝑥, 𝑡) 𝜕𝑣𝜕𝑡 𝑑𝑥𝑑𝑡. (30)

Let us prove that 𝜒 = 𝑔 (
||||
𝜕𝑝
𝜕𝑥

||||)
𝜕𝑝
𝜕𝑥 . To do this, we use the monotonicity method. We write down

the apparent inequality

𝑇−𝜏
∑
𝑡=0

𝜏
𝐿

∫
0

(
𝜕𝑢𝑛
𝜕𝑥 − 𝜕𝑣𝑛

𝜕𝑥 )𝑡 (
𝜕𝑢̂𝑛
𝜕𝑥 − 𝜕𝑣̂𝑛

𝜕𝑥 ) 𝑑𝑥 ≥

≥ 1
2‖𝑢

𝑛(𝑇 ) − 𝑣𝑛(𝑇 )‖21
𝜕2𝑢
𝜕𝑥𝜕𝑡 𝑧 −

1
2‖𝑢

𝑛(0) − 𝑣𝑛(0)‖21 ≥ −12‖𝑢0 − 𝑣
𝑛(𝑥, 0)‖21,

where 𝑣𝑛 is an arbitrary smooth function 𝑣 ∈ 𝐶∞(0, 𝑇 ;
◦
𝑉 𝑛). From this inequality and the monotonicity

of the function 𝑔(𝜉 ) it follows that

𝑇−𝜏
∑
𝑡=0

𝜏
𝐿

∫
0

(
𝜕𝑢𝑛
𝜕𝑥 − 𝜕𝑣𝑛

𝜕𝑥 )𝑡 (
𝜕𝑢̂𝑛
𝜕𝑥 − 𝜕𝑣̂𝑛

𝜕𝑥 ) 𝑑𝑥+

+
𝑇−𝜏
∑
𝑡=0

𝜏
𝐿

∫
0

{
𝑔 (

|||||
𝜕𝑝̂𝑛
𝜕𝑥

|||||)
𝜕𝑝̂𝑛
𝜕𝑥 − 𝑔 (

||||
𝜕𝑧̂𝑛
𝜕𝑥

||||)
𝜕𝑧̂𝑛
𝜕𝑥

}
𝜕 (𝑝̂𝑛 − 𝑧̂𝑛)

𝜕𝑥 𝑑𝑥 ≥ −12‖𝑢0 − 𝑣
𝑛(𝑥, 0)‖21.

The last relation is equivalent to the following integral inequality

𝐼𝜏 ,𝑛 =
𝑇

∫
0

𝐿

∫
0

(
𝜕Π+𝑢𝑛𝑡
𝜕𝑥 − 𝜕Π+𝑣𝑛𝑡

𝜕𝑥 )
𝜕Π+ (𝑢̂𝑛 − 𝑣̂𝑛)

𝜕𝑥 𝑑𝑥𝑑𝑡+

+
𝑇

∫
0

𝐿

∫
0

𝑔 (
|||||
𝜕Π+𝑝̂𝑛
𝜕𝑥

|||||)
𝜕Π+𝑝̂𝑛
𝜕𝑥

𝜕Π+ (𝑝̂𝑛 − 𝑧̂𝑛)
𝜕𝑥 𝑑𝑥𝑑𝑡−

−
𝑇

∫
0

𝐿

∫
0

𝑔 (
||||
𝜕Π+𝑧̂𝑛
𝜕𝑥

||||)
𝜕Π+𝑧̂𝑛
𝜕𝑥

𝜕Π+ (𝑝̂𝑛 − 𝑧̂𝑛)
𝜕𝑥 𝑑𝑥𝑑𝑡 ≥ −12‖𝑢0 − 𝑣

𝑛(𝑥, 0)‖21. (31)



We represent 𝐼𝜏 ,𝑛 as the sum 𝐼 = 𝐼 (1)𝜏 ,𝑛 + 𝐼 (2)𝜏 ,𝑛, where

𝐼 (1)𝜏 ,𝑛 =
𝑇

∫
0

𝐿

∫
0

{
𝜕Π+𝑢𝑛𝑡
𝜕𝑥

𝜕Π+ (𝑢̂𝑛 − 𝑣̂𝑛)
𝜕𝑥 + 𝑔 (

|||||
𝜕Π+𝑝̂𝑛
𝜕𝑥

|||||)
𝜕Π+𝑝̂𝑛
𝜕𝑥

𝜕Π+ (𝑝̂𝑛 − 𝑧̂𝑛)
𝜕𝑥

}
𝑑𝑥𝑑𝑡,

𝐼 (2)𝜏 ,𝑛 = −
𝑇

∫
0

𝐿

∫
0

{
𝜕Π+𝑣𝑛𝑡
𝜕𝑥

𝜕Π+ (𝑢̂𝑛 − 𝑣̂𝑛)
𝜕𝑥 +𝑔 (

||||
𝜕Π+𝑧̂𝑛
𝜕𝑥

||||)
𝜕Π+𝑧̂𝑛
𝜕𝑥

𝜕Π+ (𝑝̂𝑛 − 𝑧̂𝑛)
𝜕𝑥

}
𝑑𝑥𝑑𝑡.

To transform the first relation 𝐼 (1)𝜏 ,𝑛, we use equality (28) at 𝑣𝑛 = 𝑢𝑛 − 𝑣𝑛, 𝑝𝑛 = 𝑝𝑛 − 𝑧𝑛 and obtain

𝐼 (1)𝜏 ,𝑛 =
𝑇

∫
0

𝐿

∫
0

{
−𝜕Π

+𝑢𝑛𝑡
𝜕𝑥

𝜕Π+ (𝑢𝑛𝑡 − 𝑣𝑛𝑡 )
𝜕𝑥 − Π+𝑝̂𝑛 𝜕Π

+𝑣𝑛𝑡
𝜕𝑥 + 𝜕Π+𝑢𝑛𝑡

𝜕𝑥 Π+𝑧̂𝑛 − 𝜕Π+𝑢𝑛𝑡
𝜕𝑥

𝜕Π+𝑣𝑛
𝜕𝑥 +

+ 𝜕Π+𝑢𝑛
𝜕𝑥

𝜕Π+𝑣𝑛𝑡
𝜕𝑥 + 𝑓 (𝑥, 𝑡) Π+ (𝑢𝑛 − 𝑣𝑛)𝑡

}
𝑑𝑥𝑑𝑡. (32)

In (32) ), we make the passage to the limit as 𝜏 → 0, 𝑛 → ∞, taking into account (25)–(27), (29).
As a result, we obtain

𝐼 (1)𝜏 ,𝑛 →
𝑇

∫
0

𝐿

∫
0

{
− 𝜕2𝑢
𝜕𝑥𝜕𝑡

𝜕2 (𝑢 − 𝑣)
𝜕𝑥𝜕𝑡 − 𝑝 𝜕2𝑣

𝜕𝑥𝜕𝑡 +
𝜕2𝑢
𝜕𝑥𝜕𝑡 𝑧−

− 𝜕2𝑢
𝜕𝑥𝜕𝑡

𝜕𝑣
𝜕𝑥 + 𝜕𝑢

𝜕𝑥
𝜕2𝑣
𝜕𝑥𝜕𝑡 + 𝑓 (𝑥, 𝑡)

𝜕 (𝑢 − 𝑣)
𝜕𝑡

}
𝑑𝑥𝑑𝑡. (33)

Using equality (30), the right-hand side of relation (33) takes the following form

𝐼 (1)𝜏 ,𝑛 →
𝑇

∫
0

𝐿

∫
0

{ 𝜕2𝑢
𝜕𝑥𝜕𝑡

𝜕(𝑢 − 𝑣)
𝜕𝑥 + 𝜒 𝜕(𝑝 − 𝑧)𝜕𝑥

}
𝑑𝑥𝑑𝑡. (34)

Apparently, from (25)–(27), (29) for 𝜏 → 0, 𝑛 → ∞ we obtain

𝐼 (2)𝜏 ,𝑛 → −
𝑇

∫
0

𝐿

∫
0

{ 𝜕2𝑣
𝜕𝑥𝜕𝑡

𝜕 (𝑢 − 𝑣)
𝜕𝑥 + 𝑔 (

||||
𝜕𝑧
𝜕𝑥

||||)
𝜕𝑧
𝜕𝑥

𝜕 (𝑝 − 𝑧)
𝜕𝑥

}
𝑑𝑥𝑑𝑡. (35)

Thus, it follows from the definition of 𝐼𝜏 ,𝑛 that

𝑇

∫
0

𝐿

∫
0

{𝜕2(𝑢 − 𝑣)
𝜕𝑥𝜕𝑡

𝜕 (𝑢 − 𝑣)
𝜕𝑥 + (𝜒 − 𝑔 (

||||
𝜕𝑧
𝜕𝑥

||||)
𝜕𝑧
𝜕𝑥 )

𝜕 (𝑝 − 𝑧)
𝜕𝑥

}
𝑑𝑥𝑑𝑡 ≥

≥ −12‖𝑢0 − 𝑣(𝑥, 0)‖
2
1. (36)

In (36), we choose 𝑣 = 𝑢 + 𝜆𝑤, 𝑧 = 𝑝 + 𝜆𝑞, where 𝜆 = const > 0, and 𝑤, 𝑞 are arbitrary functions from
𝐶∞(0, 𝑇 ; 𝐶∞(0, 𝐿)), where 𝑤(𝑥, 0) = 0 for 𝑥 ∈ (0, 𝐿). As a result, we obtain



𝜆
𝑇

∫
0

𝐿

∫
0

(𝜒 − 𝑔 (
||||
𝜕(𝑝 + 𝜆𝑞)

𝜕𝑥
||||)

𝜕(𝑝 + 𝜆𝑞)
𝜕𝑥 )

𝜕𝑞
𝜕𝑥 𝑑𝑥𝑑𝑡+

+ 𝜆2
𝑇

∫
0

𝐿

∫
0

𝜕2𝑤
𝜕𝑥𝜕𝑡

𝜕𝑤
𝜕𝑥 𝑑𝑥𝑑𝑡 ≥ −𝜆2 ‖𝑤(𝑥, 0)‖

2
1 = 0. (37)

We divide inequality (37) by 𝜆 and pass to the limit as 𝜆 → 0, we obtain

𝑇

∫
0

𝐿

∫
0

(𝜒 − 𝑔 (
||||
𝜕𝑝
𝜕𝑥

||||)
𝜕𝑝
𝜕𝑥 )

𝜕𝑞
𝜕𝑥 𝑑𝑥𝑑𝑡 ≥ 0. (38)

Since 𝑞 is an arbitrary function, the inequality holds at 𝑞 = 𝑣 and 𝑞 = −𝑣, where 𝑣 ∈ 𝐿2(0, 𝑇 ;𝑊 1
2 (0, 𝐿))

is an arbitrary function; therefore, we have

𝜒 = 𝑔 (
||||
𝜕𝑝
𝜕𝑥

||||)
𝜕𝑝
𝜕𝑥 .

The proof of theorem 2 is complete.
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