On the convergence of an approximate method for solving the problem filtration consolidation with a limiting gradient

Maria F. Pavlova, Elena V. Rung

Kazan Federal University, 35 Kremlyovskaya str., Kazan, 420008, Russian Federation

Abstract
A one-dimensional initial-boundary value problem modelling the process of joint motion of a viscoelastic porous medium and a liquid saturating the medium is considered. In the filtration theory, this process is called filtration consolidation. A finite element in spatial variable and time-implicit difference scheme is constructed. Its solvability is established, the convergence piecewise-constant filling of an approximate solution in the variable \(t \) to generalized solution of problem is proved.

Keywords
filtration, filtration consolidation, difference scheme, finite element method

1. Problem statement
An initial-boundary value problem is considered, which is described by the following system of nonlinear partial differential equations for the unknown functions \(u(x, t) \), \(p(x, t) \):

\[
- \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial^2 u}{\partial x \partial t} \right) + \frac{\partial p}{\partial x} = f(x, t), \quad 0 < x < L, \ 0 < t < T,
\]

\[
\frac{\partial^2 u}{\partial x \partial t} - \frac{\partial}{\partial x} \left(g \left(\left| \frac{\partial p}{\partial x} \right| \right) \frac{\partial p}{\partial x} \right) = 0, \quad 0 < x < L, \ 0 < t < T.
\]

We assume that for \(t \in (0, T] \) the following boundary conditions are satisfied

\[
u(0, t) = 0, \quad \frac{\partial u}{\partial x}(L, t) + \frac{\partial^2 u}{\partial x \partial t}(L, t) = 0,
\]

\[
r(0, t) = r(L, t) = 0.
\]

The initial conditions are given as

\[
u(x, 0) = u_0(x), \quad r(x, 0) = r_0(x), \quad 0 \leq x \leq L.
\]

The problem (1)–(5) is of an applied nature: relations (1)–(5) can be used to describe an one-dimensional process of filtration consolidation with a limiting gradient (see, eg, [1]). In this case, \(p \) is liquid pressure in the pores, \(u \) is motion of the skeleton particles, \(f(x, t) \), \(g(\xi) \) are given functions.
The foundations of the theory of filtration consolidation were laid in such works as [2, 3, 4, 5]. In these works mathematical models of filtration consolidation were built, and studies of the models from the standpoint of continuum mechanics were carried out. A rigorous mathematical analysis of problems of filtration consolidation was carried out in [6, 7], where the solvability of these problems in the class of generalized functions is established. The works [8, 9, 10] are devoted to experimental study using numerical methods.

This paper considers the problem of filtration consolidation with limiting gradient in the case when the function \(g(\xi) = \begin{cases} 0, & |\xi| \leq \xi_0 \\ 1, & |\xi| > \xi_0 \end{cases} \)

In what follows, we assume that the functions \(g(\xi), f(x, t) \) satisfy the following conditions:

\(A_1 \). \(g(\xi), \xi \geq 0 \) is an absolutely continuous in \(\xi \), nonnegative, nondecreasing function and there exist \(\xi_0 \geq 0, \eta, \mu > 0 \), such that at \(\xi \geq \xi_0 \) the following inequality holds

\[\eta (\xi - \xi_0) \leq g(|\xi|) \xi \leq \mu (\xi - \xi_0). \]

\(A_2 \). The function \(f(x, t) \) is continuous at \((x, t) \in Q_T\), where \(Q_T = (0, L) \times (0, T) \).

Conditions (6) imposed on the function \(g \) mean that the filtration rate will be zero for small values of the gradient modulus.

2. Defining a generalized solution

Let \(\tilde{V} \) be the closure of smooth functions equal to zero at \(x = 0 \) in the norm of the space \(W_2^1(0, L) \), and let \(\tilde{V}_1 \) be the closure of smooth functions equal to zero on the boundary of the interval \([0, L]\), in the norm of the same space.

Definition. By a generalized solution to problem (1)–(5), we imply functions \((u, p)\), for which the following conditions hold:

\[u \in W_2^1(0, T; \tilde{V}), \quad p \in L_2(0, T; \tilde{V}_1), \]

\[u(x, 0) = u_0(x), \quad p(x, 0) = p_0(x) \quad \text{almost everywhere on} \quad x \in (0, L), \]

and for any functions \(v \in W_2^1(0, T; \tilde{V}), z \in L_2(0, T; \tilde{V}_1) \) the following equality is true:

\[
\int_0^T \int_0^L \left(\frac{\partial u}{\partial x} + \frac{\partial^2 u}{\partial x \partial t} \right) \frac{\partial^2 v}{\partial x \partial t} - p \frac{\partial^2 v}{\partial x \partial t} + \frac{\partial^2 u}{\partial x \partial t} z^+ + g \left(\frac{\partial p}{\partial x} \right) \frac{\partial p}{\partial x} \frac{\partial z}{\partial x} \right) dx dt = \int_0^T \int_0^L f(x, t) \frac{\partial v}{\partial t} dx dt. \tag{7}
\]

3. The discrete problem

The problem (1)–(5) will be solved by the semi-discretization method in combination with the finite element method. Let us construct an arbitrary unequally-spaced grid on the interval \([0, L]\)

\[\bar{\omega}_h = \{ x_0 = 0 < x_1 < ... < x_n = L \}. \]
Let V^n and V^n_1 be finite-dimensional function spaces, continuous on the interval $[0, L]$, satisfying the conditions (3) and (4), respectively, and are polynomials of the first degree on each grid cell $\delta_i = [x_{i-1}, x_i], i = 1, 2, ..., n$. Let also $\omega_\tau = \{t = k\tau, 0 \leq k \leq M, M\tau = T\}$, $\omega_\tau = \omega_\tau \setminus \{0\}$.

Definition. By the approximate solution to the problem (1)–(5) constructed by the method of semi-discretization in combination with the finite element method, we imply the functions $(\hat{u}^n(t), \hat{p}^n(t))$ for which the following conditions hold:

$$\hat{u}^n(t) \in V^n, \quad \hat{p}^n(t) \in V^n_1 \quad \forall t \in \omega_\tau,$$

and for any functions $v^n \in V^n, z^n \in V^n_1$ the following equality is true

$$\int_0^L \left\{ \left(\frac{\partial \hat{u}_n}{\partial x} + \frac{\partial u_n}{\partial x} \right) \frac{\partial v^n}{\partial x} - \hat{p}_n \frac{\partial v^n}{\partial x} + \frac{\partial u_n}{\partial x} \frac{\partial z^n}{\partial x} + g \left(\frac{\partial \hat{p}_n}{\partial x} \right) \frac{\partial \hat{p}_n}{\partial x} \frac{\partial z^n}{\partial x} \right\} dx = \int_0^L \hat{f}(x, t) v^n dx. \quad (8)$$

Here $\hat{v} = v(t + \tau), \hat{v}_\tau = \frac{\hat{v} - v}{\tau}$.

Theorem 1. Approximate solution of the problem (1)–(5) exists.

Proof. Obviously, it suffices to establish the existence of \hat{p}_n, \hat{u}_n satisfying (8), under the assumption that p^n, u^n are known.

Since the choice of the functions v^n, z^n is arbitrary, the equality (8) is equivalent to the following system

$$\int_0^L \left\{ \left(\frac{\partial \hat{u}_n}{\partial x} + \frac{\partial u_n}{\partial x} \right) \frac{\partial \hat{v}_n}{\partial x} - \hat{p}_n \frac{\partial \hat{v}_n}{\partial x} + \frac{\partial u_n}{\partial x} \frac{\partial \hat{z}_n}{\partial x} + g \left(\frac{\partial \hat{p}_n}{\partial x} \right) \frac{\partial \hat{p}_n}{\partial x} \frac{\partial \hat{z}_n}{\partial x} \right\} dx = \int_0^L \hat{f}(x, t) \hat{v}_n dx, \quad (9)$$

$$\int_0^L \left\{ \frac{\partial u_n}{\partial x} \frac{\partial \hat{z}_n}{\partial x} + g \left(\frac{\partial \hat{p}_n}{\partial x} \right) \frac{\partial \hat{p}_n}{\partial x} \frac{\partial \hat{z}_n}{\partial x} \right\} dx = 0. \quad (10)$$

We will look for approximate solutions in the form

$$\hat{u}_n = \sum_{k=0}^n \chi_k^{(1)} \varphi_k, \quad \hat{p}_n = \sum_{k=0}^n \chi_k^{(2)} \psi_k,$$

where φ_k, ψ_k are linear on each element, continuous on the interval $[0, L]$ functions satisfying the conditions

$$\varphi_k(x_j) = \begin{cases} 1, & k = j, \\ 0, & k \neq j, \end{cases} \quad k = 0, 1, ..., n, \quad \psi_k(x_j) = \begin{cases} 1, & k = j, \\ 0, & k \neq j, \end{cases} \quad k = 0, 1, ..., n.$$

The unknown coefficients $\chi_k^{(i)}, k = 1, 2, ..., n, i = 1, 2$ are determined by the following system of equations:

$$\int_0^L \left\{ \left(\frac{\partial \hat{u}_n}{\partial x} + \frac{\partial u_n}{\partial x} \right) \frac{\partial (\varphi_k)_i}{\partial x} - \hat{p}_n \frac{\partial (\varphi_k)_i}{\partial x} \right\} dx = \int_0^L \hat{f}(x, t)(\varphi_k)_i dx, \quad (11)$$
\[\int_0^L \left\{ \frac{\partial u^n}{\partial x} \psi_k + g \left(\frac{\partial \hat{p}^n}{\partial x} \right) \frac{\partial \hat{p}^n}{\partial x} \frac{\partial \psi_k}{\partial x} \right\} \, dx = 0. \] (12)

Let \(H : R^{2n} \rightarrow R^{2n} \) be a nonlinear operator such that the equation

\[H(\xi) = 0 \]

is equivalent to system (11)–(12). Let us make sure that \(R^{2n} \) contains a sphere centered at zero of finite radius, on which

\[(H(\xi), \xi)_{R^{2n}} \geq 0. \] (13)

We have

\[(H(\xi), \xi)_{R^{2n}} = \int_0^L \left(\frac{\partial \hat{u}^n}{\partial x} + \frac{\partial u^n_i}{\partial x} \right) \frac{\partial u^n_i}{\partial x} \, dx + \int_0^L g \left(\frac{\partial \hat{p}^n}{\partial x} \right) \left(\frac{\partial \hat{p}^n}{\partial x} \right)^2 \, dx - \int_0^L f(x, t) \cdot u^n_i \, dx. \] (14)

The first term on the right-hand side of equality (14) can be transformed to the form:

\[\int_0^L \left(\frac{\partial \hat{u}^n}{\partial x} + \frac{\partial u^n_i}{\partial x} \right) \frac{\partial u^n_i}{\partial x} \, dx = \left(\frac{1}{\tau} + \frac{1}{\tau^2} \right) \| \hat{u}^n \|_1^2 - \left(\frac{1}{\tau} + \frac{2}{\tau^2} \right) \int_0^L \frac{\partial \hat{u}^n}{\partial x} \frac{\partial u^n_i}{\partial x} \, dx + \frac{1}{\tau^2} \| u^n \|_1^2. \] (15)

Here \(\| v \|_1^2 = \int_0^L \left(\frac{\partial v}{\partial x} \right)^2 \, dx. \)

Using the Cauchy-Bunyakovsky inequality

\[(x, y) \leq \delta \| x \|^2 + \frac{1}{4\delta} \| y \|^2, \] (16)

from (15) it is easy to obtain the following estimate

\[\int_0^L \left(\frac{\partial \hat{u}^n}{\partial x} + \frac{\partial u^n_i}{\partial x} \right) \frac{\partial u^n_i}{\partial x} \, dx \geq \left(\frac{1}{\tau} + \frac{1}{\tau^2} - \delta \right) \| \hat{u}^n \|_1^2 - \frac{1}{4\delta} \left(\frac{1}{\tau} + \frac{2}{\tau^2} \right) \| u^n \|_1^2. \] (17)

Using (16) and inequality (6), for the second term in equality (14) we have

\[\int_0^L g \left(\frac{\partial \hat{p}^n}{\partial x} \right) \left(\frac{\partial \hat{p}^n}{\partial x} \right)^2 \, dx \geq (\eta - \delta) \| \hat{p}^n \|_1^2 - \frac{\eta^2 \xi_0^2 L^2}{4\delta}. \]

To estimate the last term of (14), we use the boundedness of the function \(f(\xi) \), inequality (16), and the Friedrichs inequality. As a result, we obtain

\[\left| \int_0^L \hat{f}(x, t) \cdot u^n_i \, dx \right| \leq \delta \| \hat{u}^n \|_1^2 + \frac{C^2 \xi_0^2 L^2}{4\delta \tau^2} + \frac{CCF}{\tau} \| u^n \|_1^2, \]
here C_F is a constant of the Friedrichs inequality, C is a constant such that
\[|f(\xi, \zeta)| \leq C \quad \forall \xi \in [0, L], \forall \zeta \in [0, T]. \]

Substituting the estimates obtained in (14), we have
\[(H(\xi), \zeta)_{R^2} \geq K(\delta) \left(\| \hat{u}^n \|_1^2 + \| \hat{p}^n \|_1^2 \right) - \overline{K}(\delta), \quad (18) \]
where
\[
\overline{K}(\delta) = \min \left\{ \left(\frac{1}{\tau} + \frac{1}{\tau^2} - 2\delta \right), \eta - \delta \right\},
\]
\[
\overline{K}(\delta) = \left(\frac{C C_F}{\tau} + \frac{1}{4\delta} \left(\frac{1}{\tau} + \frac{2}{\tau^2} \right)^2 \right) \| u^n \|_1^2 + \frac{C^2 C_F^2 L^2}{4\delta \tau^2} + \frac{\eta^2 \xi_0^2 L^2}{4\delta}.
\]

Let δ^* be a constant such that for all $0 < \delta \leq \delta^*$ the following inequality holds
\[
K(\delta) \geq \beta = \text{const} > 0,
\]
and $S \subset R^2$ be a sphere centered at zero at which the right-hand side of inequality (18) is non-negative.

Then, by the topological lemma ([11], p. 66), there is at least one solution to the system inside this sphere. The proof of Theorem 1 is complete.

Lemma 1. For the approximate solution (8), the following a priori estimates are valid
\[\max_{t'} |u^n(t')|_1^2 \leq C, \quad \sum_{t=0}^{t'} \tau |p^n(t)|_1^2 \leq C, \quad (19) \]
\[\sum_{t=0}^{t'-\tau} \tau |u^n(t)|_1^2 \leq C, \quad \sum_{t=0}^{t'} \tau \left(\frac{\partial u^n}{\partial x} \right)_{L_2(0, L)}^2 \leq C, \quad (20) \]
\[\sum_{t=0}^{t'-\tau} \tau \left(\frac{\partial p^n}{\partial x} \right)_{L_2(0, L)}^2 \leq C. \quad (21) \]

Proof. Let us assume in (8) $v^n = u^n$, $z^n = p^n$ and obtain
\[\int_0^L \left(\left(\frac{\partial \hat{u}^n}{\partial x} + \frac{\partial u^n}{\partial x} \right) \frac{\partial u^n}{\partial x} + g \left(\frac{\partial \hat{p}^n}{\partial x} \right) \left(\frac{\partial \hat{p}^n}{\partial x} \right)^2 \right) \, dx = \int_0^L f(x, t) u^n \, dx. \quad (22) \]

Note that
\[
\frac{\partial u^n}{\partial x} \frac{\partial u^n}{\partial x} = \frac{\partial u^n}{\partial x} \frac{\partial}{\partial x} \left(\frac{\hat{u}^n - u^n}{\tau} \right) = \frac{\partial u^n}{\partial x} \frac{1}{\tau} \left(\frac{\partial \hat{u}^n}{\partial x} - \frac{\partial u^n}{\partial x} \right) = \frac{1}{2} \left(\frac{\partial \hat{u}^n}{\partial x} \right)^2 - \frac{1}{2} \left(\frac{\partial u^n}{\partial x} \right)^2 + \frac{\tau^2}{2} \left(\frac{\partial u^n}{\partial x} \right)^2. \quad (23)
\]

We substitute equality (23) into (22), multiply by τ and sum the resulting relation over t from 0 to $t' - \tau$ and obtain
\[
\frac{1}{2} |u^n(t')|_1^2 - \frac{1}{2} |u^n(0)|_1^2 + \frac{1}{2} \sum_{t=0}^{t'-\tau} \tau^2 |u^n(t)|_1^2 + \sum_{t=0}^{t'-\tau} \tau \left(\frac{\partial u^n}{\partial x} \right)_{L_2(0, L)}^2 +
\]
\[+ \sum_{t=0}^{t'=0} \int_0^L g \left(\left| \frac{\partial \hat{p}}{\partial x} \right| \right) \left(\frac{\partial \hat{p}}{\partial x} \right)^2 dx = \sum_{t=0}^{t'=0} \int_0^L f(x, t) \cdot u_t^i dx. \quad (24) \]

From (24), taking into account inequality (6), we have a priori estimates (19)–(20). Also, considering that

\[g \left(\left| \frac{\partial \hat{p}^n}{\partial x} \right| \right) \frac{\partial \hat{p}^n}{\partial x} \leq \left| \frac{\partial \hat{p}^n}{\partial x} \right|_{L^2(0,L)} \]

we have estimate (21). The proof of Lemma 1 is complete.

Lemma 2. There exist functions \(u \in W^{1,2}_2(0, T; V) \), \(p \in L_2(0, T; \dot{V}_1) \) and sequences \(\{ \tau \}, \{ n \} \) such that at \(\tau \to 0, \ n \to \infty \)

\[\Pi^+ u^n \to u, \quad \Pi^+ p^n \to p \quad \text{in} \quad L_2(0, T; \dot{V}), \quad \lim_{\tau \to 0, \ n \to \infty} \Pi^+ u^n \to \frac{\partial u}{\partial t} \quad \text{in} \quad L_2(0; L_2(0, L)), \quad \Pi^+ p^n \to p \quad \text{in} \quad L_2(0, T; \dot{V}_1). \quad (25) \]

Here \(\Pi^+ z \) is piecewise-constant filling of \(z \):

\[\Pi^+ z(t) = \{ z(k\tau) : k\tau \leq t < (k+1)\tau \}. \]

The validity of statements (25)–(27) follows from a priori estimates (19)–(20) and the weak compactness of bounded sets in a reflexive Banach space. The proof of Lemma 2 is complete.

Theorem 2. Functions \(u, p \) satisfying relations (25)–(27) are a generalized solution to problem (1)–(5).

Proof. Let the functions \(u, p \) satisfy relations (25)–(27), it is required to prove that \(u, p \) satisfy identity (7). To do this, in (8) we put

\[v^n(x, t) = \frac{1}{\tau} \int_t^{t+\tau} \tilde{v}^n(x, \xi) d\xi, \quad z^n(x, t) = \frac{1}{\tau} \int_t^{t+\tau} \tilde{z}^n(x, \xi) d\xi, \]

where \(\tilde{v}^n, \tilde{z}^n \) are functions from \(C^\infty(0, T; \dot{V}) \) and \(C^\infty(0, T; \dot{V}_1) \) respectively, such that \(\tilde{v}^n(x, T) = \tilde{z}^n(x, T) = 0 \). We multiply (8) by \(\tau \), sum over \(t \) from 0 to \(T - \tau \). The result, using the filling operator \(\Pi^+ \), can be written in the form

\[\int_0^T \int_0^L \left\{ \left(\frac{\partial \Pi^+ u^n}{\partial x} + \frac{\partial \Pi^+ u^n}{\partial t} \right) \frac{\partial \Pi^+ v^n}{\partial x} - \Pi^+ p^n \frac{\partial \Pi^+ v^n}{\partial x} + \frac{\partial \Pi^+ u^n}{\partial x} \Pi^+ \tilde{z}^n + \right. \]

\[\left. + g \left(\left| \frac{\partial \Pi^+ \tilde{p}^n}{\partial x} \right| \right) \frac{\partial \Pi^+ \tilde{p}^n}{\partial x} \frac{\partial \Pi^+ \tilde{z}^n}{\partial x} \right\} dx dt = \int_0^T \int_0^L f(x, t) \Pi^+ v^n dx dt. \quad (28) \]
From the boundedness of \(g \) and estimate (21) it follows that there exists a function \(\chi \) from the space \(L^2(0, T; L^2(0, L)) \) such that
\[
\| \frac{\partial \Pi^n \hat{p}}{\partial x} \| \frac{\partial \Pi^n \hat{p}}{\partial x} \to \chi \quad \text{in} \quad L^2(0, T; L^2(0, L)).
\] (29)

Taking into account (25)–(27) and (29) in equality (28), we pass to the limit in \(\tau \to 0 \) and \(n \to \infty \) and obtain
\[
\int_0^T \int_0^L \left\{ \left(\frac{\partial u}{\partial x} + \frac{\partial^2 u}{\partial x \partial t} \right) \frac{\partial^2 v}{\partial x \partial t} - p \frac{\partial^2 v}{\partial x \partial t} + \frac{\partial^2 u}{\partial x \partial t} \frac{\partial z}{\partial x} \right\} dx dt =
= \int_0^T \int_0^L \left\{ g \left(\left(\frac{\partial p}{\partial x} \right) \right) \frac{\partial p}{\partial x} \right\} dx dt. \] (30)

Let us prove that \(\chi = g \left(\left(\frac{\partial p}{\partial x} \right) \right) \frac{\partial p}{\partial x} \). To do this, we use the monotonicity method. We write down the apparent inequality
\[
\sum_{t=0}^{T-\tau} \int_0^L \left(\frac{\partial u^n}{\partial x} - \frac{\partial v^n}{\partial x} \right) \left(\frac{\partial \hat{u}^n}{\partial x} - \frac{\partial \hat{v}^n}{\partial x} \right) dx \geq \frac{1}{2} [u^n(T) - v^n(T)]^2 \hat{u}^n - \frac{1}{2} [u^n(0) - v^n(0)]^2 \hat{v}^n + \frac{1}{2} [u_0 - v^n(x, 0)]^2,
\]
where \(v^n \) is an arbitrary smooth function \(v \in C^\infty(0, T; V^n) \). From this inequality and the monotonicity of the function \(g(\hat{\xi}) \) it follows that
\[
\sum_{t=0}^{T-\tau} \int_0^L \left(\frac{\partial u^n}{\partial x} - \frac{\partial v^n}{\partial x} \right) \left(\frac{\partial \hat{u}^n}{\partial x} - \frac{\partial \hat{v}^n}{\partial x} \right) dx +
+ \sum_{t=0}^{T-\tau} \int_0^L \left\{ g \left(\left(\frac{\partial p^n}{\partial x} \right) \right) \frac{\partial p^n}{\partial x} - g \left(\left(\frac{\partial z^n}{\partial x} \right) \right) \frac{\partial (\hat{p}^n - \hat{z}^n)}{\partial x} \right\} dx \geq -\frac{1}{2} [u_0 - v^n(x, 0)]^2.
\]
The last relation is equivalent to the following integral inequality
\[
I_{\tau, n} = \int_0^T \int_0^L \left(\frac{\partial \Pi^n \hat{u}^n}{\partial x} - \frac{\partial \Pi^n \hat{v}^n}{\partial x} \right) \frac{\partial \Pi^n (\hat{u}^n - \hat{z}^n)}{\partial x} dx dt +
+ \int_0^T \int_0^L g \left(\left(\frac{\partial \Pi^n \hat{p}^n}{\partial x} \right) \right) \frac{\partial \Pi^n \hat{p}^n}{\partial x} \frac{\partial \Pi^n (\hat{p}^n - \hat{z}^n)}{\partial x} dx dt -
- \int_0^T \int_0^L g \left(\left(\frac{\partial \Pi^n \hat{z}^n}{\partial x} \right) \right) \frac{\partial \Pi^n \hat{z}^n}{\partial x} \frac{\partial \Pi^n (\hat{p}^n - \hat{z}^n)}{\partial x} dx dt \geq -\frac{1}{2} [u_0 - v^n(x, 0)]^2. \] (31)
We represent $I_{r,n}$ as the sum $I = I^{(1)}_{r,n} + I^{(2)}_{r,n}$, where

$$I^{(1)}_{r,n} = \int_0^T \int_0^L \left\{ \frac{\partial \Pi^r u^n}{\partial x} \frac{\partial \Pi^r (\dot{u}^n - \dot{v}^n)}{\partial x} + \frac{\partial \Pi^r \dot{p}^n}{\partial x} \frac{\partial \Pi^r (\dot{p}^n - \dot{z}^n)}{\partial x} \right\} dx dt,$$

$$I^{(2)}_{r,n} = -\int_0^T \int_0^L \left\{ \frac{\partial \Pi^r v^n}{\partial x} \frac{\partial \Pi^r (\dot{u}^n - \dot{v}^n)}{\partial x} + \frac{\partial \Pi^r \dot{z}^n}{\partial x} \frac{\partial \Pi^r (\dot{p}^n - \dot{z}^n)}{\partial x} \right\} dx dt.$$

To transform the first relation $I^{(1)}_{r,n}$, we use equality (28) at $v^n = u^n - v^n$, $p^n = p^n - z^n$ and obtain

$$I^{(1)}_{r,n} = \int_0^T \int_0^L \left\{ -\frac{\partial \Pi^r u^n}{\partial x} \frac{\partial \Pi^r (u^n - v^n)}{\partial x} - \frac{\partial \Pi^r \dot{p}^n}{\partial x} \frac{\partial \Pi^r (p^n - z^n)}{\partial x} + \frac{\partial \Pi^r u^n}{\partial x} \frac{\partial \Pi^r \dot{z}^n}{\partial x} - \frac{\partial \Pi^r \dot{p}^n}{\partial x} \frac{\partial \Pi^r (p^n - z^n)}{\partial x} + \frac{\partial \Pi^r u^n}{\partial x} \frac{\partial \Pi^r v^n}{\partial x} \right\} dx dt. \quad (32)$$

In (32), we make the passage to the limit as $\tau \to 0$, $n \to \infty$, taking into account (25)–(27), (29). As a result, we obtain

$$I^{(1)}_{r,n} \to \int_0^T \int_0^L \left\{ -\frac{\partial^2 u}{\partial x \partial t} \frac{\partial^2 (u - v)}{\partial x \partial t} - \frac{\partial u}{\partial x \partial t} \frac{\partial v}{\partial x \partial t} + \frac{\partial^2 u}{\partial x \partial t} \frac{\partial z}{\partial x \partial t} - \frac{\partial u}{\partial x \partial t} \frac{\partial \Pi^r (u^n - v^n)}{\partial x} \frac{\partial \Pi^r \dot{z}^n}{\partial x} \right\} dx dt. \quad (33)$$

Using equality (30), the right-hand side of relation (33) takes the following form

$$I^{(1)}_{r,n} \to \int_0^T \int_0^L \left\{ \frac{\partial^2 u}{\partial x \partial t} \frac{\partial (u - v)}{\partial x} + \frac{\partial u}{\partial x \partial t} \frac{\partial \Pi^r (p - z)}{\partial x} \right\} dx dt. \quad (34)$$

Apparently, from (25)–(27), (29) for $\tau \to 0$, $n \to \infty$ we obtain

$$I^{(2)}_{r,n} \to -\int_0^T \int_0^L \left\{ \frac{\partial^2 v}{\partial x \partial t} \frac{\partial (u - v)}{\partial x} + \frac{\partial v}{\partial x \partial t} \frac{\partial \Pi^r (p - z)}{\partial x} \right\} dx dt. \quad (35)$$

Thus, it follows from the definition of $I_{r,n}$ that

$$\int_0^T \int_0^L \left\{ \frac{\partial^2 (u - v)}{\partial x \partial t} \frac{\partial (u - v)}{\partial x} + \left(\frac{\partial}{\partial x} \left| \frac{\partial z}{\partial x} \right| \frac{\partial (p - z)}{\partial x} \right) \right\} dx dt \geq -\frac{1}{2} \|u_0 - v(x, 0)\|^2. \quad (36)$$

In (36), we choose $v = u + \lambda w$, $z = p + \lambda q$, where $\lambda = \text{const} > 0$, and w, q are arbitrary functions from $C^\infty(0, T; C^\infty(0, L))$, where $w(x, 0) = 0$ for $x \in (0, L)$. As a result, we obtain
\[
\lambda \int_0^T \int_0^L \left(\chi - g \left(\frac{|\partial(p + \lambda q)|}{\partial x} \right) \frac{\partial(p + \lambda q)}{\partial x} \right) \frac{\partial q}{\partial x} \, dx \, dt + \\
+ \lambda^2 \int_0^T \int_0^L \frac{\partial^2 w}{\partial x \partial t} \frac{\partial w}{\partial x} \, dx \, dt \geq -\frac{\lambda}{2} || w(x, 0) ||_1^2 = 0. \quad (37)
\]

We divide inequality (37) by \(\lambda \) and pass to the limit as \(\lambda \to 0 \), we obtain
\[
\int_0^T \int_0^L \left(\chi - g \left(\frac{|\partial p|}{\partial x} \right) \frac{\partial p}{\partial x} \right) \frac{\partial q}{\partial x} \, dx \, dt \geq 0. \quad (38)
\]

Since \(q \) is an arbitrary function, the inequality holds at \(q = v \) and \(q = -v \), where \(v \in L_2(0, T; W^2_1(0, L)) \) is an arbitrary function; therefore, we have
\[
\chi = g \left(\frac{|\partial p|}{\partial x} \right) \frac{\partial p}{\partial x}.
\]

The proof of theorem 2 is complete.

References