
Profiling Lightweight Container Platforms:
MicroK8s and K3s in Comparison to Kubernetes

Sebastian Böhm and Guido Wirtz

Distributed Systems Group, University of Bamberg, Bamberg, Germany
{sebastian.boehm,guido.wirtz}@uni-bamberg.de

Abstract. Kubernetes (K8s) is nowadays the first choice for manag-
ing containerized deployments that rely on high–availability, scalability,
and fault tolerance. To enable the usage of container orchestration in
resource–constrained environments, lightweight distributions emerged.
The platforms MicroK8s (mK8s) and K3s, which are analyzed in this
paper, claim to provide an easy deployment of K8s in a simplified form
and way. In terms of resource utilization and deployment time of a K8s
cluster, the lightweight platforms promise savings compared to K8s. We
analyzed lightweight K8s distributions in a quantitative way by perform-
ing an experiment that monitors the utilization and time consumption
compared to a native K8s cluster lifecycle. This involves starting, stop-
ping, and adding nodes as well as creating, running, and deleting deploy-
ments. We show that not all platforms exhibit a quantitative advantage
over K8s. K3s caused a similar resource consumption but had some per-
formance advantages for starting new nodes and adding nodes to the
cluster. The platform MicroK8s has shown a higher resource utilization
and time consumption for all steps in our modeled lifecycle simulation.

Keywords: Lightweight Kubernetes · Container orchestration · Con-
tainer lifecycle · Performance model.

1 Introduction

Kubernetes (K8s), nowadays the state–of–the–art container orchestrator, enables
an efficient and comfortable way to run large and complex sets of interacting
containerized applications. The container platform offers a comprehensive set of
features to build highly available, scalable, and fault–tolerant clusters.1 Driven
by the emergence of containerization, a lightweight way of virtualization, K8s
pervaded many different application areas like Fog, Edge, and IoT computing [5–
7]. Over the years, K8s was already in focus of research regarding the resource
utilization during running workloads [1, 2, 4, 8, 9]. Eiermann et al. [1] have shown
that K8s causes a higher utilization in idle and load conditions compared to alter-
native platforms like Docker Swarm. This may limit the applicability in fields like
Fog, Edge, and IoT computing that are characterized by resource–constrained
devices but require features like high–availability, scalability, and fault–tolerance

1 https://kubernetes.io/

J. Manner, S. Haarmann, S. Kolb, N. Herzberg, O. Kopp (Eds.): 13th ZEUS Workshop,
ZEUS 2021, Bamberg, held virtually due to Covid-19 pandemic, Germany, 25-26 February 2021,

published at http://ceur-ws.org
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

http://ceur-ws.org

to work in critical areas like surveillance and smart cities. Hence, K8s distribu-
tions claiming to be lightweight emerged to leverage the former mentioned appli-
cation fields with K8s–managed deployments. The platforms MicroK8s (mK8s)2,
K3s3, KubeEdge (KE)4, and minikube (MK)5 provide K8s–compatible distribu-
tions by modifying and reorganizing essential components. They aim to simplify
configuring, running, and maintaining clusters to enable deployments with low–
end devices. So far, quantitative performance benchmarks refer mainly to idle
and load conditions [1, 2]. Other studies also consider the resource consumption
when creating, starting, and stopping container instances [8, 9]. Nevertheless,
there is no detailed evaluation regarding the resource and time consumption of
steps like starting, adding, draining, or stopping nodes. Therefore, this paper
aims to propose an experimental approach to evaluate the overall lifecycle of
K8s. For this, we conducted an experiment with selected platforms to answer
the following research question: What is the resource and time consump-
tion of the lightweight distributions mK8s and K3s in comparison to
native K8s during typical events in a cluster lifecycle?

We perform a simulation in a reproducible manner to derive detailed insights
regarding the resource consumption and time consumption of all platforms. We
decided to select mK8s and K3s as platforms because the controlling of cluster
operations, like starting and stopping nodes, is working similar to K8s. KE is
not considered in our research because it requires an additional K8s in the cloud
which impedes a fair comparison to other platforms.

The rest of the paper is structured as follows: First, we discuss existing
approaches to evaluate K8s distributions shortly (Section 2). Then, we cover
the concepts of the considered platforms (Section 3), which help to comprehend
the design and the results of the performance comparison in Section 4. Finally,
we provide a critical review of the proposed experiment (Section 5) and outline
plans for further experimental studies (Section 6).

2 Related Work

Benchmarking container platforms is not a novel part of research. Eiermann et
al. [1] compared the CPU and memory utilization of a cluster consisting of five
low–end devices running idle, running Docker Swarm, and finally K8s. Based on
an HTTP load testing scenario, K8s has shown a 9–40 times higher utilization on
average in comparison to Docker Swarm. Fathoni et al. [2] followed this approach
and evaluated the lightweight platforms KE and K3s. They captured the CPU
and memory utilization of a two–node cluster in idle and load conditions. They
did not obtain a significant difference. K3s was compared to an additional K8s–
compatible platform, called FLEDGE, by Goethals et al. [4]. They measured
the needed amount of memory and the disk utilization of FLEDGE, K8s, and

2 https://microk8s.io/
3 https://k3s.io/
4 https://kubeedge.io/en/
5 https://minikube.sigs.k8s.io/docs/start/

66 Sebastian Böhm and Guido Wirtz

K3s with different processor architectures and container runtimes. FLEDGE
used around 50 % less resources than K8s and 10 % less than K3s on a x64
architecture. Medel et al. [8, 9] investigated different operational states of pods
and containers. They measured the time to create, execute, restart, and stop a
varying number of containers managed by a certain amount of pods. In addition,
they obtained metrics for CPU, memory, disk, and network utilization.

However, there is no comprehensive analysis how the different platforms per-
form during a complete cluster lifecycle. Former work focuses mainly on idle
and load conditions as well as applying deployments to an already existing clus-
ter. The resource consumption for operations like starting, stopping, adding and
removing nodes from the cluster is not considered. Hence, we provide a per-
formance comparison model that covers all steps to track creating, starting,
running, stopping, and deleting a K8s cluster.

3 Lightweight Kubernetes

Kubernetes. The container platform K8s represents a cluster based on a set
of worker nodes. The worker nodes run so–called pods that contain a set of
workloads (e.g., applications or batch jobs) to be executed. The set of worker
nodes is managed by the control plane, which consists of several components
that can be distributed over different nodes. The most important components
are the kube–apiserver that exposes an API to interact with the cluster, etcd as
distributed persistence layer to keep track of the cluster data, the kube–scheduler
which is assigning pods to available nodes based on a set of policies, and the
kube–controller–manager that is in charge of managing the lifecycle of a node and
exposing service endpoints. Each node runs a kubelet that ensures the execution
of containers in a pod and a kube–proxy to realize networking between nodes.6

K8s can be installed via provided package repositories. Using K8s involves
the startup of the control plane, adding worker nodes to the cluster, and ap-
plying a deployment (a description of the workload to be executed). The same
steps need to be done vice versa to tear down the cluster completely. At this,
K8s requires at least 2 vCPUs with 2 GB memory.7

MicroK8s. Maintained by Canonical, mK8s aims to simplify the usage of K8s
on public and private clouds by providing a lightweight and fully compliant K8s
distribution, especially for low–end application areas like IoT.8 By default, mK8s
enables all basic components of K8s (like api–server, scheduler, or controller–
manager) to make the cluster available. Further add–ons (e.g., DNS, ingress,
or the metrics–server) can be enabled with one single command.9 The realiza-

6 https://kubernetes.io/docs/concepts/overview/components/
7 https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/create-

cluster-kubeadm/
8 https://microk8s.io/docs
9 https://microk8s.io/docs/addons

Profiling Lightweight Container Platforms 67

tion of high–availability, where multiple nodes carry the control plane and the
datastore, can be achieved with a few commands.10

mK8s is provided by snap, Canonicals’s package manager that runs applica-
tions in a sandbox.11 Instead of etcd, which is used by K8s, mK8s uses Dqlite
as high–availability datastore.6,10 It is recommended to run mK8s with at least
4 GB of memory and 20 GB of storage (SSD recommended).8

K3s. Rancher offers K3s as lightweight K8s distribution, also with focus on
low–end application areas. It is also fully compliant to K8s, contains all basic
components by default, and targets a fast, simple, and efficient way to provide
a highly available and fault–tolerant cluster to a set of nodes. The deployment
takes place via one single and small binary including dependencies.3

Similar to mK8s, Rancher replaced etcd by another datastore, here sqlite3.
Also, in–tree storage drivers and cloud provider components are removed to keep
the size small. K3s tries to lower the memory footprint by a reorganization of
the control plane components in the cluster. The K3s master and workers, also
called server and agents, encapsulate all the components in one single process.12

K3s is installed via a shell script that allows it to be run as a server or agent
node. To achieve high–availability, new worker nodes can be easily added to the
cluster by running a few commands.13 The minimum hardware requirements are
at least 1 vCPU and 512 MB of memory.14

4 Performance Comparison

This chapter covers the performance comparison of the three considered plat-
forms. In the first place, we describe our experimental approach and environment
shortly. Afterward, we analyze our obtained results from the experiment.

4.1 Experimental Setup and Design

To evaluate the resource consumption, we set up a controlled environment to
achieve reproducible, comprehensible, and consistent results. According to the
recommended system requirements (Section 3), we used four Ubuntu 20.04 Vir-
tual Machines (VMs) with 2 vCPUs, 4 GB memory and a fast SSD with a capac-
ity of 50 GB each. All VMs run on-premises on one single physical host machine
with Kernel–based Virtual Machine (KVM) as hypervisor and containerd as
container runtime. The host machine is equipped with a AMD Ryzen 7 3700X
CPU (8 cores), 64 GB memory and a fast SSD. We deployed netdata as moni-
toring tool on all machines to collect data about the system utilization with a
sample rate of 5 s. The collected data is stored in a document–oriented database

10 https://microk8s.io/docs/high-availability
11 https://snapcraft.io/docs/getting-started
12 https://rancher.com/docs/k3s/latest/en/architecture/
13 https://rancher.com/docs/k3s/latest/en/
14 https://rancher.com/docs/k3s/latest/en/installation/installation-requirements/

68 Sebastian Böhm and Guido Wirtz

on another machine. Netdata’s monitoring agent creates a small CPU utilization
of around 1 %, a negligible memory usage and disk utilization.15

In order to evaluate the entire lifecycle, we extended the approach of Fathoni
et al. [2] as follows: We redefined the set of events to be evaluated. That means,
we collect the CPU, memory, and disk utilization during starting, adding, run-
ning, draining, and stopping of nodes, as well as applying, running, and deleting
a small web server deployment16 with three replicas of nginx 17.

The experiment is structured as follows: First, we installed all platforms
with one master and three workers on the respective machines to create a high–
availability cluster. Secondly, we stopped all platforms and platform–related ser-
vices to put the system into idle condition. Finally, predefined ansible playbooks
instruct the machines to perform the different steps of the lifecycle model. All
playbooks and further details of the implementation are available on GitHub18.
In total, we performed 25 runs per platform and averaged the results. The raw
data and detailed metrics for all runs are available on GitHub19 as well.

4.2 Experimental Results

Figure 1 shows the average resource utilization by master and worker nodes for
all platforms over time. The small numbers at the top of each diagram imply
the middle of the different steps in the lifecycle simulation.

1 3 5 7 9
2 4 6 810

1 3 5 7 9
2 4 6 8 10

1 3 5 7 9
2 4 6 810

1 3 5 7 9
2 4 6 810

1 3 5 7 9
2 4 6 8 10

1 3 5 7 9
2 4 6 810

1 3 5 7 9
2 4 6 810

1 3 5 7 9
2 4 6 8 10

1 3 5 7 9
2 4 6 810

K3s, CPU K3s, Memory K3s, Disk

mK8s, CPU mK8s, Memory mK8s, Disk

K8s, CPU K8s, Memory K8s, Disk

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0 10 20 30 0 10 20 30 0 10 20 30

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

Time (min.)

U
til

iz
at

io
n

(%
)

Role

Master

Workers

Fig. 1: Lifecycle analysis for K8s, MicroK8s, and K3s.

15 https://github.com/netdata/netdata#features
16 https://raw.githubusercontent.com/kubernetes/website/master/content/en/

examples/controllers/nginx-deployment.yaml
17 https://www.nginx.com/
18 https://github.com/spboehm/kns-profiling
19 https://spboehm.github.io/kns-profiling/

Profiling Lightweight Container Platforms 69

Table 1: Average resource consumption (µ/σ) for all platforms and events.
No. Event Role K8s mK8s K3s

CPU Memory Disk CPU Memory Disk CPU Memory Disk

1 System idle
Master 0.64/0.3 8.66/0.81 0.05/0.09 0.76/0.35 10.16/1.12 0.08/0.11 0.6/0.27 9.15/0.8 0.04/0.09
Workers 0.62/0.29 8.04/0.59 0.04/0.09 0.74/0.3 9.69/0.81 0.07/0.12 0.62/0.25 8.28/0.51 0.04/0.08

2 Start master
Master 19.15/17.87 13.32/3.98 4.15/5.55 24.78/20.43 20.6/4.64 4.88/7.61 28.83/12.65 16.46/4.71 2.68/2.84
Workers 0.5/0.15 7.99/0.58 0.01/0.03 0.61/0.17 9.6/0.79 0.04/0.07 0.52/0.14 8.22/0.5 0.01/0.05

3 Master idle
Master 4.67/2.82 20.83/0.77 1.87/1.92 8.61/6.08 25.88/1.54 2.19/3.15 5.73/8.28 23.82/1.11 1.12/3.44
Workers 0.57/0.16 8/0.56 0.02/0.06 0.66/0.18 9.49/0.76 0.03/0.07 0.57/0.16 8.24/0.48 0.02/0.09

4 Add workers
Master 6.33/2.59 21.27/0.65 3.18/1.77 15.95/10.62 25.91/3.13 3.23/2.82 14.99/6.88 27.07/2.08 0.39/0.37
Workers 2.77/3.51 9.06/0.96 0.57/1.51 12.67/19.76 16.02/6.36 3.63/6.07 8.37/10.84 9.66/1.03 1.93/3.66

5 Cluster idle
Master 4.27/1.12 21.3/0.64 1.71/0.46 8.83/2.58 27.85/1.1 1.87/0.83 3.77/2.62 28.38/0.99 0.23/0.22
Workers 1.1/0.4 9.77/0.48 0.05/0.18 5.78/3.49 23.99/1.14 1.92/2.13 1.26/0.86 10.95/0.43 0.16/0.67

6 Apply deployment
Master 7.19/4.53 21.3/0.61 3.12/1.92 17.72/5.06 28.29/1.09 3.74/3.39 15.37/5.85 28.74/0.96 0.77/0.97
Workers 1.67/1.02 9.73/0.51 0.49/1.02 11.03/7.72 24.42/1.04 4.41/3.78 5.63/6.38 11.18/0.44 1.59/2.79

7 Deployment idle
Master 4.23/1.33 21.4/0.62 1.67/0.63 9.01/2.5 28.6/1.07 2.46/2.82 3.69/2.51 28.48/0.99 0.23/0.2
Workers 1.16/0.38 10.06/0.43 0.07/0.28 5.92/2.77 25.03/0.99 2.49/3.26 1.38/2.2 11.61/0.4 0.18/1.4

8 Delete deployment
Master 10.71/2.96 21.5/0.6 2/0.57 17.63/3.63 29.18/0.98 2.34/1.32 14.67/6.03 28.82/1.07 0.31/0.15
Workers 1.45/0.81 9.97/0.42 0.33/0.39 5.49/1.79 25.16/0.92 2.15/1.41 1.54/0.8 11.58/0.36 0.29/0.37

9 Drain workers
Master 4.58/1.69 21.71/0.5 1.36/0.16 7.77/2.52 29.55/1.03 1.89/2.78 3.56/2.26 28.89/0.73 0.28/0.2
Workers 2/1.97 9.94/0.42 0.22/0.51 5.95/10.27 17.3/7.1 1.52/3.24 2.08/1.5 11.37/0.47 0.08/0.1

10 Stop master
Master 3.91/0.65 21.53/0.7 1.24/0.17 3.38/3.91 15.61/6.12 0.66/1.48 3.15/0.87 27.16/1.46 0.24/0.11
Workers 0.64/0.14 8.31/0.48 0.1/0.08 0.71/0.21 9.89/0.66 0.07/0.12 0.65/0.18 8.71/0.29 0.18/0.29

For instance, event no. 2 involves the event Start master. This explains the
very short peek in the CPU and I/O utilization as well as the increasing amount
of memory. To measure the utilization of all idle events (i.e., event no. 1, 3,
5, and 7 - see Table 1 for details), we defined a time interval of five minutes
to obtain the average utilization. Aside from mK8s, K8s and K3s are showing
similar results, especially in terms of the time needed to pass through all steps
in the experiment. Only mK8s needed more time (µ = 1860 s / σ = 17.1 s) in
comparison to K8s (1379 s / 12.9 s) and K3s (1361 s / 9.47 s). The platforms
K8s and K3s cause similar load profiles for all metrics as displayed in Table 1.
However, K3s burdens CPU and memory slightly more than K8s but shows a
smaller average and volatility in disk utilization. K3s has shown slightly better
results for CPU and disk utilization in comparison to K8s only for a few events
(e.g., event no. 5, 7, 9, and 10). The memory consumption of mK8s and K3s is
quite similar. However, mK8s shows the highest utilization for CPU and disk. On
average, the master nodes mostly need more resources compared to the worker
nodes because the cluster–managing services are located there.

0.05
0.47 0.39

0.54 0.85 0.49 0.05 0.11 0.04

CPU Memory Disk

K8s mK8s K3s K8s mK8s K3s K8s mK8s K3s
0.0

0.5

1.0

1.5

0

5

10

15

20

0

2

4

6

Platform

U
til

iz
at

io
n

(%
)

Platform

K8s

mK8s

K3s

Fig. 2: Resource utilization for K8s, MicroK8s, and K3s (� = σ).

70 Sebastian Böhm and Guido Wirtz

Figure 2 shows the average utilization of all events for all platforms as box
plots. Furthermore, the standard deviation is displayed (� = σ). The previously
described results are also reflected in this overall and averaged comparison. The
platform mK8s shows the worst results for all metrics. Regarding the CPU and
memory utilization, the differences between K8s and K3s are very small. K3s
shows a slightly smaller disk utilization. Consequently, the claim of lightweight
K8s holds only partially. All platforms exhibit a small σ which indicates that
the experiment created stable results under repeated simulations. Also, the box
plots do neither show an extensive amount of outliers nor a high dispersion.

The taken amount of time for selected steps in the cluster lifecycle is displayed
in Figure 3. The values refer to all four nodes. K3s shows better results for nearly
all events compared to K8s, except the needed time to apply deployments and
drain workers. In this comparison, mK8s is quite close to K8s but needs a very
long time for adding and draining workers. mK8s starts a master node a bit
faster compared to K8s but slower than K3s. The creation of new deployments
happens nearly in the same time for mK8s and K3s. K8s applies the deployment
around four times faster than the other platforms. The deletion of a deployment
by mK8s roughly takes twice the time K8s or K3s needs. Tearing down the
cluster happens rapidly as well, mK8s needs around 32 seconds.

1.52 4.37 0.64 13.02 0.13 0.077.46 4.76 2.32
17.34

1.55 0.092.92 0.46 0.89 8.64 0.1 0.03

 3
5.

86

 4
7.

30

 4
.3

3

 2
1.

42

 3
.5

5

 1
.9

6

 3
2.

56

12
5.

93

 1
7.

76 4
7.

33

33
1.

61

 3
1.

50

 2
3.

33

 2
4.

09

 1
5.

42

 1
9.

56

 3
.8

8

 1
.1

8
0

100

200

300

400

Start
master

Add
workers

Apply
deployment

Delete
deployment

Drain
workers

Stop
master

Platform

T
im

e
(s

ec
.) Platform

K8s

mK8s

K3s

Fig. 3: Average time consumption for K8s, MicroK8s, and K3s (� = σ).

5 Discussion

The obtained results from the previous chapter can be explained with the dif-
ferent characteristics of the lightweight platforms (Section 3). K3s has shown a
very small disk utilization potentially due to the usage of sqlite3 instead of etcd
as database. In terms of time, K3s shows merits for all events except applying
deployments or draining workers compared to K8s. Bundling all components of
K8s into one single process may lead to this performance enhancement. mK8s
had overall a higher resource utilization. Especially adding and draining work-
ers needed a long time. The reason for this is that mK8s is optimized for a

Profiling Lightweight Container Platforms 71

single-node cluster. When a particular node leaves the cluster, it restarts again
as single-node K8s automatically.20 There may be an option to avoid this restart
and reduce the time for draining nodes by stopping mK8s forcefully. However, we
followed the official documentation, which also states that adding and graceful
draining of nodes may require minutes.10 It is worth noting that mK8s has the
highest system requirements, followed by K8s and finally K3s (Section 3).

The proposed experiment and the obtained results underlie a few limitations.
Firstly, we tested all platforms running on a virtualized setup with KVM and
containerd. Other alternatives may have an impact on the experimental results.
However, containerd is the recommended runtime for mK8s and K3s.21,22 We
measured only the utilization on the overall system–level without network uti-
lization and did not consider the utilization of K8s–related processes in detail.
Furthermore, we modeled the entire lifecycle with a limited set of machines to
obtain results on how long each platform needs to perform a set of actions. We
did not burden the web server deployment and kept everything in idle condi-
tion. However, a performance comparison based on applications was not in focus
of our research. There may be a need for synthetic benchmarks for lightweight
on–premises container platforms, such as performed by Ferreira and Sinnott [3].

6 Conclusion and Future Work

This paper showed an approach to compare different K8s distributions in a quan-
titative way. To answer our research question, we conclude that replacing K8s
with a lightweight distribution can be beneficial in particular circumstances. For
the most part, there are only small differences regarding the resource utilization
between K8s and K3s. mK8s showed a higher resource and time consumption for
nearly all events. K3s has shown a better performance except applying deploy-
ments and draining workers in terms of needed time. Although our experiment
shows only preliminary results and the findings are limited to some extent, we
argue that not all platforms fulfill the claim being more lightweight compared
to K8s. In particular, areas like Fog, Edge, and IoT computing with a highly
varying number of nodes over time can benefit from lightweight K8s platforms.

We plan to enrich our proposed simulation model with detailed analysis at
the process–level for future work. To increase the overall validity, we want to
run the experiment at a larger scale to get better insights how the different
distributions manage a larger number of nodes and workloads. Furthermore, we
want to deepen the statistical analysis to obtain significant differences between
the platforms regarding resource utilization and time consumption of our lifecycle
model. Finally, it is worth considering the qualitative dimension. As pointed out
in Section 3, each platform provides various ways to deploy and interact with
the cluster. We want to consistently evaluate these differences in a qualitative
survey by taking other lightweight platforms like KE and MK into consideration.

20 https://microk8s.io/docs/clustering
21 https://microk8s.io/docs/configuring-services
22 https://rancher.com/docs/k3s/latest/en/advanced/

72 Sebastian Böhm and Guido Wirtz

References

1. Eiermann, A., Renner, M., Großmann, M., Krieger, U.R.: On a fog computing
platform built on ARM architectures by docker container technology. In: Innova-
tions for Community Services, pp. 71–86. Springer International Publishing (2017).
https://doi.org/10.1007/978-3-319-60447-3 6

2. Fathoni, H., Yang, C.T., Chang, C.H., Huang, C.Y.: Performance compari-
son of lightweight kubernetes in edge devices. In: Pervasive Systems, Algo-
rithms and Networks, pp. 304–309. Springer International Publishing (2019).
https://doi.org/10.1007/978-3-030-30143-9 25

3. Ferreira, A.P., Sinnott, R.: A performance evaluation of containers running on
managed kubernetes services. In: 2019 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), pp. 199–208. IEEE (2019).
https://doi.org/10.1109/cloudcom.2019.00038

4. Goethals, T., Turck, F.D., Volckaert, B.: FLEDGE: Kubernetes compatible con-
tainer orchestration on low-resource edge devices. In: Internet of Vehicles. Tech-
nologies and Services Toward Smart Cities, pp. 174–189. Springer International
Publishing (2020). https://doi.org/10.1007/978-3-030-38651-1 16

5. Javed, A., Heljanko, K., Buda, A., Framling, K.: CEFIoT: A fault-tolerant IoT ar-
chitecture for edge and cloud. In: 2018 IEEE 4th World Forum on Internet of Things
(WF-IoT), pp. 813–818. IEEE (2018). https://doi.org/10.1109/wf-iot.2018.8355149

6. Kayal, P.: Kubernetes in fog computing: Feasibility demonstration, limitations and
improvement scope : Invited paper. In: 2020 IEEE 6th World Forum on Internet of
Things, pp. 1–6. IEEE (2020). https://doi.org/10.1109/wf-iot48130.2020.9221340

7. Kristiani, E., Yang, C.T., Huang, C.Y., Wang, Y.T., Ko, P.C.: The implementa-
tion of a cloud-edge computing architecture using OpenStack and kubernetes for
air quality monitoring application pp. 1–23 (2020). https://doi.org/10.1007/s11036-
020-01620-5

8. Medel, V., Rana, O., Bañares, J.Á., Arronategui, U.: Modelling performance
& resource management in kubernetes. In: Proceedings of the 9th Inter-
national Conference on Utility and Cloud Computing. p. 257–262. UCC
’16, Association for Computing Machinery, New York, NY, USA (2016).
https://doi.org/10.1145/2996890.3007869

9. Medel, V., Tolosana-Calasanz, R., Bañares, J.Á., Arronategui, U., Rana, O.F.: Char-
acterising resource management performance in kubernetes. vol. 68, pp. 286–297.
Elsevier BV (2018). https://doi.org/10.1016/j.compeleceng.2018.03.041

All links were last followed on February 20, 2021.

Profiling Lightweight Container Platforms 73

