
Custom-MADE – Leveraging Agile
Rationale Management by Employing

Domain-Specific Languages

Mathias Schubanz

Brandenburg University of Technology,
Platz der Deutschen Einheit 1, 03046 Cottbus, Germany

M.Schubanz@b-tu.de

Abstract. Managing rationale in software development projects can be a
cumbersome task with a potentially low return on investment. Especially
in the agile context, documentation is therefore very unpopular. Research
has not yet properly addressed an agile documentation workflow. In
this paper, the author presents an integrated approach to agile rationale
management based on a highly-flexible modelling approach using domain-
specific languages. It facilitates the complete documentation workflow from
capture to reuse, partially automates it and offers various customisation
opportunities, making it applicable to agile methods.

Keywords: agile · decision-making · Language Server Protocol · domain-
specific languages · documentation · tool support · rationale management

1 Introduction

Managing rationale can considerably improve comprehension in software develop-
ment. It facilitates change impact analysis as well as requirements traceability and
evolution [33]. Moreover, it improves the understanding of architectural decisions
and leads to better decisions [34]. In agile software development (ASD) this can be
particularly important, as empirical work showed that stakeholders in agile teams
perceive less architecture involvement [16]. Furthermore, in ASD documentation is
questioned with particular scepticism. ASD instead promotes working software
while depreciating documentation (cf. Agile Manifest [3]). Despite the mentioned
and other potential benefits (cf. Tang et al. [32]), the structured and systematic
handling of decisions is only applied seldom in practise [2,11]. Even in ASD
teaching, it is only dealt with very selectively [20].

As part of an ongoing research project [30] with the focus adapted to ASD,
the author developed Custom-MAnangement of DEcision (Custom-MADE), an
integrated process-centric approach to rationale management. Based on domain-
specific languages (DSL) it integrates a highly-flexible modelling approach enabling
its users to tailor it to individual or enterprise-wide needs and documentation
standards. Another feature is its minimal-invasive and generic approach offering to
combine it with existing workflows. All these customization opportunities are vital
for use in individually tailored processes in ASD.

J. Manner, S. Haarmann, S. Kolb, N. Herzberg, O. Kopp (Eds.): 13th ZEUS Workshop,
ZEUS 2021, Bamberg, held virtually due to Covid-19 pandemic, Germany, 25-26 February 2021,

published at http://ceur-ws.org
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

mailto:M.Schubanz@b-tu.de
http://ceur-ws.org

The remainder of the paper starts with a presentation of related work (Section 2).
Section 3 presents a simplified rationale management workflow, while Section 4
elaborates on how Custom-MADE enhances it. Subsequently, Section 5 introduces
the model architecture and Section 6 the chosen tool architecture. Finally, Section 7
concludes the paper and provides an outlook on future research.

2 Related Work

Approaches to direct process integration of rationale management in ASD are
sparse, if at all. Rather, there are many tool-based approaches for rationale
management in ASD. In the field of agile requirements gathering, for instance,
Lee et al. [22] developed Echo, an approach connecting requirements and related
design decisions. Around the same time Sauer [28] presented an approach for
automating the capture of rationale in ASD. It aims to reduce costs by linking
historical data and prototype definitions to an event-based rationale model. More
recently, Hadar et al. [15] introduced an approach to document an architecture in
the elevator speech concept. Their tool helps architects in organizing relevant
information while creating design and architecture blueprints, thus reducing
documentation effort. Also recently Voigt et al. [35] presented sprintDoc, a tool-
based concept based on DokuWiki [13]. It integrates the documentation of artefacts
into the agile process and thus traces changes in documents along with changes in
issues.

There are also a lot of contributions around rationale modelling. These
contributions often include tools that support rationale capture or sometimes
even the decision-making process, as e. g., Miksovic and Zimmerman [26]. Some
approaches even start with requirements analysis, such as RADAR [12]. A
considerable share of the model-based contributions stems from research on
software architecture documentation, less from the field of agile documentation.
Since Custom-MADE aims less at architecture-bound documentation and more at
integration into lightweight agile processes, please refer to Tang et al. [31] for a
comprehensive overview of other approaches to modelling software architecture
decisions as well as suitable tool support.

When considering the modeling approach from a more general perspective, one
of the approaches that is most similar to Custom-MADE is Frag [36]. However,
Zdun focuses more on DSL-based designs rather than using DSLs to get maximum
flexibility for the documentation models.

Further work tries to leverage the opportunity of capturing rationale exactly
where and when they are made to mitigate a substantial barrier to rationale capture
(cf. [11]). For instance, DesignMinders [8] complements whiteboard systems so that
rationale are directly digitised and browseable. Other approaches directly integrate
with the IDE, as implemented by SEURAT [10] and DecDoc [17]. ConDec [19] even
goes one step further by additionally integrating with JIRA [23] and Slack [24].

Other related contributions ignore formal and process aspects of rationale
documentation entirely. They focus on retrospectively extracting rationale from
existing documents by, e. g., integrating machine learning techniques (cf. Alkadi
et al. [1], Bhat et al. [6], or Rogers et al. [27]).

Custom-MADE 35

3 Rationale Management Workflow

As presented in the related work (cf. Section 2), many of the approaches to date
focus on either modelling, the activity of capturing, or persisting and providing
design rationales to developers. However, only a few approaches focus on a holistic
workflow and a possible process integration with it. In this chapter, the author
presents a simplified rationale management workflow that serves as the basis for
presenting the tool-driven approach later on (cf. Figure 1). As of now, Custom-
MADE deliberately ignores the reasoning and decision-making process and begins
with the rationale capture.

I. Rationale
 Capture

II. Rationale
 Review

III. Rationale
 Processing

IV. Rationale
 Reuse

Fig. 1. Rationale management workflow.

Initially, (I) rationale that are considered sufficiently important will be
documented. As a second step, (II) the rationale are reviewed at a given time
(e.g. in retrospective, as in [29]). Following the review and potential modifications,
(III) the documented rationale are processed and archived for later use. The last
activity (IV) constitutes the reuse of the recorded information. If it is necessary to
modify already documented rationale, the workflow can be reiterated from the
review.

4 Enhanced Rationale Management Workflow

The aim of Custom-MADE is to enable an individual, customisable, flexible and
semi-automated rationale management workflow. Custom-MADE starts even
before the actual workflow (cf. Figure 2).

Selection / Definition
of Documentation

Model

Rationale Management Workflow

I. Rationale
 Capture

II. Rationale
 Review

III. Rationale
 Processing

IV. Rationale
 Reuse

Fig. 2. Custom-MADE – Enhanced rationale management workflow.

With domain experts, developers should either define a particular documentation
model or select one from a set of predefined models. Building on the underlying

36 Mathias Schubanz

DSL technology, Custom-MADE users can define their particular models and
integrate them seamlessly into the toolchain. In the following, the author describes
modifications to the workflow and how the tool facilitates the rationale management
workflow:

Rationale Capture /Rationale Review

To support software engineers during the Rationale Capture, Custom-MADE
provides an easy and intuitive web-based editor facilitating the previously defined
documentation model (cf. Figure 4). Based on the Xtext framework [14], this
editor offers high levels of flexibility and customisability. It provides a full language
infrastructure to the user, i. e., among others, auto-completion, semantic colouring,
error checking, quick-fix suggestions. These and many more are individually
adapted to the chosen documentation model (defined as DSL). This feature set
simultaneously facilitates a semi-automated Rationale Review (cf. Figure 2). By
offering documentation guidance in the form of customisable rationale capture
templates and formal and semantic checks, the developers can fully focus on the
content aspects when reviewing the documented design rationale. Custom-MADE
takes over the remaining part of the quality control in a semi-automated way.

Rationale Processing

Complying with enterprise-wide documentation standards and making docu-
mentation available to others can be the most cumbersome documentation task.
Here Custom-MADE steps in and triggers a processing pipeline when saving the
documented rationale. For each documentation model, there are either predefined
or specifically customisable generators that transfer the documented rationale into
the desired and easily accesible formats, as, e. g., Markdown Architecture Decision
Records [21], HTML [4], or PDF [7]. The generators can be easily adapted using
Xtend [5] to make the documentation comply with existing standards and generate
desired formats.

Rationale Reuse

As mentioned already, it is often cumbersome to use documentation that has already
been produced. Accessibility and availability are central obstacles to effective usage
here. Custom-MADE addresses these by storing the raw documentation and the
generated files on the software developers’ central workplace, the code repository.
The user has the opportunity to connect a project to a git repository (cf. [25]) on a
remote git server. If connected, the documentation will be stored and versioned on
a separate git branch. This storage concept not only enables developers to access
older versions but also centralises the storage location. Thus, it is always clear
where the documentation can be found. The storage concept also enables the direct
use of documentation, e.g. in Markdown format, within the IDE. It also mitigates
accessibility barriers by enabling additional services, such as full-text search usually
offered by IDEs. Corresponding search functions for the web interface are also
being developed 1.

1 The development takes place at https://github.com/schubmat/Custom-MADE.

Custom-MADE 37

https://github.com/schubmat/Custom-MADE

5 Model Architecture

For the implementation of the desired modelling flexibility, it was necessary to
choose a dynamically configurable approach. Accordingly, the author decided to
implement a model concept with three levels (cf. Figure 3).

New Lang. - A

Metamodel M2

M1

M0

<<instantiate>>

DRL

QOC

<<instantiate>>

IBIS

Class Class

ClassClass

Class Class

ClassClass

New Lang. - B

Class Class

ClassClass

Class Class

ClassClass

Rationale1 -- Lang A

Class Class

ClassClass

Rationale2 -- Lang A

Class Class

ClassClass

Rationale1 -- Lang DRL

Class Class

ClassClass

<<instantiate>>

Fig. 3. Language modelling architecture.

On the top level (cf. level M2, Figure 3), a meta-model is used, which can
implement the common modelling approaches from rationale management (cf.
green packages). This meta-model is now interpreted as a DSL grammar. In
this way, a language server can be generated that provides a complete language
infrastructure for the definition at the model level (cf. level M1, Figure 3). This
way, users can create their documentation model (cf. orange / blue package on the
M1 level) with the Monaco Editor (cf. Figure 4). Once this is complete, the model
itself is interpreted as a DSL grammar to generate the language infrastructure for
the rationale documentation (cf. level M0). Starting from this point, developers
can now capture their rationale and start the rationale management workflow.

Fig. 4. Screenshot of the integrated editor showing semantic and syntactic hints.

38 Mathias Schubanz

6 Custom-MADE Tool Architecture

The author briefly presents the tool architecture based on the overview illustration
in Figure 5. The left-hand side shows the part of Custom-MADE that is visible to
the user. Based on a ReactJS web application, a spring-backend and a special
implementation of the Monaco Editor, all functionalities described in Section 4 are
accessible to the user. Particular attention is to be paid to the Monaco Editor, as
its support of the Language Server Protocol (LSP) (cf. [9]) enables the flexibility
in modelling that is one of the core features of the Custom-MADE approach. With
the help of this web interface, developers can initially select or individually define
their documentation model. Using Xtext, an individual language server is generated,
with which the Monaco Editor supports the complete language infrastructure. The
language server and the editor communicate using JSON-RPC [18]. The user can
now start to record rationales based on the defined documentation model. These are
validated instantly in the editor and in the processing step (cf. centre of Figure 5).
If required, test cases can also be implemented for the model. Subsequently, with
the generators’ help the defined document formats are created and stored in the
project’s code repository (cf. right side of Figure 5).

Web Interface Editing Capabilities
Generated

Results

Validation & Generation

Metamodel

Metamodel
 I. Rationale Capture &
 II. Rationale Review III. Rationale Processing

IV. Rationale
Reuse

MonacoReactJS
Language

Server

Fig. 5. Abstract tool architecture.

7 Conclusion

In this paper, the author presented a process-centric approach for the partial
automation of rationale documentation, called Custom-MADE. Special features
include its model-flexibility and customisability at various points in the toolchain.
It can be easily applied to existing workflows and configured with documentation
models already in use.

Future work includes, but is not limited to, the implementation of profound
traceability down to the ticket level and automatically generated review requests
becoming necessary due to changes that affect other rationale documentation.

Acknowledgments

Special gratitude goes to Jost -V. Schultz and Sebastian Brüggemann for their
contributions to Custom-MADE and to Claus Lewerentz for his valuable feedback.

Custom-MADE 39

References

1. Alkadhi, R., Laţa, T., Guzman, E., Bruegge, B.: Rationale in Development Chat
Messages: an Exploratory Study. In: Proceedings of the 14th International Conference
on Mining Software Repositories. pp. 436–446. IEEE Press (2017)

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2 edn. (2003)

3. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunnigham, W., Fowler,
M., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.C.,
Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for Agile Software Development.
http://agilemanifesto.org/ (February 2001), http://agilemanifesto.org/

4. Berners-Lee, T., Connolly, D.: Hypertext markup language-2.0 (1995)
5. Bettini, L.: Implementing Domain-Specific Languages With Xtext and Xtend. Packt

Publishing Ltd (2016)
6. Bhat, M., Shumaiev, K., Biesdorf, A., Hohenstein, U., Matthes, F.: Automatic

Extraction of Design Decisions From Issue Management Systems: A Machine Learning
Based Approach. In: European Conference on Software Architecture. pp. 138–154.
Springer (2017)

7. Bienz, T., Cohn, R., Adobe Systems (Mountain View, C.: Portable document format
reference manual. Citeseer (1993)

8. Bortis, G.: Informal Software Design Knowledge Reuse. In: 2010 ACM/IEEE 32nd
International Conference on Software Engineering. vol. 2, pp. 385–388. IEEE (2010)

9. Bünder, H.: Decoupling Language and Editor – The Impact of the Language
Server Protocol on Textual Domain-Specific Languages. In: Proceedings of the 7th

International Conference on Model-Driven Engineering and Software Development
(MODELSWARD 2019). pp. 131–142 (2019)

10. Burge, J., Brown, D.: SEURAT: Integrated Rationale Management. In: 2008
ACM/IEEE 30th International Conference on Software Engineering. pp. 835–838.
IEEE (2008)

11. Burge, J.E., Brown, D.C.: Software Engineering Using RATionale. Journal of Systems
and Software 81(3), 395–413 (2008)

12. Busari, S.A., Letier, E.: RADAR: A Lightweight Tool for Requirements and Archi-
tecture Decision Analysis. In: 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE). pp. 552–562. IEEE (2017)

13. DokuWiki: DokuWiki – It’s Better When its Simple (Jul 2004),
https://www.dokuwiki.org/

14. Eysholdt, M., Behrens, H.: Xtext: Implement Your Language Faster Than the Quick
and Dirty Way. In: Proceedings of the ACM international conference companion on
Object oriented programming systems languages and applications companion. pp.
307–309 (2010)

15. Hadar, I., Sherman, S., Hadar, E., Harrison, J.J.: Less is More: Architecture
Documentation for Agile Development. In: 6th International Workshop on Cooperative
and Human Aspects of Software Engineering (CHASE). pp. 121–124. IEEE (2013)

16. Heijenk, F., van den Berg, M., Leopold, H., van Vliet, H., Slot, R.: Empirical Insights
Into the Evolving Role of Architects in Decision-Making in an Agile Context. In:
European Conference on Software Architecture. pp. 247–264. Springer (2018)

17. Hesse, T.M., Kuehlwein, A., Roehm, T.: DecDoc: A Tool for Documenting Design
Decisions Collaboratively and Incrementally. In: 1st International Workshop on
Decision Making in Software ARCHitecture (MARCH). pp. 30–37. IEEE (2016)

18. JSON-RPC Working Group, .: JSON-RPC 2.0 Specification (2013)

40 Mathias Schubanz

http://agilemanifesto.org/

19. Kleebaum, A., Johanssen, J.O., Paech, B., Bruegge, B.: Sharing and Exploiting
Requirement Decisions. In: In Proceedings: Fachgruppentreffen Requirements Engi-
neering (FGRE’19) (2019)

20. Kleebaum, A., Johanssen, J.O., Paech, B., Bruegge, B.: Teaching Rationale Man-
agement in Agile Project Courses. In: Tagungsband des 16. Workshops ”Software
Engineering im Unterricht der Hochschulen” (2019)

21. Kopp, O., Armbruster, A., Zimmermann, O.: Markdown Architectural Decision
Records: Format and Tool Support. In: ZEUS. pp. 55–62 (2018)

22. Lee, C., Guadagno, L., Jia, X.: An Agile Approach to Capturing Requirements and
Traceability. In: Proceedings of the 2nd International Workshop on Traceability in
Emerging Forms of Software Engineering (TEFSE). vol. 20 (2003)

23. Li, P.: Jira 7 Essentials. Packt Publishing Ltd (2016)
24. Lin, B., Zagalsky, A., Storey, M.A., Serebrenik, A.: Why developers are slacking

off: Understanding how software teams use slack. In: Proceedings of the 19th ACM
Conference on Computer Supported Cooperative Work and Social Computing
Companion. pp. 333–336 (2016)

25. Loeliger, J.: Version control with Git. O’Reilly Series, O’Reilly (2009), http://book
s.google.de/books?id=e9FsGUHjR5sC

26. Miksovic, C., Zimmermann, O.: Architecturally Significant Requirements, Reference
Architecture, and Metamodel for Knowledge Management in Information Technology
Services. In: 9th Working IEEE/IFIP Conference on Software Architecture. pp.
270–279. IEEE (2011)

27. Rogers, B., Qiao, Y., Gung, J., Mathur, T., Burge, J.E.: Using Text Mining Techniques
to Extract Rationale From Existing Documentation. In: Design Computing and
Cognition’14, pp. 457–474. Springer (2014)

28. Sauer, T.: Using Design Rationales for Agile Documentation. In: Proceedings of the
12th IEEE International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WET ICE). pp. 326–331. IEEE (2003)

29. Schubanz, M., Lewerentz, C.: What Matters to Students – A Rationale Management
Case Studyin Agile Software Development. In: Tagungsband des 17. Workshops
”Software Engineering im Unterricht der Hochschulen”, Innsbruck, Österreich (2020)

30. Schubanz, M.: Design Rationale Capture in Software Architecture: What has to
be Captured? In: Proceedings of the 19th International Doctoral Symposium on
Components and Architecture. pp. 31–36. ACM (2014)

31. Tang, A., Avgeriou, P., Jansen, A., Capilla, R., Babar, M.A.: A Comparative Study
of Architecture Knowledge Management Tools. Journal of Systems and Software
83(3), 352–370 (2010)

32. Tang, A., Babar, M.A., Gorton, I., Han, J.: A Survey of Architecture Design Rationale.
Journal of Systems and Software 79(12), 1792–1804 (2006)

33. Thurimella, A., Schubanz, M., Pleuss, A., Botterweck, G.: Guidelines for
Managing Requirements Rationales. Software, IEEE 34(1), 82 – 90 (2017).
https://doi.org/10.1109/MS.2015.157

34. Tofan, D., Galster, M., Avgeriou, P.: Difficulty of Architectural Decisions – A] Survey
With Professional Architects. In: European Conference on Software Architecture. pp.
192–199. Springer (2013)

35. Voigt, S., Hüttemann, D., Gohr, A.: SprintDoc: Concept for an Agile Documentation
Tool. In: 11th Iberian Conference on Information Systems and Technologies (CISTI).
pp. 1–6. IEEE (2016)

36. Zdun, U.: A DSL Toolkit for Deferring Architectural Decisions in DSL-Based Software
Design. Information and Software Technology 52(7), 733–748 (2010)

Custom-MADE 41

http://books.google.de/books?id=e9FsGUHjR5sC
http://books.google.de/books?id=e9FsGUHjR5sC
https://doi.org/10.1109/MS.2015.157

