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Abstract. Managing rationale in software development projects can be a
cumbersome task with a potentially low return on investment. Especially
in the agile context, documentation is therefore very unpopular. Research
has not yet properly addressed an agile documentation workflow. In
this paper, the author presents an integrated approach to agile rationale
management based on a highly-flexible modelling approach using domain-
specific languages. It facilitates the complete documentation workflow from
capture to reuse, partially automates it and offers various customisation
opportunities, making it applicable to agile methods.

Keywords: agile · decision-making · Language Server Protocol · domain-
specific languages · documentation · tool support · rationale management

1 Introduction

Managing rationale can considerably improve comprehension in software develop-
ment. It facilitates change impact analysis as well as requirements traceability and
evolution [33]. Moreover, it improves the understanding of architectural decisions
and leads to better decisions [34]. In agile software development (ASD) this can be
particularly important, as empirical work showed that stakeholders in agile teams
perceive less architecture involvement [16]. Furthermore, in ASD documentation is
questioned with particular scepticism. ASD instead promotes working software
while depreciating documentation (cf. Agile Manifest [3]). Despite the mentioned
and other potential benefits (cf. Tang et al. [32]), the structured and systematic
handling of decisions is only applied seldom in practise [2,11]. Even in ASD
teaching, it is only dealt with very selectively [20].

As part of an ongoing research project [30] with the focus adapted to ASD,
the author developed Custom-MAnangement of DEcision (Custom-MADE), an
integrated process-centric approach to rationale management. Based on domain-
specific languages (DSL) it integrates a highly-flexible modelling approach enabling
its users to tailor it to individual or enterprise-wide needs and documentation
standards. Another feature is its minimal-invasive and generic approach offering to
combine it with existing workflows. All these customization opportunities are vital
for use in individually tailored processes in ASD.
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The remainder of the paper starts with a presentation of related work (Section 2).
Section 3 presents a simplified rationale management workflow, while Section 4
elaborates on how Custom-MADE enhances it. Subsequently, Section 5 introduces
the model architecture and Section 6 the chosen tool architecture. Finally, Section 7
concludes the paper and provides an outlook on future research.

2 Related Work

Approaches to direct process integration of rationale management in ASD are
sparse, if at all. Rather, there are many tool-based approaches for rationale
management in ASD. In the field of agile requirements gathering, for instance,
Lee et al. [22] developed Echo, an approach connecting requirements and related
design decisions. Around the same time Sauer [28] presented an approach for
automating the capture of rationale in ASD. It aims to reduce costs by linking
historical data and prototype definitions to an event-based rationale model. More
recently, Hadar et al. [15] introduced an approach to document an architecture in
the elevator speech concept. Their tool helps architects in organizing relevant
information while creating design and architecture blueprints, thus reducing
documentation effort. Also recently Voigt et al. [35] presented sprintDoc, a tool-
based concept based on DokuWiki [13]. It integrates the documentation of artefacts
into the agile process and thus traces changes in documents along with changes in
issues.

There are also a lot of contributions around rationale modelling. These
contributions often include tools that support rationale capture or sometimes
even the decision-making process, as e. g., Miksovic and Zimmerman [26]. Some
approaches even start with requirements analysis, such as RADAR [12]. A
considerable share of the model-based contributions stems from research on
software architecture documentation, less from the field of agile documentation.
Since Custom-MADE aims less at architecture-bound documentation and more at
integration into lightweight agile processes, please refer to Tang et al. [31] for a
comprehensive overview of other approaches to modelling software architecture
decisions as well as suitable tool support.

When considering the modeling approach from a more general perspective, one
of the approaches that is most similar to Custom-MADE is Frag [36]. However,
Zdun focuses more on DSL-based designs rather than using DSLs to get maximum
flexibility for the documentation models.

Further work tries to leverage the opportunity of capturing rationale exactly
where and when they are made to mitigate a substantial barrier to rationale capture
(cf. [11]). For instance, DesignMinders [8] complements whiteboard systems so that
rationale are directly digitised and browseable. Other approaches directly integrate
with the IDE, as implemented by SEURAT [10] and DecDoc [17]. ConDec [19] even
goes one step further by additionally integrating with JIRA [23] and Slack [24].

Other related contributions ignore formal and process aspects of rationale
documentation entirely. They focus on retrospectively extracting rationale from
existing documents by, e. g., integrating machine learning techniques (cf. Alkadi
et al. [1], Bhat et al. [6], or Rogers et al. [27]).
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3 Rationale Management Workflow

As presented in the related work (cf. Section 2), many of the approaches to date
focus on either modelling, the activity of capturing, or persisting and providing
design rationales to developers. However, only a few approaches focus on a holistic
workflow and a possible process integration with it. In this chapter, the author
presents a simplified rationale management workflow that serves as the basis for
presenting the tool-driven approach later on (cf. Figure 1). As of now, Custom-
MADE deliberately ignores the reasoning and decision-making process and begins
with the rationale capture.

I.  Rationale
    Capture

II.  Rationale
      Review

III.  Rationale
       Processing

IV. Rationale
      Reuse

Fig. 1. Rationale management workflow.

Initially, (I ) rationale that are considered sufficiently important will be
documented. As a second step, (II ) the rationale are reviewed at a given time
(e.g. in retrospective, as in [29]). Following the review and potential modifications,
(III ) the documented rationale are processed and archived for later use. The last
activity (IV ) constitutes the reuse of the recorded information. If it is necessary to
modify already documented rationale, the workflow can be reiterated from the
review.

4 Enhanced Rationale Management Workflow

The aim of Custom-MADE is to enable an individual, customisable, flexible and
semi-automated rationale management workflow. Custom-MADE starts even
before the actual workflow (cf. Figure 2).

Selection / Definition
of Documentation

Model

Rationale Management Workflow

I.  Rationale
    Capture

II.  Rationale
      Review

III.  Rationale
       Processing

IV. Rationale
      Reuse

Fig. 2. Custom-MADE – Enhanced rationale management workflow.

With domain experts, developers should either define a particular documentation
model or select one from a set of predefined models. Building on the underlying
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DSL technology, Custom-MADE users can define their particular models and
integrate them seamlessly into the toolchain. In the following, the author describes
modifications to the workflow and how the tool facilitates the rationale management
workflow:

Rationale Capture /Rationale Review

To support software engineers during the Rationale Capture, Custom-MADE
provides an easy and intuitive web-based editor facilitating the previously defined
documentation model (cf. Figure 4). Based on the Xtext framework [14], this
editor offers high levels of flexibility and customisability. It provides a full language
infrastructure to the user, i. e., among others, auto-completion, semantic colouring,
error checking, quick-fix suggestions. These and many more are individually
adapted to the chosen documentation model (defined as DSL). This feature set
simultaneously facilitates a semi-automated Rationale Review (cf. Figure 2). By
offering documentation guidance in the form of customisable rationale capture
templates and formal and semantic checks, the developers can fully focus on the
content aspects when reviewing the documented design rationale. Custom-MADE
takes over the remaining part of the quality control in a semi-automated way.

Rationale Processing

Complying with enterprise-wide documentation standards and making docu-
mentation available to others can be the most cumbersome documentation task.
Here Custom-MADE steps in and triggers a processing pipeline when saving the
documented rationale. For each documentation model, there are either predefined
or specifically customisable generators that transfer the documented rationale into
the desired and easily accesible formats, as, e. g., Markdown Architecture Decision
Records [21], HTML [4], or PDF [7]. The generators can be easily adapted using
Xtend [5] to make the documentation comply with existing standards and generate
desired formats.

Rationale Reuse

As mentioned already, it is often cumbersome to use documentation that has already
been produced. Accessibility and availability are central obstacles to effective usage
here. Custom-MADE addresses these by storing the raw documentation and the
generated files on the software developers’ central workplace, the code repository.
The user has the opportunity to connect a project to a git repository (cf. [25]) on a
remote git server. If connected, the documentation will be stored and versioned on
a separate git branch. This storage concept not only enables developers to access
older versions but also centralises the storage location. Thus, it is always clear
where the documentation can be found. The storage concept also enables the direct
use of documentation, e.g. in Markdown format, within the IDE. It also mitigates
accessibility barriers by enabling additional services, such as full-text search usually
offered by IDEs. Corresponding search functions for the web interface are also
being developed 1.

1 The development takes place at https://github.com/schubmat/Custom-MADE.
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5 Model Architecture

For the implementation of the desired modelling flexibility, it was necessary to
choose a dynamically configurable approach. Accordingly, the author decided to
implement a model concept with three levels (cf. Figure 3).

New Lang. - A 

Metamodel M2

M1

M0

<<instantiate>>

DRL

QOC

<<instantiate>>

IBIS

Class Class

ClassClass

Class Class

ClassClass

New Lang. - B

Class Class

ClassClass

Class Class

ClassClass

Rationale1 -- Lang A

Class Class

ClassClass

Rationale2 -- Lang A

Class Class

ClassClass

Rationale1 -- Lang DRL

Class Class

ClassClass

<<instantiate>>

Fig. 3. Language modelling architecture.

On the top level (cf. level M2, Figure 3), a meta-model is used, which can
implement the common modelling approaches from rationale management (cf.
green packages). This meta-model is now interpreted as a DSL grammar. In
this way, a language server can be generated that provides a complete language
infrastructure for the definition at the model level (cf. level M1, Figure 3). This
way, users can create their documentation model (cf. orange / blue package on the
M1 level) with the Monaco Editor (cf. Figure 4). Once this is complete, the model
itself is interpreted as a DSL grammar to generate the language infrastructure for
the rationale documentation (cf. level M0). Starting from this point, developers
can now capture their rationale and start the rationale management workflow.

Fig. 4. Screenshot of the integrated editor showing semantic and syntactic hints.
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6 Custom-MADE Tool Architecture

The author briefly presents the tool architecture based on the overview illustration
in Figure 5. The left-hand side shows the part of Custom-MADE that is visible to
the user. Based on a ReactJS web application, a spring-backend and a special
implementation of the Monaco Editor, all functionalities described in Section 4 are
accessible to the user. Particular attention is to be paid to the Monaco Editor, as
its support of the Language Server Protocol (LSP) (cf. [9]) enables the flexibility
in modelling that is one of the core features of the Custom-MADE approach. With
the help of this web interface, developers can initially select or individually define
their documentation model. Using Xtext, an individual language server is generated,
with which the Monaco Editor supports the complete language infrastructure. The
language server and the editor communicate using JSON-RPC [18]. The user can
now start to record rationales based on the defined documentation model. These are
validated instantly in the editor and in the processing step (cf. centre of Figure 5).
If required, test cases can also be implemented for the model. Subsequently, with
the generators’ help the defined document formats are created and stored in the
project’s code repository (cf. right side of Figure 5).

Web Interface Editing Capabilities
Generated

Results

Validation & Generation

Metamodel

Metamodel
 I. Rationale Capture & 
 II.  Rationale Review     III.  Rationale Processing

IV. Rationale
Reuse

MonacoReactJS
Language 

Server

Fig. 5. Abstract tool architecture.

7 Conclusion

In this paper, the author presented a process-centric approach for the partial
automation of rationale documentation, called Custom-MADE. Special features
include its model-flexibility and customisability at various points in the toolchain.
It can be easily applied to existing workflows and configured with documentation
models already in use.

Future work includes, but is not limited to, the implementation of profound
traceability down to the ticket level and automatically generated review requests
becoming necessary due to changes that affect other rationale documentation.
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