
Solving Nonlinear Algebraic Systems Using Artificial Neural Networks

Athanasios Margaris and Miltiadis Adamopoulos
University of Macedonia

Department of Applied Informatics
Egnatia 156, Thessaloniki, Greece
amarg@uom.gr, miltos@uom.gr

Abstract

The objective of this research is the proposal of neural
network structures capable of solving nonlinear algebraic
systems with polynomials equations; however these struc-
tures can be easily modified to solve systems of nonlinear
equations of any type. The basic features of the proposed
structures include among others the usage of product units
trained by the gradient descent algorithm. The presented
theory is applied for solving 2 × 2 and 3 × 3 nonlinear al-
gebraic systems and the accuracy of the method is tested
by comparing the experimental results produced by the net-
work with the theoretical values of the systems roots.

1 Introduction

A typical nonlinear algebraic system has the form
F (~z) = 0 where the function F is defined as F : Rn → Rn

(n > 1) and it is an n-dimensional vector in the form
F = [f1, f2, . . . , fn]T with fi : Rn → R (i = 1, 2, . . . , n).
It should be noted, that in general, there are no good meth-
ods for solving such a system: in the simple case of only two
equations in the form f1(z1, z2) = 0 and f2(z1, z2) = 0,
the estimation of the system roots is reduced to the identi-
fication of the common points of the zero contours of the
functions f1(z1, z2) and f2(z1, z2). But this is a very dif-
ficult task, since in general, these two functions have no
relation to each other at all. In the general case of N nonlin-
ear equations, the system solving requires the identification
of points that are mutually common to N unrelated zero-
contour hyper-surfaces each of dimension N − 1 [1].

2 Review of previous work

The solution of nonlinear algebraic systems is in gen-
eral possible by using not analytical, but numerical algo-
rithms. Besides the well known fixed-point based meth-
ods, (quasi)-Newton and gradient descent methods, a well

known class of such algorithms is the ABS class introduced
in 1984 by Abaffy, Broyden and Spedicato [2] for initially
solving linear systems, but to be extended later to solve non
linear equations and system of equations [3]. The basic
function of the initial ABS algorithms is to solve a deter-
mined or under-determined n × m linear system Az = b
(z ∈ Rn, b ∈ Rm, m ≤ n) where rank(A) is arbitrary
and AT = (α1, α2, . . . , αm), with the system solution to be
estimated as follows [4]:

1. Give z1 ∈ Rn arbitrary, H1 ∈ Rn×n nonsingular arbi-
trary, and ui ∈ Rm arbitrary and nonzero. Set i = 1.

2. Compute the residual ri = Azi − b. If ri = 0, stop (zi

solves the system), otherwise compute si = HiA
T ui.

If si 6= 0, then, goto 3. If si = 0 and τ = uT
i ri = 0,

then set zi+1 = zi, Hi+1 = Hi and goto 6. Otherwise,
stop, since the system has no solution.

3. Compute the search vector pi = HT
i xi where xi ∈ Rn

is arbitrary save for the condition uT
i AHixi 6= 0.

4. Update the estimate of the solution by zi+1 = zi−αipi

and αi = uT
i ri/uT

i Api.

5. Update the matrix Hi by Hi+1 = Hi −
HiA

T uiW
T
i Hi/wT

i HiA
T ui where wi ∈ Rn is arbi-

trary save for the condition wT
i HiA

T ui 6= 0.

6. If i = m, stop (zm+1 solves the system). Otherwise,
give ui+1 ∈ Rn arbitrary, linearly independent from
u1, u1, . . . , ui. Increment i by one and goto 2.

In the above description, the matrices Hi which are general-
izations of the projection matrices, are known as Abaffians.
The choice of these matrices as well as the quantities ui,xi

and wi, determine particular subclasses of the ABS algo-
rithms the most important of them are the following:

• The conjugate direction subclass, obtained by setting
ui = pi. It is well defined under the sufficient but
not necessary condition that matrix A is symmetric

and positive definite. Old versions of the Cholesky,
Hestenes-Stiefel and Lanczos algorithms, belong to
this subclass.

• The orthogonality scaled subclass, obtained by setting
ui = Api. It is well defined if matrix A has full col-
umn rank and remains well defined even if m > n. It
contains the ABS formulation of the QR algorithm, the
GMRES and the conjugate residual algorithm.

• The optimally stable subclass, obtained by setting
ui = (A−1)T pi. The search vectors in this class, are
orthogonal. If z1 = 0, then, the vector zi+1 is the vec-
tor of least Euclidean norm over Span(p1, p2, . . . , pi),
and the solution is approached monotonically from
bellow in the Euclidean norm. The methods of Gram-
Schmidt and of Craig belong to this subclass.

The extension of the ABS methods for solving nonlinear
algebraic systems is straightforward and there are many of
them [5][6]. The kth iteration of a typical nonlinear ABS
algorithm includes the following steps:

1. Set y1 = zk and H1 = En where En is the n × n
unitary matrix.

2. Perform steps 3 to 6 for all i = 1, 2, . . . , n.

3. Set pi = HT
i xi.

4. Set ui =
∑i

j=1 τjiyj such that τji > 0 and∑i
j=1 τji = 1.

5. Set yi+1 = yi − uT
i F (yi)pi/uT

i A(ui)pi.

6. Set Hi+1 = Hi −HiA
T uiW

T
i Hi/wT

i HiA
T ui.

7. Set xk+1 = yn+1.

A particular ABS method is defined by the arbitrary
parameters V = [u1, u2, . . . , un], W = [w1, w2, . . . , wn],
X = [x1, x2, . . . , xn] and τij . These parameters
are subjected to the conditions uT

i A(ui)pi 6= 0 and
wT

i HiA(ui)ui 6= 0 (i = 1, 2, . . . , n). It can be proven
that under appropriate conditions the ABS methods are
locally convergent with a speed of Q-order two, while,
the computational cost of one iteration is O(n3) flops
plus one function and one Jacobian matrix evaluation. To
save the cost of Jacobian evaluations, Huang introduced
quasi-Newton based AVS methods known as row update
methods, to which, the Jacobian matrix of the non linear
system, A(z) = F ′(z) is not fixed, but its rows are
updated at each iteration, and therefore has the form
Ak = [α(k)

1 , α
(k)
2 , . . . , α

(k)
n]T (α(k)

j ∈ Rn). Based on this
formalism, the kth iteration of the Huang row update ABS
method is performed as follows:

1. Set y
(k)
1 = zk and H1 = En.

2. Perform steps 3 to 7 for all i = 1, 2, . . . , n.

3. If k = 1 goto step 5; else set si = y
(k)
i − y

(k−1)
i and

gi = f(y
(k)
i)− fi(y

(k−1)
i).

4. If si 6= 0, set α
(k)
i = α

(k−1)
i + [gi −

α
(k−1)T
i si]si/sIiT si; else set α

(k)
i = α

(k−1)
i .

5. Set pi = HT
i xi.

6. Set y
(k)
i+1 = y

(k)
i − fi(y

(k)
i)pi/pT

i α
(k)
i .

7. Set Hi+1 = Hi −Hiα
(k)
i wT

i Hi/wT
i Hiα

(k)
i .

8. Set xk+1 = y
(k)
k+1.

Since the row update method does not require the a-priori
computation of the Jacobian matrix, its computational cost
is O(n3); however, an extra memory space is required for
the n× n matrix [y(k−1)

1 , y
(k−1)
2 , . . . , y

(k−1)
n].

Galantai and Jeney [7] have proposed alternative meth-
ods for solving nonlinear systems of equations that are com-
binations of the nonlinear ABS methods and quasi-Newton
methods. Another interesting class of methods have been
proposed by Kublanovskaya and Simonova [8] for estimat-
ing the roots of m nonlinear coupled algebraic equations
with two unknowns λ and µ. In their work, the nonlinear
system under consideration is described by the vector equa-
tion

F (λ, µ) = [f1(λ, µ), f2(λ, µ), . . . , fm(λ, µ)]T = 0 (1)

with the function fk(λ, µ) (k = 1, 2, . . . , m) to be a poly-
nomial in the form

fk(λ, µ) = [α(k)
ts µt + · · ·+ α

(k)
0s]λs + . . .

+[α(k)
t0 µt + · · ·+ α

(k)
00] (2)

In Equation (2), the coefficients αij (i = 0, 1, . . . , t and
j = 0, 1, . . . , s) are in general complex numbers, while s
and t are the maximum degrees of polynomials in λ and µ
respectively, found in F (λ, µ) = 0. The algorithms pro-
posed by Kublanovskaya and Simonova are able to find
the zero-dimensional roots (λ∗, µ∗), i.e. the pairs of fixed
numbers satisfying the nonlinear system, as well as the
one-dimensional roots (λ, µ) = (ϕ(µ), µ) and (λ, µ) =
(λ, ϕ̃(λ)) whose components are functionally related.

The first method of Kublanovskaya and Simonova con-
sists of two stages. At the first stage, the process passes
from the system F (λ, µ) = 0 to the spectral prob-
lem for a pencil D(λ, µ) = A(µ) − λB(µ) of polyno-
mial matrices A(µ) and B(µ), whose zero-dimensional

and one-dimensional eigenvalues coincide with the zero-
dimensional and one-dimensional roots of the nonlinear
system under consideration. On the other hand, at the sec-
ond stage, the spectral problem for D(λ, µ) is solved, i.e.
all zero-dimensional eigenvalues of D(λ, µ) as well as a
regular polynomial matrix pencil whose spectrum gives all
one-dimensional eigenvalues of D(λ, µ) are found. Regard-
ing the second method, it is based to the factorization of
F (λ, µ) into irreducible factors and to the estimation of the
roots (µ, λ) one after the other, since the resulting polyno-
mials produced by this factorization are polynomials of only
one variable.

The last family of methods mentioned in this section is
the one proposed by Emiris, Mourrain and Vrahatis [9].
These methods are able to count and identify the roots of
a nonlinear algebraic system based to the concept of topo-
logical degree and by using bisection techniques.

3 ANNs as linear systems solvers

An effective tool for solving linear as well as nonlinear
algebraic systems, is the artificial neural networks (ANNs).
Before the description of their usage in the nonlinear case,
let us briefly describe how they can be used to solve linear
systems of m equations with n unknowns in the form Az =
B [11]. In this approach the design of the neural network
allows the minimization of the Euclidean distance r = Az−
b or the equivalent residual r = Cz − d where C = AT A
and d = AT b. The proposed neural network is a Hopfield
network with a Lyapunov energy function in the form

E =−1
2

n∑

i=1

n∑

j 6=i=1

Tijvivj−
n∑

i=1

bivi−
n∑

i=1

1
ri

∫ vi

0

g−1
i (v)dv (3)

where bi = di/Cii is the externally applied stimulation,
vi = zi = gi(ui) = ui is the neuron output, ui is the
neuron state, gi(ui) is the neuron activation functions and

Tij = Tji =
{ −Cij/Cii i 6= j

0 i = j
(4)

(i, j = 1, 2, . . . , n) are the synaptic weights. The neural
network has been designed in such a way, that after train-
ing, the outputs of the network to be the roots of the linear
system under consideration. This result has been theoreti-
cally established by proving that the Lyapunov function of
the proposed neural network is minimized by the roots of
the given linear system.

4 Theory of algebraic nonlinear systems

According to the basic principles of the nonlinear alge-
bra [12], a complete nonlinear algebraic system of n poly-
nomial equations with n unknowns ~z = (z1, z2, . . . , zn)

is identified completely by the number of equations, n and
their degrees (s1, s2, . . . , sn), it is expressed mathemati-
cally as

Ai(~z) =
n∑

j1,j2,...,jsi

A
j1j2...jsi
i zj1zj2 . . . zjsi

= 0 (5)

(i = 1, 2, . . . , n), and it has one non-vanishing solution
(i.e. at least one jj 6= 0) if and only if the equation
<s1,s2,...sn{A

j1j2...jsi
i } = 0 holds. In this equation, the

function < is called the resultant and it is a straightforward
generalization of the determinant of a linear system. The re-
sultant < is a polynomial of the coefficients of A of degree

ds1,s2,...,sn
= degA<s1,s2,...,sn

=
n∑

i=1

(∏

j 6=i

sj

)
(6)

When all degrees coincide, i.e. s1 = s2 = · · · = sn =
s, the resultant <n|s is reduced to a polynomial of degree
dn|s = degA<n|s = nsn−1 and it is described completely
by the values of the parameters n and s.

To understand the mathematical description of a com-
plete nonlinear algebraic system let us consider the case of
n = s = 2. By applying the defining equation, the ith equa-
tion (i = 1, 2, . . . , n) of the nonlinear system is estimated
as

Ai(~z) =
2∑

j1=1

2∑

j2=1

Aj1j2
i zj1zj2 =

= A11
i z2

1 + (A12
i + A21

i)z1z2 + A22
i z2

2 (7)

where the analytical expansion has been omitted for the
sake of brevity. The same equation for the case n = 3 and
s = 3 gets the form

Ai(~z)=
3∑

j1=1

3∑

j2=1

3∑

j3=1

Aj1j2j3
i zj1zj2zj3 =

= A111
i z3

1+A222
i z3

2+A333
i z3

3 + (A121
i +A211

i +
+A112

i)z2
1z2 + (A131

i + A113
i +A311

i)z2
1z3 +

+(A221
i +A212

i +A122
i)z1z

2
2 + (A331

i + A313
i +

+ A133
i)z1z

2
3 + (A332

i + A233
i + A323

i)z2z
2
3 +

+(A232
i +A223

i +A322
i)z2

2z3 + (A321
i +A231

i +
+ A312

i +A132
i +A231

i +A123
i)z1z2z3 (8)

From the above equations, it is clear that the coefficients of
the matrix A which is actually a tensor for n > 2 are not all
independent each other. More specifically, for the simple
case s1 = s2 = · · · = sn = s, the matrix A is symmetric
in the last s contravariant indices. It can be proven that
such a tensor has only nMn|s independent coefficients, with
Mn|s = (n + s− 1)|/(n− 1)!s!.

Even though the notion of the resultant has been defined
for homogenous nonlinear equations, it can also describe
non-homogenous algebraic equations as well. In the general
case, the resultant <, satisfies the nonlinear Craemer rule

<s1,s2,...,sn{A(k)(Zk)} = 0 (9)

where Zk is the kth component of the solution of the non-
homogenous system, and A(k) the kth column of the coef-
ficient matrix, A.

Since in the next sections neural models for solving the
complete 2 × 2 and 3 × 3 nonlinear algebraic systems are
proposed, let us describe their basic features for the simple
case s1 = s2 = s. The complete 2 × 2 nonlinear system is
defined as A(x, y) = 0 and B(x, y) = 0 where

A(x, y) =
s∑

k=0

αkxkys−k =αs

s∏

j=1

(x−λjy)=ysÃ(t) (10)

B(x, y) =
s∑

k=0

βkxkys−k =βs

s∏

j=1

(x−µjy)=ysB̃(t) (11)

with t = y/x, x = z1 and y = z2. The resultant of this
system, has the form

< = (αsβs)s
s∏

i,j=1

(λi−µj)=(α0β0)s
s∏

i,j=1

(
1
µj
− 1

λi

)
(12)

(for sake of simplicity we used the notation < =
<2|s{A, B}) and it can be expressed as the determinant of
the 2s × 2s matrix of coefficients. In the particular case of
a linear map (s = 1), this resultant reduces to the deter-
minant of the 2 × 2 matrix, and therefore, it has the form
<2|1{A} = ‖α1; α0; β1;β0‖. On the other hand, for s = 2
(this is a case of interest in this project) the homogenous
nonlinear algebraic system has the form

α11x
2 + α13xy + α12y

2 = 0 (13)
α21x

2 + α23xy + α22y
2 = 0 (14)

with a resultant in the form

<2 = <2|2{A} =

∥∥∥∥∥∥∥∥

α11 α13 α12 0
0 α11 α13 α12

α21 α23 α22 0
0 α21 α23 α22

∥∥∥∥∥∥∥∥
(15)

In complete accordance with the theory of the linear alge-
braic systems, the above system has a solution if the resul-
tant < satisfies the equation < = 0. Regarding the non-
homogenous complete 2 × 2 nonlinear system, is can be
derived from the homogenous one, by adding and the linear
terms; it therefore, has the form

α11x
2 + α13xy + α12y

2 = −α14x− α15y + β1 (16)
α21x

2 + α23xy + α22y
2 = −α24x− α25y + β2 (17)

To solve this system, we note that if (X, Y) is the desired
solution, then, the solution of the homogenous systems

(α11X
2+α14X−β1)z2+(α13X+α15)yz+α12y

2=0 (18)
(α21X

2+α24X−β2)z2+(α23X+α25)yz+α22y
2=0 (19)

and

α11x
2+(α13Y +α14)xz+(α12Y

2+α15Y −β1)z2=0 (20)
α21x

2+(α23Y +α24)xz+(α22Y
2+α25Y −β1)z2=0 (21)

has the form (z, y) = (1, Y) for the first system, and
(x, z) = (X, 1) for the second system. But this implies,
that the corresponding resultants vanish, i.e., the X variable
satisfies the equation
∥∥∥∥∥∥∥∥

α11X
2 + α14X − β1;α13X + α15;α12; 0

0; α11X
2 + α14X − β1; α13X + α15; α12

α21X
2 + α24X − β2;α23X + α25;α22; 0

0; α21X
2 + α24X − β2; α23X + α25; α22

∥∥∥∥∥∥∥∥
=0 (22)

while, the Y variable satisfies the equation
∥∥∥∥∥∥∥∥

α11; α13Y + α14; α12Y
2 + α15Y − β1; 0

0; α11;α13Y + α14; α12Y
2 + α15Y − β1

α21; α23Y + α24; α22Y
2 + α25Y − β2; 0

0; α21;α23Y + α24; α22Y
2 + α25Y − β1

∥∥∥∥∥∥∥∥
=0 (23)

(in the above equations the symbol ”;” is used as column
separator in the tabular environment). Therefore, the vari-
ables X and Y got separated, and they can be estimated
from separate algebraic equations. However, these solutions
are actually correlated: the above equations are of the 4th

power in X and Y respectively, but making a choice of one
of the four X ′s, one fixes associated choice of Y . Thus, the
total number of solutions for the complete 2 × 2 nonlinear
algebraic system is s2 = 4.

The extension of this description for the complete 3× 3
system and in general, for the complete n × n system is
straightforward. Regarding the type of the system roots -
namely, real, imaginary, or complex roots - it depends of
the values of the coefficients of the matrix A.

5 ANNs as nonlinear system solvers

The extension of the structure of the previously de-
scribed neural network to work with the nonlinear case is
straightforward; however a few modifications are necessary.
The most important of them is the usage of multiplicative
neuron types known as product units [10] in order to pro-
duce the nonlinear terms of the algebraic system (such as
x2, xy, x2z) during training. The learning algorithm of the
network is the back propagation algorithm: since there is
no Lyapunov energy function to be minimized, the roots of

the nonlinear system are not estimated as the outputs of the
neural network, but as the weights of the synapses that join
the input neuron with the neurons of the first hidden layer.
These weights are updated during training in order to give
the desired roots. On the other hand, the weights of the re-
maining synapses are kept to fixed values. Some of them
have a value equal to the unity and contribute to the gen-
eration of the linear and the nonlinear terms, while some
others are set to the coefficients of the nonlinear system to
be solved. The network neurons are joined in such as way,
that the total input of the output neurons - whose number
coincides with the number of the unknowns of the system -
to be equal to the left hand part of the corresponding system
equation. Regarding the input layer, it has only one neuron
whose input has a always a fixed value equal to the unity.
The structure of the neural network solver for the complete
2× 2 and 3× 3 nonlinear systems are presented in the next
sections.

5.1 The complete 2× 2 nonlinear system

The complete nonlinear system with two equations and
two unknowns has the general form

α11x
2 + α12y

2 + α13xy + α14x + α15y = β1 (24)
α21x

2 + α22y
2 + α23xy + α24x + α25y = β2 (25)

and the structure of the neural network that solves it, is
shown in Figure 1. From Figure 1 it is clear that the neu-
ral network is composed of eight neurons grouped in four
layers as follows: Neuron N1 belongs to the input layer,
neurons N2 and N3 belong to the first hidden layer, neurons
N4, N5 and N6 belong to the second hidden layer, while,
neurons N7 and N8 belong to the output layer. From these
neurons, the input neuron N1 gets a fixed input with a value
equal to the unity. The activation function of all the net-
work neurons is the identity function, meaning that each
neuron copies its input to its output without modifying it -
this property in mathematical form is expressed as Ik = Ok

(k = 1, 2, . . . , 8) where Ik and Ok is the total input and the
total output of the kth neuron, respectively. Regarding the
synaptic weights they are denoted as Wij ≡ W (Ni → Nj)
- in other words, Wij is the weight of synapse that joins the
source neuron Ni with the target neuron Nj - and they are
assigned as follows:

W12 = x, W13 = y

These weights are updated with the back propagation algo-
rithm and after the termination of the training operation they
keep the values (x, y) of one of the roots of the non-linear
algebraic system.

Wα
25 = W β

25 = W24 = W34 = Wα
36 = W β

36 = 1

These weights have a fixed value equal to the unity; the role
of the corresponding synapses is simply to supply to the
multiplicative neurons N5, N4 and N6 the current values of
x and y, to form the quantities x2, xy, and y2, respectively.
In the above notation, the superscripts α and β are used to
distinguish between the two synapses that join the neuron
N2 with the neuron N5 as well as the neuron N3 with the
neuron N6.

W57 =α11,W67 =α12,W47 =α13,W27 =α14,W37 =α15

W58 =α21,W68 =α22,W48 =α23,W28 =α24,W38 =α25

The values of the above weights are fixed, and equal to the
constant coefficients of the nonlinear system.

One of the remarkable features of the above network
structure is the use of the product units N5, N4 and N6,
whose total input is not estimated as the sum of the indi-
vidual inputs received from the input neurons, but as the
product of those inputs. If we denote with Is and Ip the
total net input of a summation and a product unit respec-
tively, each one connected to N input neurons, then, if this
neuron is the ith neuron of some layer, the above total input
is estimated as Ia =

∑N
j=1 Wijxj and Im =

∏N
j=1 x

Wij

j

where Wij is the weight of the synapse joining the jth input
neuron with the current neuron, and xj is the input coming
from that neuron. It can be proven [10] that if the neural
network is trained by using the gradient descend algorithm,
then, the weight update equation for the input synapse con-
necting the jth input unit with the `th hidden product unit
has the form

wh
`j(t + 1) = wh

`h(t) + ηfh′
l (nethp`)e

ρp` ×

×
(

ln |xjp| cos(πξp`)−πIp
` sin(πξp`)

)
×

×
M∑

k=1

(dpk−opk)fo′
k (netopk)wo

k` (26)

where nethp` is the total net input of the product unit and
for the pth training pattern, xjp is the jth component of that
pattern, netopk is the total net input of the kth output neuron,
dpk and opk are the kth component of the desired and the
real output vector respectively, M is the number of output
neurons, Ip

` has a value of 0 or 1 according to the sign of
xjp, n is the learning rate value, while, the quantities ρp`

and ξp` are defined as

ρpm =
N∑

j=1

wh
mj ln |xjp| and ξpm =

N∑

j=1

wh
mjI

p
m

respectively. In the adopted non linear model, all the thresh-
old values are set to zero; furthermore, since the activation
function of all neurons is the identity function, it is clear

Figure 1. The structure of the 2× 2 nonlinear system solver

that the total input calculated above is also the output that
this neuron sends to its output processing units.

The neural network model presented so far, has been de-
signed in such a way that the total input of the output neuron
N7 to be the expression α11x

2 + α12y
2 + α13xy + α14x +

α15y and the total input of the output neuron N8 to be the
expression α21x

2 +α22y
2 +α23xy +α24x+α25y. To un-

derstand this, let us identify all the paths that start from the
input neuron N1 and terminate to the output neuron N7, as
well as the input value associated with them. These paths
are the following:

• Path P1: it is defined as N1 → N2 → N5 → N7.
In this path, the neuron N2 gets a total input I2 =
W12 · O1 = 1 · x = x and forwards it to the neu-
ron N5. There are two synapses between N2 and N5

with a fixed weight equal to the unity; since N5 is a
multiplicative neuron, its total input is estimated as
I5 = (Wα

25O2) · (W β
25O2) = (1 · x) · (1 · x) = x2.

Furthermore, since neuron N5 works with the identity
function, its output O5 = I5 = x2 is sent to the out-
put neuron N7 multiplied by the weight W57 = α11.
Therefore, the input to N7 emerged from the path P1

is ξ7
1 = α11x

2.

• Path P2: it is defined as N1 → N3 → N6 → N7.
Working in a similar way, the output of N3 is O3 =
I3 = W13O1 = y, the output of N6 is O6 = I6 =
(Wα

36O3) · (W β
36O3) = y2, and the total input to N7

from the path P2 is ξ7
2 = α12y

2.

• Path P3: it is defined as N1 → N2 → N4 → N7. In
this case the total input of the multiplicative neuron N4

is equal to I4 = O4 = W24O2 + W34O3 = xy and

therefore, the contribution of the path P3 to the total
input of the neuron N7 is equal to ξ7

3 = α13xy.

• Path P4: it is defined as N1 → N2 → N7 and con-
tributes to N7 an input of ξ7

4 = α14x.

• Path P5: it is defined as N1 → N3 → N7 and con-
tributes to N7 an input of ξ7

5 = α15y.

Since N7 is a simple additive neuron, its total input received
from the five paths defined above is equal to

I7 =
7∑

i=1

ξ7
i = α11x

2+α12y
2+α13xy+α14x+α15y (27)

Working in the same way, we can prove that the total input
send to the output neuron N8 is equal to

I8 =
8∑

i=1

ξ8
i = α21x

2+α22y
2+α23xy+α24x+α25y (28)

Therefore, if the back propagation algorithm will be used
with the values of β1 and β2 as desired outputs, the weights
W12 and W13 will be configured during training in such a
way, that when the trained network gets as input the unity,
the network output will be the coefficients of the second
part of the non-linear system. But this property means that
the values of the weights W12 and W13 will be one of the
roots (x, y) of the nonlinear system - which of the roots is
actually the estimated root is something that requires further
investigation.

5.2 The complete 3× 3 nonlinear system

The complete 3 × 3 nonlinear system is given by the
equations

βi = αi01x
3+αi02y

3+αi03z
3+αi04x

2y+αi05xy2 +
+ αi06x

2z+αi07xz2+αi08y
2z+αi09yz2+αi10xyz+

+ αi11xy+αi12xz+αi13yz+αi14x
2+αi15y

2+
+ αi16z

2+αi17x+αi18y+αi19z (29)

(i = 1, 2, 3) and the structure of the neural network used for
solving it, is shown in Figure 2. In fact, all the gray-colored
neurons representing product units belong to the same layer
(their specific arrangement in Figure 2 is only for viewing
purposes) and therefore the proposed neural network struc-
ture consists of twenty three neurons grouped to four differ-
ent layers with the neuron activation function to be again the
identity function. Due to the great complexity of this net-
work it is not possible to label each synapse of the net as in
Figure 1. However, the assignment of the synaptic weights
follows the same approach. Therefore, after training, the
components (x, y, z) of the identified root are the weights
W12 = x, W13 = y and W14 = z. The weights of all the
input synapses to all the product units are set to the fixed
value of unity to generate the non linear terms of the alge-
braic system, while, the weights of the synapses connecting
the hidden with the three output neurons are set as follows:

W12,21 = α101 W12,22 = α201 W12,23 = α301

W16,21 = α102 W16,22 = α202 W16,23 = α302

W20,21 = α103 W20,22 = α203 W20,23 = α303

W13,21 = α104 W13,22 = α204 W13,23 = α304

W14,21 = α105 W14,22 = α205 W14,23 = α305

W15,21 = α106 W15,22 = α206 W15,23 = α306

W17,21 = α107 W17,22 = α207 W17,23 = α307

W18,21 = α108 W18,22 = α208 W18,23 = α308

W19,21 = α109 W19,22 = α209 W19,23 = α309

W09,21 = α110 W09,22 = α210 W09,23 = α310

W05,21 = α111 W05,22 = α211 W05,23 = α311

W10,21 = α112 W10,22 = α212 W10,23 = α312

W06,21 = α113 W06,22 = α213 W06,23 = α313

W07,21 = α114 W07,22 = α214 W07,23 = α314

W11,21 = α115 W11,22 = α215 W11,23 = α315

W08,21 = α116 W08,22 = α216 W08,23 = α316

W02,21 = α117 W02,22 = α217 W02,23 = α317

W03,21 = α118 W03,22 = α218 W03,23 = α318

W04,21 = α119 W04,22 = α219 W04,23 = α319

The proposed neural network shown in Figure 2 has been
designed in such a way, that the total input Oi sent to ith

neuron to be equal to the left hand part of the ith equation
of the nonlinear algebraic system (i = 1, 2, 3). This fact
means that if the network trained by the back propagation
algorithm and by using the constant coefficients of the non-
linear system β1, β2 and β3 as the desired outputs, then,
after training, the weights W12, W13 and W14 will contain
the values (x, y, z) of one of the roots of the nonlinear alge-
braic system.

5.3 The complete n× n nonlinear system

The common feature of the proposed neural network
solvers presented in the previous sections, is their structure,
characterized by the existence of four layers: (a) an input
layer with only one neuron whose output synaptic weights
will hold after training the components of one of the system
roots, (b) a hidden layer of summation neurons that gener-
ate the linear terms x, y in the first case and x, y, z in the
second case, (c) a hidden layer of product units that gener-
ate the nonlinear terms by multiplying the linear quantities
received from the previous layer, and (d) an output layer of
summation neurons, that generate the left hand parts of the
system equations and estimate the training error by compar-
ing their outputs to the values of the associated fixed coef-
ficients of the nonlinear system under consideration. It has
to be mentioned however that even though this structure has
been designed to reproduce the algebraic system currently
used, it is not nessecarily the optimum one and the possi-
ble optimization of it, is a subject of future research. In this
project the focus is given to the complete nonlinear system
that contains not only the terms with a degree of s but also
all the smaller degrees with a value of m (1 ≤ m ≤ s).

The previously described structure, characterizes also
the neural solver for the complete n × n nonlinear alge-
braic system. Based on the fundamental theory of nonlin-
ear algebraic systems presented in previous sections, it is
not difficult to see that for a system of n equations with n
unknowns characterized by a common degree s1 = s2 =
· · · = sn = s, the total number of the linear as well as of
the nonlinear terms of any degree m (1 ≤ m ≤ s) is equal
to

Nn|s =
s∑

m=1

Mn|m =
1

(n− 1)!

s∑
m=1

(n + m− 1)!
m!

(30)

Table 1 presents the number of those terms for the values
n = 1, 2, 3, 4, 5 and for a degree s = n, a property that
characterizes the nonlinear algebraic systems studied in this
research. From this table, one can easily verify, that for val-
ues n = 2 and n = 3, the associated number of the system
terms is equal to N2|2 = 5 and N3|3 = 19, in complete ac-
cordance with the number of terms of the analytic equations
for the complete 2 × 2 and 3 × 3 systems, presented in the
previous sections.

Figure 2. The structure of the 3× 3 nonlinear system solver

For any given pair (n, s), the value of Nn|s identifies
the number of the neurons that belong to the two hidden
layers of the neural solver. In fact, the number of prod-
uct units belonging to the second hidden layer is equal to
P = Nn|s−n, since, n of those neurons are the summation
units of the first hidden layer that generate the linear terms
z1, z2, . . . , zn. Regarding the total number of neurons in the
network is is clearly equal to N = Nn|s + n + 1, since the
input layer contains one neuron with a constant input equal
to the unity, and the output layer contains n neurons corre-
sponding to the n fixed parameters of the nonlinear system.
Therefore, the structure of the neural simulator, contains the
following layers: (a) an input layer with one summation
unit, (b) a hidden layer of n summation units corresponding
to the linear terms with a degree i = 1, (c) a hidden layer
with Nn|s − n product units corresponding to the nonlinear
terms with a degree i (2 ≤ i ≤ s), and (d) an output layer
with n summation units.

On the other hand, the synaptic weights of the neural net-
work are configured as follows: (a) the n synapses between
the input neuron and the neurons of the first hidden layer
have variable weights that after training will contain the
components of the estimated root. (b) The synaptic weights
between the summation units of the first hidden layer and
the product units of the second hidden layer have a fixed
value equal to the unity in order to contribute to the gen-
eration of the various nonlinear terms, and (c) the weights

Table 1. Number of terms of the complete
nonlinear algebraic system for n = 1, 2, 3, 4, 5
and for the case s = n

System Dimension n=s Total Number of Terms Nn|s
1 001
2 005
3 019
4 069
5 251

of the synapses connecting the product units of the second
hidden layer and the summation units of the output layer are
set to the system coefficients, namely, to the components of
the tensorial quantity, A. The same is true for the weights
of the synapses connecting the summation units of the first
hidden layer with the output neurons. This structure char-
acterizes the complete nonlinear system, and if one or more
terms are not present in the system to be solved, the corre-
sponding synaptic weights is set to the zero value.

After the identification of the number of layers and the
number of neurons per layer, let us know estimate the to-
tal number of synapses of the neural solver. Starting from
the neurons of the output layer, each one of them, has of
course Nn|s input synapses, whose fixed weight values are
set to the coefficients of the system tensor, A. It is not dif-

ficult to note, that n of those synapses come from the n
summation units of the first hidden layer and are associ-
ated with the linear terms of the system with a degree of
m = 1, while, the remaining Nn|s − n input synapses,
come from the product units of the second hidden layer and
are associated with the nonlinear terms of some degree m
(2 ≤ m ≤ s). Since there are n output neurons, the total
number of those synapses is equal to Lo = n ·Nn|s.

On the other hand, the number of synapses with a fixed
weight value w = 1 connecting the summation units of the
first hidden layer with the product units of the second hid-
den layer to form the various nonlinear terms, can be es-
timated as follows: as is has been mentioned, each prod-
uct unit generates some non linear term of some degree m
(2 ≤ m ≤ s); this quantity is called from now, the degree
of the product unit. Since each such unit gets inputs from
summation units generating linear terms, it is clear, that a
product unit with a degree of m, has m input synapses.
Therefore, the number of input synapses for all the prod-
uct units with a degree of m is equal to Ln|m = m ·Mn|m,
while, the total number of input synapses for all the product
units is given by the equation

Ln|s =
s∑

m=2

m ·Mn|m =
1

(n− 1)!

s∑
m=2

(n+m−1)!
(m− 1)!

(31)

The third group of synapses that appear in the network, is
the synapses with the variable weights connecting the input
neuron with the n summation units of the first hidden layer.
The number of those synapses is clearly, Ln = n. There-
fore, the total number of synapses of the neural solver is
equal to

L = Lo + Ln|s + Ln =

= n

(
1

(n− 1)!

s∑
m=1

(n + m− 1)!
m!

+ 1
)

+

+
1

(n− 1)!

s∑
m=2

(n + m− 1)!
(m− 1)!

(32)

Table 2 presents the values of the quantities Lo, Ln|s, Ln

and L for n = 1, 2, 3, 4, 5 and for a degree s = n.

5.4 Creating the neural solver

After the description of the structure that characterizes
the neural solver for the complete n×n nonlinear algebraic
system, let us now describe the algorithm that creates its
structure. The algorithm is given in pseudo-code format,
and the following conventions are used:

• The network synapses are supposed to be created by
the function AddSynapse with a prototype in the form

Table 2. Number of synapses Lo, Ln|s, Ln and
L of the n × n neural solver for n = 1, 2, 3, 4, 5
and for the case s = n

n = s Lo Ln|s Ln L
2 0010 0006 0002 0018
3 0057 0042 0003 0102
4 0276 0220 0004 0500
5 1255 1045 0005 2305

AddSynapse (Nij ,Nkl,Fixed/Variable,N/rand). This
fuction creates a synapse between the jth neuron of
the ith layer and the lth neuron of the kth layer with a
fixed weight equal to N or a variable random weight.

• The symbol Li (i = 1, 2, 3, 4) describes the ith layer
of the neural network.

The algorithm that creates the complete n×n neural solver
is composed by the following steps:

1. Read the values of the parameters n and s and the co-
efficients of the tensor A.

2. Set N1 = 1, N2 = n, N3 = Nn|s − n and N4 = n

3. Create the network layers as follows:

• Create Layer L1 with N1 summation units

• Create Layer L2 with N2 summation units

• Create Layer L3 with N3 product units

• Create Layer L4 with N4 summation units

4. Create the Ln variable-weight synapses between the
input and the first hidden layer as follows:

for i=1 to n step 1
AddSynapse (N11,N2i,variable,rand)

5. Create the Ln|s−n input synapses to the Mn|s product
units of the second hidden layer with a fixed weight
value w = 1 as follows:

Each nonlinear term with some degree of m (2 ≤
m ≤ s) generated by some product unit N3u (1 ≤
u ≤ Mn|s) is the product of m linear terms, some of
them are equal to each other; for those terms the cor-
responding product unit gets more than one synapses
from the summation unit of the first hidden layer as-
sociated with that terms. Therefore, to draw the cor-
rect number of synapses, one needs to store for each
nonlinear term, the position of the neurons of the first
hidden layer, that form it. To better understand this
situation, let us consider the case m = 5, and let us

suppose that the product unit N3u generates the term
x1x

3
2x4. This term can be expressed as the product

x1x2x2x2x4, and therefore, to create it, we need one
synapse from neuron N21, three synapses from neu-
ron N22, and one synapse from neuron N24. This can
be done in three steps: (a) we store in a buffer of m
cells the current values of the indices of the m nested
loops used to generate an m degree nonlinear term as
follows:

for j1=1 to n step 1
for j2=1 to n step 1
.......................

for jm=1 to n step 1
InitBuffer (buf,j1..,jm)

In the above code, the function InitBuffer it is sup-
posed to store the current value of the indices of the
m nested loops to the buffer ’buf’ with a length of m
cells. (b) we perform a histogram analysis by identi-
fying all the different indices stored in the buffer, and
by counting for each one of them the number of its oc-
currences. The result of this procedure is a two dimen-
sional matrix C of r rows and 2 columns where r is the
number of different indices found in the buffer. In the
case of the previous example, the three rows of the ma-
trix C are the {1, 1}, {2, 3}, {4, 1}, meaning that the
term x1 should be used one time, the term x2 should be
used three times, and the term x4 should be used one
time. But this means that we need one synapse from
neuron N21, three synapses from neuron N23, and one
synapse from neuron N24. (c) In the last step we cre-
ate the actual synapses by running the following code
segment:

for i=1 to r step 1
k=A[i][1]
s=A[i][2]
for j=1 to s step 1

AddSynapse(L1k,L2u,fixed,1)

In the above pseudo-code the loop indices are varied
from 1 to n and the two dimensional matrices are sup-
posed to be stored in a row-wise fashion as in C pro-
gramming language.

To create all the synapses with a fixed weight value
w = 1, this procedure has to be applied for each prod-
uct unit of the second hidden layer and for each degree
m (2 ≤ m ≤ s). Since during this procedure repeated
terms are going to be generated (as for example the
terms xy and yx), the synapse has to be created only
if it does not exists (if the synapse exists it is char-
acterized as non valid; this existence means that the

nonlinear term under consideration has already been
generated and the corresponding synapses have been
created and assigned to it during a past cycle of the
loop).

At this point, auxiliary data structures have to be
allocated and initialized to help the creation of the
synapses from the hidden to the output layer. For each
degree m (2 ≤ m ≤ s) of the nonlinear terms of
the system, the number Nn|m of the associated prod-
uct units is estimated, and a two dimensional lookup
table with dimensions Nn|m× (m+1) is allocated dy-
namically. Each time a new valid index combination
is generated, it is stored to the next empty row of the
lookup table together with the position of the associ-
ated product unit in the second hidden layer. In this
way, we have the ability for a given nonlinear term to
identify the product unit associated with it. The in-
sertion procedure of a valid index combination to the
system lookup table for parameter values n = 3 and
s = 6 is shown in Figure 3. In Figure 3, the current
content of the buffer are the indices values j1 = 1,
j2 = 1, j3 = 2, j4 = 3, j5 = 3 and j6 = 3, and
therefore, the nonlinear term generated by them is the
term x ·x · y · z · z · z = x2yz3, where, for sake of sim-
plicity, we have set z1 = x, z2 = y, and z3 = z. Let
us suppose also, that the product unit that is going to
be associated with this index combination, is the fifth
product unit of the layer L3. Therefore, the record that
is going to be added to the system lookup table, is the
{5, 1, 1, 2, 3, 3, 3}. These records are stored from the
first to the last row of the system lookup table in the or-
der they appear. It is clear that the maximum number
of those records for a given degree m (2 ≤ m ≤ s) is
equal to Nn|m.

6. Create the Lo input synapses to the output neurons
whose fixed weights are set to the values of the sys-
tem coefficients. These synapses can be divided into
two groups: (a) synapses coming from the summation
units of the first hidden layer and are associated with
the linear terms with a degree m = 1, and (b) synapses
coming from the product units of the second hidden
layer and are associated with the nonlinear terms with
degrees in the interval [2, s]. These synapse groups
contain n2 and n(Ln|s − n) synapses, respectively.

To describe the algorithm of creating those synapses
let us write down the ith equation of the complete non-
linear system (i = 1, 2, . . . , n) with the whole set of
linear and nonlinear terms with degrees 1 ≤ m ≤ s:

Figure 3. The insertion of a valid index combination to the system lookup table.

Ai(~z)=
n∑

j1=1

Aj1
i(1)zj1 +

n∑

j1=1

n∑

j2=1

Aj1j2
i(2) zj1zj2 +

+
n∑

j1=1

n∑

j2=1

n∑

j3=1

Aj1j2j3
i(3) zj1zj2zj3 + · · ·+

+
n∑

j1=1

n∑

j2=1

. . .

n∑

js=1

Aj1j2j3...js

i(s) zj1zj2zj3 . . . zjs (33)

In this equation, the n terms of the first sum are the n
linear terms of the system, while, the remaining terms
are the nonlinear factors with degrees 2 ≤ m ≤ s.
From the above description it is clear that the complete
identification of the system requires the initialization
of a set of s tensors, A(1), A(2), . . . , A(m), . . . , A(s),
with the tensor A(m) to have dimensions n×n×· · ·×n
(m + 1 times). From these tensors, the n2 coefficients
of the tensor A(1) will be assigned to the weights of
the n2 synapses connecting the n units of the layer L2

with the n units of the layer L4, while, the coefficients
of the other tensors will be assigned to the n(Ln|s −
n) synaptic weights defined between the product units
of the layer L3 and the summation output units of the
layer L4.

Based on this discussion, the assignment of the
coefficients of the tensor A(1) to the first group of
synapses, will be performed as follows:

for i=1 to n step 1
for j=1 to n step 1

AddSynapse (L2i,L4j,
fixed,A(1)[i][j])

On the other hand, the coefficients of the tensor A(m)

for some degree m (2 ≤ m ≤ s) are assigned to the
weights of the synapses between the neurons of the
layers L3 and L4 as follows:

for j1=1 to n step 1
for j2=1 to n step 1
.......................
for jm=1 to n step 1 {

InitBuffer (buf,j1..,jm)
get k=lookup(buf)
for i=1 to n step 1
AddSynapse (L3k,L4i,fixed,

A(m)[j1][j2]...[jm]) }

In other words, for each valid combination of the m
indices, the buffer ’buf’ is initialized and by traversing
the system lookup table, we identify the product unit of
the layer L3, generating the corresponding nonlinear
term. Then, synapses are created between this unit and
each summation unit of the output neuron, with a fixed
weight value w = Aj1j2...jm

(m) . This procedure has to be
performed for all the product units and all the degrees
m (2 ≤ m ≤ s).

6 Experimental Results

The proposed neural solver was tested in practice for
nonlinear systems with two and three unknowns. The train-
ing was based to the back propagation algorithm with a
learning rate n = 0.7, a momentum m = 0 and without bias
units. The average number of iterations for the network to
converge was a few thousands iterations (5000-10000) and
the global training error was equal to 10−7 − 10−8. The
nonlinear systems solved by the network, and the training
results are presented below:

• Nonlinear system 1: it is given by the equations

+0.20x2+0.35y2−0.1z2+0.72xy−0.4xz−
−0.025yz + 0.5x + 0.68y − 0.47z = 0.130

−0.48x2−0.33y2+0.64z2+0.08xy−0.01xz+
+0.15yz + 0.92x− 0.27y + 0.39z = 0.450

−0.62x2+0.43y2−0.21z2+0.07xy+0.12xz+
−0.17yz − 0.38x + 0.94y + 0.55z = 0.940

This system has eight roots in the form (x, y, z) whose
values as estimated by Mathematica are the following:

(x1, y1, z1) = (−1.12802,+2.07847,−3.20031)
(x2, y2, z2) = (−0.51219,−2.16791,+1.68004)
(x3, y3, z3) = (−2.10449,+2.67732,+2.96830)
(x4, y4, z4) = (+0.15248,+0.60549,+0.74952)

These four roots are real, while, furthermore, the sys-
tem has two double complex roots with values

x5 = −0.236017 + 1.472720 i

y5 = −1.857080− 1.423440 i

z5 = +0.036698− 0.795817 i

and

x6 = +0.333446 + 1.879550 i

y6 = −0.896393 + 0.412340 i

z6 = −0.751127 + 1.556630 i

The root of this system estimated by the neural solver
was the (x, y) = (+0.15248, +0.60549, +0.74952)
and therefore the neural network reached the fourth
root (x4, y4, z4).

• Nonlinear system 2: it is given by the equations

0.1x2 + 0.1y2 + 0.3xy − 0.1x + 0.1y = +0.8
0.1x2 − 0.3y2 + 0.2xy − 0.1x− 0.3y = +0.4

This system has four real roots, whose estimation with
Mathematica gave the values

(x1, y1) = (+12.23410,−03.82028)
(x2, y2) = (−04.11479, +01.29870)
(x3, y3) = (−01.40464,−01.07718)
(x4, y4) = (+02.28537, +00.59876)

The root of this system estimated by the neural solver
was the (x, y) = (−1.40464,−1.07718), and there-
fore the neural network reached the third root (x3, y3).

The main advantage of the proposed neural solver is its
ability to solve practically any type of non linear system
and not only systems with polynomial equations. These
equations are reproduced by the network, since the acti-
vation function of the summation units of the first hidden
layer is the identity function. However, this function can
be any primitive or user defined function, allowing thus the
construction of a nonlinear system with arbitrary structure.
Supposing for example that the activation function of the L1

units is the sinus function, the following nonlinear system
can be solved:

0.1 sin2 x + 0.1 sin2 y + 0.3 sin x sin y

−0.1 sin x + 0.1 sin y = 0.126466
0.1 sin2 x− 0.1 sin2 y + 0.2 sin x sin y

−0.1 sin x− 0.1 sin y = 0.147451

The solution of this system estimated by the neural solver is
the pair (x, y) = (0.314162, 0.628318). On the other hand,
Mathematica was not able to solve this system, a fact that
demonstrates the power of the proposed method.

7 Conclusions and future work

The objective of this research was the implementa-
tion of nonlinear algebraic system solvers by using back-
propagation neural networks. The proposed models are
four-layered feed forward networks with summation and
product units whose structure has been designed in such a
way, that the total input to a summation unit of the output
layer to be equal to the left-hand side of the corresponding
equation of the nonlinear system. In this way, the network
is trained to generate the constant coefficients of the system,
with the components of the estimated root to be the weights
of the synapses joining the neuron of the input layer with the
n neurons of the first hidden layer, where n is the dimension
of the non linear system.

There are many open problems regarding the accuracy
and the performance of the proposed simulator, the most
important of them are the following:

• If the nonlinear system under consideration can be
solved, it has, in general, more than one roots. How-
ever, during training, the network estimates only one of
them, and always the same root, even though the ini-
tial conditions are very close to other roots, different
than the estimated one. Therefore, we need to inves-
tigate, why the network converges only to the specific
root, and how the solver has to be configured in or-
der to find and the other roots, too. Furthermore, the
network structure and maybe the algorithm creating it,
may need modifications to deal with complex system
roots.

• The neural solver has to be tested for many differ-
ent nonlinear system types - such as canonical, over-
determined and under-determined systems as well as
for systems with no solution - to examine the way it
behaves and measure its performance. A required step
is to measure the speed of the process and the execu-
tion time for continually increased system size n × n
(n = 1, 2, . . . , N) for a specific value of the maxi-
mum size, N , in order to examine how the complex-
ity increases with the problem size. Its computational
complexity has to be estimated in a theoretical as well
as in an experimental lever, and its performance has to
be compared with the performance of other similar al-
gorithms such that the gradient descent algorithm and
the nonlinear ABS methods.

• The proposed neural network structure has been de-
signed to deal with the simplest complete non linear
algebraic systems with real coefficients, real roots and
real constant terms. However, its extension for dealing
with complex quantities is straightforward. For exam-
ple, in the case of complex roots, one should have to
separate the real from the imaginary parts, a procedure
that leads to the duplication of the number of the equa-
tions. To understand this feature, let us consider the
complete 2 × 2 nonlinear system described by equa-
tions αi1x

2 + αi2y
2 + αi3xy + αi4x + αi5y = βi

(i = 1, 2) and let us suppose that its roots (x, y),
are complex numbers in the form x = κ + iλ and
y = µ + iν. By substituting these roots in the system
equations and by separating the real and the imaginary
parts, one can easily get the system of four equations

αi1(κ2−λ2)+αi2(µ2−ν2)+
+αi3(κµ−λν)+αi4κ+αi5µ = βi

2αi1κλ+2αi2µν+αi3(κν+λµ)+αi4λ+αi5ν = 0

(i = 1, 2) with a solution in the form (κ, λ, µ, ν).

By following the procedure described above, a neu-
ral network for solving this 4 × 4 nonlinear algebraic
system can be constructed and used. Regarding the

general case of the complete n × n nonlinear systems
with complex roots - as well as complex coefficients
and constant terms - the associated theoretical anal-
ysis is straightforward and it is subject of future re-
search. The structure of neural network for the case
of the complete 2× 2 nonlinear systems with complex
roots is shown in Figure 4. In this figure the weights
of the synapses joining the linear units of the second
layer with the product units of the third layer have a
constant value equal to the unity, the weights of the
four synapses between the input neuron and the linear
units of the second layer are set as follows

W12 = κ W13 = λ W14 = µ W15 = ν

while, the weights of the synapses between the third
and the fourth layer are initialized as

W06,16 = +α11 W06,18 = +α21

W08,16 = −α11 W08,18 = −α21

W12,16 = +α12 W12,18 = +α22

W15,16 = −α12 W15,18 = −α22

W09,16 = +α13 W09,18 = +α23

W10,16 = −α13 W10,18 = −α23

W02,16 = +α14 W02,18 = +α24

W04,16 = +α15 W04,18 = +α25

W07,17 = 2α11 W07,19 = 2α21

W14,17 = 2α12 W14,19 = 2α22

W13,17 = +α13 W13,19 = +α23

W11,17 = +α13 W11,19 = +α23

W03,17 = +α14 W03,19 = +α24

W05,17 = +α15 W05,19 = +α25

• Finally, a last issue that it has to be resolved is the abil-
ity of the neural solver to deal with arbitrary nonlinear
algebraic systems. This ability has been demonstrated
for the sinus function, but the general behavior of the
solver has not been studied systematically and it is a
subject of future research.

Figure 4. The structure of the 2 × 2 neural solver for the complete 2 × 2 nonlinear algebraic system
with complex roots.

References

[1] W.Press, S.Teukolsky, W.Vetterling, B.Flannery, Nu-
merical Recipes in C - The Art of Scientific Program-
ming, Second Edition, Cambridge University Press,
1992.

[2] J.Abaffy, C.G.Broyden, and E.Spedicato, ”A class of
direct methods for linear systems”, Numerische Math-
ematik, 1984, Vol. 45, pp. 361-376.

[3] J.Abaffy, and E.Spedicato, ABS Projection Algo-
rithms: Mathematical Techniques for Linear and Non-
linear Equations, Ellis Horwood, Chichester, 1989.

[4] E.Spedicato, E.Bodon, A.Del Popolo, N. Mahdavi-
Amiri, ”ABS Methods and ABSPACK for Linear Sys-
tems and Optimization, a Review”, Proceedings of the
3rd Seminar of Numerical Analysis, Zahedan, Novem-
ber 15/17, 2000, University of Zahedan.

[5] J.Abaffy, and A.Galantai, ”Conjugate Direction Meth-
ods for Linear and Nonlinear Systems of Alge-
braic Equations”, Colloquia Mathematica Soc. Jfinos
Bolyai, Numerical Methods, Miskolc, Hungary, 1986;
Edited by P. R6zsa and D. Greenspan, North Holland,
Amsterdam, Netherlands, 1987, Vol. 50, pp. 481-502.

[6] J.Abaffy, A.Galantai, and E.Spedicato, ”The Local
Convergence of ABS Methods for Nonlinear Alge-

braic Equations”, 1987, Numerische Mathematik, Vol.
51, pp. 429-439.

[7] A.Galantai, and A.Jeney, ”Quasi-Newton ABS Meth-
ods for Solving Nonlinear Algebraic Systems of Equa-
tions”, Journal of Optimization Theory and Applica-
tions, 1996, Vol.89, No.3, pp. 561-573.

[8] V.N.Kublanovskaya, and V.N.Simonova, ”An Ap-
proach to Solving Nonlinear Algebraic Systems. 2”,
Journal of Mathematical Sciences, 1996, Vol.79,
No.3, pp. 1077-1092.

[9] I.Emiris, B.Mourrain, and M.Vrahatis, ”Sign Methods
for Counting and Computing Real Roots of Algebraic
Systems”, Technical Report RR-3669, 1999, INRIA,
Sophia Antipolis.

[10] A.Engelbrecht, and A.Ismail, ”Training product unit
neural networks”, Stability and Control: Theory and
Applications (SACTA), 1999, Vol 2, No 1-2, pp. 59-
74, 1999.

[11] K.G.Margaritis K.G, M.Adamopoulos, K.Goulianas,
”Solving linear systems by artificial neural network
energy minimisation”, 1993, Universily of Macedonia
Annals (volume XII), pp.502-525, (in Greek).

[12] V.Dolotin, and A.Morozov, ”Introduction to Nonlin-
ear Algebra v.2”, online document found in the Arxiv
repository (www.arxiv.org), ITEP, Moscow, Russia,
September 2006.

