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Abstract 

 
The batch Self Organizing Map, abbreviated to 

SOM, is adapted to process imaging for dynamic 
behavior of aerated agitation vessel, and the 
application methods are investigated in this article. In 
the application, the direct imaging by CCD video 
camera and the PIV technology are adopted. As a 
result of mapping time-series patterns of velocity 
distributions to two dimensions, it is shown that 
generated map and clusters could give process 
engineers useful information about degree of spatial 
dispersion of bubbles and about determination of 
design parameter. The next, two approaches for the 
data processing in the SOM are investigated to 
enhance efficiency of pattern analysis: 
phenomenological approach and statistical approach. 
As to the statistical approach, it is found that adoption 
of sigmoid transformation enhances the efficiency of 
separating the minor difference in the nodes 
representing the “well-dispersion” patterns and that it 
would give process engineers useful information about 
transition of process patterns. 
 
 
1. Introduction 
 

In chemical process industry, local sensors cannot 
always give us sufficient information for estimating the 
overall dynamic behaviors inside a chemical reactor. 
Therefore process engineers often apply soft sensors as 
typified by neural networks [1] for process monitoring 
and control. Soft sensors based on the black box model 
are considered to be practical methods. On the other 
hand, software of computational fluid dynamics (CFD) 
gives us much information about distribution of 
process inside the reactor on the basis of solving first-
principle model [2]. 

Recent speedup of processor and advance of 
graphic user interface (GUI) technology facilitate the 

engineers using commercial CFD software. It is, 
however, difficult to implement an accurate simulation 
for complicated flow regimes such as multiphase flow 
and reactive flow. There is a problem that 
computational time increases with meshes, especially 
when geometrical structure inside reactor is 
complicated. As a method for solving the problem, we 
proposed application of hybrid simulation where CFD 
simulation and process simulation was combined [3]. It 
was considered that the proposed method was practical 
for process design, but not practical for process control 
for reason of long simulation time. 

Thus it is supposed that data-driven model based 
on 2D or 3D image inside a reactor is applicable to 
monitoring and control of the distributed parameter 
system. 

Process imaging is well known as an effective 
methodology for pattern recognition and automatic 
control of the distributed parameter system. Figure 1 
shows a framework of procedure in process imaging, 
which consists of five steps, which are described by D. 
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Figure 1. Steps involved in process imaging 
for a control application 



M. Scott et al. [4]. If process dynamics can be analyzed 
by physicochemical model, the process modeling could 
enhance efficiency of processing in the next steps. In 
the data acquisition, there are two methods: “direct 
imaging” and “indirect imaging.” 

Recently, Process Tomography (PT) is known as a 
good method of imaging flow pattern inside equipment 
indirectly [4]. A typical PT technique is based on 
measurements of electrical properties that are 
capacitance, resistance and impedance. Many 
applications of the PT have been studied in laboratory 
scale and pilot plant scale. For example, the electrical 
tomographies could provide detailed information about 
spatial distribution of gas-liquid mixing in a stirred 
vessel [5], and about distribution of the void fraction 
that is related to gas holdup in a bubble column [6]. It 
was reported that phase distribution obtained by the 
tomographic imaging could be useful information for 
control of polymerization process [7]. In mass-
produced applications, the PT in the present time has 
some problems, which are related to complexity and 
specificity of sensor elements and to their need for 
close integration into process. 

On the other hand, direct imaging system is thought 
to be a simple, because it does not rely on 
mathematical reconstruction to form an image. 
Advance of CMOS sensor and CCD technology in a 
few decades realizes direct imaging that is inexpensive 
and quality. One of applications of the direct imaging 
technique to chemical process is flotation froth 
monitoring [8, 9]. It is widely known that color and 
morphology of the froth are closely related to mineral 
concentrations and process status. So process imaging 
has been considered as a potentially key component to 
the process monitoring. In the process imaging for 
monitoring and control, image processing and feature 
extraction are important. That is to compile an 
enormous amount of data in the distributed parameter 
system. It has been reported that Principal Component 
Analysis (PCA) is a useful statistical method in the 
feature extraction [9]. In addition to the statistical 
methods, it is well known that an intelligent system 
technology is effective in extracting complex 
interaction between process data and operation 
variables, which shows a nonlinear nature. 

In this article, Self Organizing Map, abbreviated by 
SOM, is considered to be useful intelligent system for 
the process imaging. SOM proposed by Kohonen is 
one of neural networks where unsupervised learning 
algorithm is adopted [10]. By using SOM, feature of 
input data can be extracted automatically and a map for 
clustering the feature is self organized. SOM has 
ability to project high-order dimensional data to the 
two dimensions that is a plane, so that visualization of 

high-order dimensional space is possible. Kohonen has 
reported that the number of academic papers for the 
SOM, which are related to analysis of the algorithm, its 
extension and application, is over 4000 in his book 
[10]. In the industrial fields, this method of data 
processing can be utilized in much recognition of 
image, speech and fingerprint. As to process 
monitoring and control, applications of the SOM have 
been investigated for different chemical processes: 
copper flash smelting process [11], suspension 
ethylene polymerization process [12], wastewater 
treatment process [13], froth flotation process [14]. For 
monitoring of fermentation process, combination of the 
SOM and process image was reported [15]. Process 
image of spectrogram was obtained by the two-
dimensional (2D) fluorescence sensor, as one type of 
optical sensor. It was also reported that the SOM-based 
classification of the spectral data was effective in 
modeling the process by a supervised neural network 
[16]. Therefore it is considered that the SOM is 
powerful tool for pattern recognition in process 
imaging, which is related to the steps inside the box 
drawn by dash line in Figure 1. 

In this article, we apply the SOM to clustering 
multiphase flow in stirred-tank reactor, which is a 
difficult case for the CFD simulation. An aerated 
agitation process is specified as the process of 
multiphase flow. The aerated agitation is applied to 
enhancing efficiency of gas absorption to liquid by 
dispersing gas bubbles in the vessel, which is, for 
example, exploited in bio industrial equipment known 
as a “jar fermentor”. Pattern recognition and estimation 
of dispersion of bubbles is significant for monitoring 
of dynamic behavior of gas absorption, although the 
dispersion is generally evaluated as the average 
amount of “gas hold-up” by measuring change of 
liquid level. The pattern of gas dispersion in the 
agitation vessel is changed with time nonlinearly and 
periodically, and it is considered that analysis of the 
pattern transition may give process engineers useful 
information about dynamic behavior of the overall 
process. 

Hence, a purpose of this study is to propose a 
clustering method based on the SOM for monitoring 
dynamic behavior of distribution of bubbles. In the 
data acquisition, the direct imaging by CCD camera is 
adopted with a method of PIV (Particle Imaging 
Velocimetry), which will be explained in detail in the 
next section. Then another purpose is to investigate 
methods of enhancing efficiency of the pattern analysis 
from the viewpoints of data processing and parameter 
setting of the SOM. Two approaches that are 
phenomenological approach and statistical one are 
applied to modification of the proposed clustering 



method in this article. Through these investigations, 
we will discuss applicability of the SOM to process 
imaging for monitoring and controlling dynamic 
behavior inside a chemical reactor. 
 
2. Direct imaging of bubbles’ flow inside an 
aerated vessel 
 
2.1 Data acquisition system by direct imaging 
 

Figure 2 shows a setup of experimental system for 
the aerated agitation process. Inside the cylindrical 
vessel of which interior diameter is 190 mm, four 
baffles are placed for mixing fluid well. The vessel is 
made in acrylic resin to do experiment under 
conditions of high visibility. Test fluid inside the 
vessel is water, and nitrogen that is insoluble to water 
is used as an aeration gas. The aeration is carried out 
by the ring sparger installed at the bottom of the vessel. 
The sparger has sixteen air holes on surface of the ring, 
and nitrogen gas is supplied at constant flow rate 0.6 
L/min by mass flow controller. And paddle-type 
impeller with six blades, of which diameter is 60 mm, 
is set up at height of d from the bottom. The value of d 
is changed for the later pattern recognition. 

In this article, light sheet is used for enhancing 
edges of bubbles, so that it could increase accuracy of 
data processing in the following PIV. The light sheet is 
generated by a DPSS (Diode-Pumped Solid-State) 
laser, “excel” (Laser Quantum Ltd.) that produces a 

high power green beam whose wavelength is 532 nm. 
In order to form a clear plane of the light sheet, the 
position of the plane is determined so as to avoid light 
scattering due to the impeller shaft and the baffles. 
And, the motions of bubbles entrained in the flow are 
recorded by a digital video camera recorder, which is 
oriented at 90 degree to the plane of the light sheet. 
The digital video camera recorder used first in this 
article is DCR-VX2000 (Sony Corp.), which has 
mega-pixel CCD and CMOS sensor. Frame rate in the 
recording is set at 30 fps. 

As an experimental result for this study, Figure 3 
(a) and (b) show continuous frames of gas dispersion 
through binarization, in which white areas indicate 
existences of bubbles. Parts of the impeller, its shaft 
and the sparger are masked. The two frames, of which 
the time difference is 1/30 sec corresponding to frame 
rate of the video camera, are computed by PIV 
described in the next subsection. 
 

Figure 3. An example of continuous frames of 
gas dispersion 
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Figure 2. Schematic diagram of an 
experimental system 

(b)



2.2. Application of Particle Imaging Velocity 
(PIV) 

Figure 4. Schematic diagram of computational 
domain and cells divided for application of the 
PIV 

 
In image recognition of object’s motion, there are 

mainly two methods. One method is based on 
difference between two freeze-frame pictures. Another 
one is based on velocity vector of object, which is 
estimated from moving images. PIV technology is 
known as the latter method and is popular for flow 
pattern visualizations for many cases: air flow around 
vehicle, flow inside tank and so on. Typically minute 
particles are added to flow for the visualization, as 
assuming that each particle moves at local velocity of 
the flow. Distribution of particles on a cross section 
that are visible by the above-mentioned light sheet is 
shot by CCD video camera.  

Each of two exposures by the video camera is 
recorded on a separate frame. Frame converted into 
numbers such as values of RGB is devised into small 
space domains, what is called “test areas”. By 
computing cross-correlation of the two frames with 
respect to the test areas, a vector of local displacement 
of the particle image can be estimated. The vectors of 
local displacement of image can converted into two 
component vectors of local velocities in a flow, as 
considering time difference of the two frames and a 
scaling factor of the frame. 

Figure 5. An example of velocity distribution 
estimated from continuous frames 

In this article, we used commercial software of 
“PIVview 2C ver. 2.3” (PIVTEC GmbH). In the 
application of PIV, it was considered that wide 
computational domain influences increase of 
computational time and detection of noise e.g. 
reflections of the light on wall of the vessel and on the 
water surface. Actually, the detection of much noise 
was seen in a case when the computational domain is 
the overall vessel. Thus we determined the domain as 
depicted by the box in Figure 4, in assuming that 
bubbles would be dispersed almost symmetrically in 
the vicinity of the impeller’s shaft. Frames of the 
computational domain were divided into multiple cells 
to estimate vector of local displacement of the bubble 
image. Size of each cell, in this study, was set at 
5.7mm x 5.7mm, by taking consideration into averaged 
size of bubbles that was estimated in the prior 
experiments. Hence the number of cells was 207, 
which was composed of 9 cells wide and 23 cells row. 

Figure 5 illustrates an example of results of PIV 
processing. Tone inside the box in the right part of the 
figure indicates distribution of magnitudes of velocities. 
Since transition of such the process image is analyzed 
by the SOM in this article, multiple process images are 
recorded at a time interval of 0.2 sec, as depicted by 
Figure 6. As we see distributions of tone changing 

with elapsed time, it seems that the direct imaging 
method described in this section was applicable to 
acquisition of patterns for flow of bubbles. 
 
3. Batch Self Organizing Map 
 

In this article, we used “Viscovery® SOMine ver. 
4.0” (Eudaptics Software GmbH), which was based on 
the concept and algorithm of the batch SOM 
introduced by T. Kohonen [10]. In the SOMine, two-
dimensional Kohonen nets are used.  

In the original SOM algorithm, each node has a 
weight vector w. The components of this vector 
represent the strength of the synapse connections to the 
input neurons. The Kohonen algorithm enables these 
weights to adapt themselves in response to the input 
signals as follows. 



Figure ６. A set of process images for the SOM 

Figure 7. Schematic diagram of training process in the original SOM 

• The winner node c changes its weight vector wc to 
become more similar to the input vector x 

• All neighbors of c which lie within a predefined 
distance to the winner node also change their 
weight vector to the direction of x 

This modification is proportional to the difference 
between the input vector x, and the corresponding 
weight vector. 

Figure 7 shows a schematic diagram of “sequential” 
training in the original SOM. The first, searching of a 
node that is matched best to a data vector is carried out, 
which is called “Matching”. Matching is performed by 
computing the distance between the data vector and 
each node vector in the map. The data vector is 
assigned to the node m with the smallest Euclidean 
distance. As the next step, the training algorithm sets 
the node m, which is shown in Figure 7, to the 
weighted mean of all data vectors that matched to the 
nodes in the neighborhood of node m. The weight for a 
data vector is determined based on the distance (in map 
space) between the node m and the neighboring node 
where the data vector matched. Thus, the two steps are 

iterated, so that the distortion and the quantization 
error are minimized. 

In contrast to the original SOM algorithm, the 
batch SOM algorithm first processes all data vectors, 
and then updates the map once. It is said that the batch 
SOM algorithm is faster and more robust than the 
original Kohonen algorithm. In the Viscovery® 
SOMine [17] based on the batch algorithm, the initial 
data vectors are set up by the principal component 
analysis (PCA) of the input data that are training data. 
That is to say, training in this article starts from a map 
representing linearized space for the multi-dimensional 
input data. Topological connection between arbitrary 
two nodes is defined by the Gaussian function. The 
radius of the Gaussian function is called “Tension” in 
the SOMine, which is used for determining degree of 
smoothing the map. Then, in training of the map, the 
SOMine updates a node vector by setting it to the 
mean value of all weighted data vectors that matched 
to that node and its neighboring nodes, in a way of the 
K-means method. During the training process, the 
number of node in a map is not fixed but grows from a 
fairly small number to the desired number of nodes, in 



order to implement more efficient training. Each map 
is trained for a certain number of batches using a 
decreasing tension. When the number of nodes is 
increased, the growth of the map is compensated by a 
corresponding increase of the tension. 
 
4. Results and discussions 
 
4.1. Clustering of dynamic behaviors of 
bubbles 
 

207 velocity vectors are acquired from the two 
frames by using the PIV, as shown in Figure 4. Each 
velocity vector is two dimensional because of making 
an exposure by the light sheet. In this article, 
magnitude of the vector was used as an input. So the 
data vector for the SOM consisted of 207 magnitudes 
of the velocities. We prepared 30 data vectors, which 
represent images recorded at a time interval of 0.2 sec., 
in an operational condition. 

In the training process, values of each component 
was scaled to the range n1− and n1 . The desired 
number of nodes was set at 2000, and the final value of 
tension was 0.5. In clustering after the training, the 
SOM-Ward clusters were used. This clustering method 
combines the local ordering information of the map 
with the classical hierarchical cluster algorithm for 
Ward. Viscovery® SOMine computes an indicator for 
each element of this hierarchical sequence of clustering, 
which indicates a quality measure for each count. If the 
indicator is high for a particular cluster count, it can be 
interpreted that the clustering may be viewed as 
“natural” for the map.  

The first, for the case that rotational speed of the 
impeller N was 200 rpm and its height d was 30 mm, 

different 30 images were classified by the above-
mentioned batch SOM. As a result of the mapping, a 
map separated into four clusters is depicted in Figure 8 
Both of the distortion and the quantization error were 
almost zero, which showed good mapping. When the 
cluster count was four, the indicator was 15, which 
was high as compared with the other cluster count. 
Four schematic drawings around the map in Figure 8 
show specific patterns of gas dispersion for the clusters. 
As observing the frame for a data vector matched to a 
node best, it could be interpreted that the cluster in the 
left lower part of the map showed process image where 
many bubbles were dispersed inside overall the vessel. 
On the other hand, the cluster in the right part was 
interpreted to show a group of images where few 
bubbles were dispersed. 

Moreover, transition of patterns was monitored 
using the map. Figure 9 shows nine paths connecting a 
node k matched to data of time t to the other node k+1 
matched to data of time t+0.2, which indicate process 
image changing with time. Through monitoring the 
paths in the map, it was thought that change of the 
process pattern could be analyzed from macroscopic 
viewpoint of cluster. The analysis of the process 
pattern’s transition will be described in the later 
subsection 4.3. 

The next, cluster maps changing with impeller’s 
position were analyzed. In the analysis, two sets of 30 
images for the cases that values of d were 45 and 60 
were prepared. It was estimated by simulations that 
preferable number of clusters was five for the case that 
d was 45 mm, as shown in Figure 10. In the case when 
d was 60 mm, it was estimated that preferable cluster 
count was four. The both indicators for the two cases 
were close to 12. 

In three maps of Figure 10, the cluster marked by 

Figure 8. Schematic diagram of four clusters and representative patterns of bubble dispersion
 



“A” represents a group of images where bubbles are 
well dispersed. When areas of cluster A for three maps 
were compared, it was seen that the area for the case 
that d was 45 mm was the largest. So it was interpreted 
that the height that d was 45 mm was appropriate 
position of the impeller for this aerated agitation 
process. Because this interpretation by the SOM was 
not irrelevant as compared to a prior knowledge for the 
aerated agitation vessel, it was considered that the 
SOM could give process engineers visible and 
intelligible information for design of the aerated 
agitation vessel. 
 
4.2. Data processing based on 
phenomenological approach 
 

In this subsection, robustness of the described 
application method for the SOM is discussed in 
focusing on change of the rotational speed of impeller 
that is one of operational variables. For the position of 
impeller, d was fixed at 45 mm. A new map was 
generated using 30 images acquired in the case when N 
was 250 rpm. The computation resulted in three 
clusters of which indicator was not low, 22. On the 
other hand, most of the nodes were classified into one 
cluster, which was regarded as a group of “well-
dispersion” patterns. When the images processed by 
PIV were observed, it was considered that noise that 
increased with increase of mixing rate affected 
generation of a flat map. It was because that the noise 
problem was disadvantage for application of image 
recognition based on velocity vector. 

Thus we tried to use a high-speed video camera in 
the direct imaging. The high-speed video camera was 
DigiMo VCC-500C that had performance of high 

frame rate, 500 fps. In this article, the frame rate was 
set at 90 fps that was three times rate of the previous 
camera. Moreover, the analytical region was reduced 
from 9x23 cells to 7x15 cells, because resolution 
decreased with increase of the frame rate. A map, 
which was generated from 30 images recorded by the 
VCC-500C, could be separated into three clusters as 
depicted by Figure 11. Indicator of this clustering 
count was 31 and larger than the result of 30 fps. It, 
however, seemed that difference of patterns between 
two clusters of three ones was not clear from point of 
the phenomenological view.  

In order to generate a map where difference 
between clusters was comprehensible, modification of 
“priority factor” was adopted in the data processing. In 
the Viscovery® SOMine, the priority factor gives 

Figure 9. A result of transition of process 
patterns 
 

Figure 10. Comparison of three maps of different position of impeller 



additional weight to a component by multiplying its 
internal scale by that factor. If the priority factor is set 
at a number less than 1, this component will be 
squeezed, and thus becomes less relevant for the 
training process. As examining velocity distribution 
estimated by PIV, it was seen that time-averaged 
magnitudes of velocities were small in the regions near 
the impeller and the wall of vessel as depicted in the 
left part of Figure 12. It was thought that the reasons 
might be due to three-dimensional complex flow 
pattern near the impeller and low quantity of airflow 
near the wall. 

Thus, as based on the phenomenological insight 
into the flow pattern, the priority factor of a part of 

components, which were represent by grey cells in the 
right part of Figure 12, was modified from 1 to 0.5. 
The partial reduction of the priority factor brought 
about a map that could be separated into three clusters, 
as shown in Figure 13. Two schematic diagrams of 
flow patterns around the map show that one cluster 
represents a group of “poor-dispersed” patterns and the 
other two clusters represent groups of “well-dispersed” 
patterns. Moreover, we could distinguish the two 
clusters for “well –dispersed” patterns into a group of 
intensive flows of bubbles and another group of their 
tender flows. Since indicator of the clustering map was 
18 and became lower than the map without the 
modification, it was considered that the clustering was 
“artificial” for the map, however the clusters were 
“comprehensible”. 

Figure 11. A Map that was generated from 
frames recorded by the high-speed video 
camera 
 

 
4.3. Data processing based on statistical 
approach 
 

In the previous subsection 4.1, 30 images were 
prepared for the mapping in the case when N was 200 
rpm. The number of images was determined based on 
the length of a period of torque fluctuation, but it was 
uncertain that the number was appropriate for mapping 
in this process. Thus effect of the number of prepared 
data on efficiency of mapping was investigated for the 
case that d was 45 mm. 90 images were extracted from 
the same moving images used previously, and then 
were computed by the SOMine. The computation 

Figure 13. A result of modification of the 
priority factors 

Figure 12. Schematic diagrams of velocity
distribution and modification of the priority
factors 
 



generated a map separated into three clusters as shown 
in Figure 14. As compared with the result of 30 images 
(Figure 10), preferable cluster count was reduced from 
five to three, and the indicator 30 of the clustering was 
higher than the previous indicator. It was considered 
that the 30 images were not sufficient for natural 
clustering of the process patterns. 

Then magnitudes of velocities for all the 207 cells 
were averaged in each cluster, in order to investigate 
quantitatively distinction of the three clusters. It was 
thought that large and small magnitudes of the 
velocities could be correlated to many and few bubbles. 
Figure 15 shows remarkable difference of the averaged 
velocity Vav between the cluster C and the other one in 
the cells of no. 100-125. The cluster C could be 
characterized as a group of “poor-dispersed” patterns 
by observation of the frames, and therefore it was 
estimated that the poor dispersion was discerned by 
being few bubbles in the middle part of the 
computational domain shown in Figure 4. In Figure 15, 
the clusters A and B could be distinguished by the 
difference of number of bubbles in the upper part of 
the computational domain, whereas the distinction was 
difficult in the lower part. It was supposed that the 
difficulty of distinction resulted from complicated flow 
near the impeller. 

Hence we applied a transformation to influence the 
density characteristics of a component’s distribution. 
In this article, the Sigmoid-typed transformation was 
adopted to redefining the internal representation of a 
component. The sigmoid function can lead to a more 
balanced distribution by stretching the center of the 
data histogram. The gradient and offset of the sigmoid 
transformation can be used to reduce the impact of 

outliers on the training process. 
In the case when the gradient was set at 1 and the 

offset was zero, the generated map could be also 
separated into three clusters as depicted by Figure 16. 
As compared with Figure 14, area of the cluster C 
representing a group of “poor-dispersed” patterns was 
reduced in the map generated by the modified data. 
Distinction of the cluster C shown in Figure 17 was 
considered to be close to the case of “no 
transformation” (Figure 15) in few bubbles in the 
middle part of the analytical domain. Furthermore, the 
clusters A and B could be distinguished by the 
difference of number of bubbles in both of the upper 
and lower parts of the computational domain. It was 
considered that the nonlinear transformation could 
enhance an efficiency of separating the minor 
difference in the nodes representing the “well-
dispersion” patterns.  

Finally, we investigated distribution of initial 30 
data in the three clusters by counting the numbered 
nodes in each cluster. It seemed that the numbered 
nodes in the map of Figure 16 were distributed 
uniformly in the three clusters, as compared with 
Figure 14. Thus, transition of patterns was tracked to 
analyze an effect of the data modification on dynamic 
behavior of patterns that the SOM showed. More 
periodic transition of pattern of bubble flow among the 
three clusters was monitored in the case of application 
of the sigmoid transformation as shown in Figure 18. 
So it was expected that data processing based on the 
statistical approach would generate a clustered map 
that was comprehensible for monitoring and control of 
the aerated agitation process. 
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Figure 14. A map generated from 90 
process images 

Figure 15. Distributions of averaged velocities 
for three clusters 
 



Figure 16. A map generated from data 
modified by sigmoid transformation 
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Figure 18. A result of analysis of pattern
transition in the case when sigmoid 
transformation was adopted 

5. Conclusions 
 

In application of the batch SOM to process imaging 
for dynamic behavior of aerated agitation vessel, the 
direct imaging by CCD video camera and the PIV 
technology were adopted. As a result of mapping time-
series patterns of velocity distributions to two 
dimensions, it was considered that generated map and 
clusters could give process engineers useful 
information about degree of spatial dispersion of 
bubbles and about determination of design parameter, 
e.g. position of the impeller.  

Then two approaches for the data processing in the 
SOM were investigated to enhance efficiency of 
pattern analysis. One was phenomenological approach. 

When the priority factors in a part of analytical domain 
were reduced from the point of phenomenological 
view, the map with more comprehensible clusters was 
generated. Another one was statistical approach. By 
adopting sigmoid transformation in the data processing, 
it was seen that the data modification enhanced the 
efficiency of separating the minor difference in the 
nodes representing the “well-dispersion” patterns. 

Figure 17. Distribution of averaged velocities
for three clusters in data modification 
 

Moreover, through the simulations, it was 
demonstrated that the data-oriented preprocessing 
could give process engineers useful information about 
transition of process patterns form the viewpoint of 
cluster. In the future, it is necessary to investigate 
distinction between the SOM based method and the 
statistical method, e.g. PCA. In the comparison with 
the other methods, it is important to examine 
application of the generated maps to estimation of 
dynamic process behavior and to control the process. 
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