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Abstract 
 

An ADaptive Function Neural Network (ADFUNN) 
is combined with the on-line snap-drift learning 
method in this paper to solve an Optical Recognition 
of Handwritten Digits problem and a Pen-Based 
Recognition of Handwritten Digits problem. Snap-
Drift [1] employs the complementary concepts of 
minimalist learning (snap) and drift (towards the input 
patterns) learning, and is a fast unsupervised method 
suitable for on-line learning and/or non-stationary 
environments where new patterns are continually 
introduced. The ADaptive FUction Neural Network 
(ADFUNN) presented in this paper [2, 3] is based on a 
linear piecewise neuron activation function that is 
modified by a novel gradient descent supervised 
learning algorithm. It has previously been applied to 
the Iris dataset, and a natural language phrase 
recognition problem, exhibiting impressive 
generalisation classification ability with no hidden 
neurons [2, 3]. The unsupervised single layer Snap-
Drift is effective in extracting distinct features from 
these complex cursive-letter datasets, and the 
supervised single layer ADFUNN is capable of solving 
linearly inseparable problems rapidly. In combination 
within one network (SADFUNN), these two methods 
are more powerful and yet simpler than MLPs, at least 
on this problem domain. We experiment with the 
Optical Recognition of Handwritten Digits and the 
Pen-Based Recognition of Handwritten Digits 
problems [4] from UCI repository. The problems are 
learned rapidly and higher generalisation results are 
achieved than a MLP.  
 
1. Motivation 
 

Artificial neural network learning is typically 
accomplished via adaptation between neurons. This 
paper describes adaptation that is simultaneously 

between and within neurons. The conventional 
neurocomputing wisdom is that by adapting the pattern 
of connections between neurons the network can learn 
to respond differentially to classes of incoming 
patterns. The success of this approach in an age of 
massively increasing computing power that has made 
high speed neurocomputing feasible on the desktop 
and more recently in the palm of the hand, has resulted 
in little attention being paid to the implications of 
adaptation within the individual neurons. The 
computational assumption has tended to be that the 
internal neural mechanism is fixed. However, there are 
good computational and biological reasons for 
examining the internal neural mechanisms of learning. 
Recent neuroscience suggests that neuromodulators 
play a role in learning by modifying the neuron’s 
activation function [5, 6] and with an adaptive function 
approach it is possible to learn linearly inseparable 
problems fast, even without hidden nodes.  

The snap-drift learning algorithm was firstly 
introduced by Palmer-Brown and Lee[1, 7 and 8] and 
it emerged as an attempt to simplify and modify 
Adaptive Resonance Theory (ART) learning in non-
stationary environments where self-organisation needs 
to take account of periodic or occasional performance 
feedback[7, 8]. Since then, the snap-drift algorithm has 
proved invaluable for continuous learning in many 
applications. In a Snap-Drift network, snap is based on 
the logical intersection method from ART, which is 
implemented here as a fuzzy AND; and drift is based 
on Learning Vector Quantization (LVQ) [9]. Snap-
drift harnesses the complementary strengths of the two 
forms of learning which are dynamically combined in 
a rapid form of adaptation that balances minimalist 
pattern intersection learning with Learning Vector 
Quantization. This unsupervised single layer Snap-
Drift is very effective in extracting distinct features 
from the complex cursive-letter datasets, and it helps 



the supervised single layer ADFUNN to solve these 
linearly inseparable problems rapidly without any 
hidden neurons. Experimental results show that in 
combination within one network (SADFUNN), these 
two methods are more powerful and yet simpler than 
MLPs. 
 
2. A single layer adaptive function network 
(ADFUNN) 
 

We provide a means of solving linearly inseparable 
problems using a simple adaptive function neural 
network (ADFUNN), based on a single layer of linear 
piecewise function neurons, as shown in figure 1. 

 

 
 

Figure 1.  Adapting the linear piecewise neuronal 
activation function in ADFUNN 

 
We calculate ∑aw, and find the two neighbouring f-

points that bound ∑aw. Two proximal f-points are 
adapted separately, on a proximal-proportional basis. 
The proximal-proportional value P1 is (Xna+1 - 
x)/(Xna+1 – Xna) and value P2 is (x - Xna)/(Xna+1 - 
Xna). Thus, the change to each point will be in 
proportion to its proximity to x. We obtain the output 
error and adapt the two proximal f-points separately, 
using a function modifying version of the delta rule, as 
outlined in 2.1 to calculate ∆f. 
 
2.1. The General Learning Rule for ADFUNN 
 

The weights and activation functions are adapted in 
parallel, using the following algorithm: 

 
A = input node activation, E = output node error. 
WL, FL: learning rates for weights and functions. 
 
Step1: calculate output error, E, for input, A. 
Step2: adapt weights to each output neuron: 
          ∆w = WL x Fslope x A x E 
          w' = w + ∆w 

          weights normalisation 
Step3: adapt function for each output neuron: 
           ∆f (∑aw) = FL x E 
           f'1 = f1 + ∆f x P1, f'2 = f2 + ∆f x P2 
Step4: f (∑aw) = f' (∑aw);  
           w = w'. 
Step5: randomly select a pattern to train  
Step6: repeat step 1 to step 5 until the output error 

tends to a steady state. 
 
2.2. XOR Experiment using ADFUNN 
 

The XOR is a simple binary example of linear 
inseparability, and therefore serves as a good basic test 
to establish that linearly inseparable problems can be 
solved by ADFUNN. Two weights are needed for the 
two inputs and there is one output. Weights are 
initialized randomly between -1 and 1, they are then 
normalised. F point values are initialised to a constant 
value of 0.5. Each F point is simply the value of the 
activation function for a given input sum. F points are 
equally spaced with an interval of 0.4, and the function 
value between points is on the straight line between 
them. This network is adapted using the above general 
learning rule. 

The ADFUNN learns the problem very fast with a 
learning rate of 0.5. An example of the weights after 
learning is: w1 = 0. 62, w2 = 0.73, and therefore, the 
sum of weighted inputs w1 * 0 + w2 * 0 = 0 for input 
pattern (0, 0), w1 * 0 + w2 * 1 = 0.73 for input pattern 
(0, 1), w1 * 1 + w2 * 0 = 0.62 for input pattern (1, 0) 
and w1 * 1 + w2 * 1 = 1.35 for input pattern (1, 1). 

As can be seen in figure 2, a characteristic XOR 
curve is learned. The raised curve (between 0 and 1.2) 
marks the learned region, within which adaptation has 
occurred. The data all projects onto this range, so 
beyond it none of the points are relevant in the final 
analysis. 
 

 
 

Figure 2.  XOR problem solved using ADFUNN 



From the above curve, we can see that when input 
pattern is (0, 1), the corresponding f(x) = 1.0 where x = 
0. 73. Similarly, the other three inputs give the 
expected correct answers. In the region projected onto 
between (0.3, 0.9), the slope of the activation is nearly 
0 and f = 1, and beyond this region, the function slopes 
down towards 0. Thus, we can see that ADFUNN has 
learned a fuzzy XOR.  
 
3. The Snap-Drift Algorithm 

 
This type of network was first introduced by 

Palmer-Brown and Lee [1, 7, and 8] is shown in Fig. 3. 
The first layer, dSDNN learns to group the input 
patterns according to their features. In this case, 10 F1 
nodes whose weight prototypes best match the current 
input pattern, are used as the input data to the sSDNN 
module for feature classification (only 3 winners 
shown in figure 3). In the dSDNN module, the output 
nodes with the highest net input are accepted as 
winners. In the sSDNN module, a quality assurance 
threshold is introduced. If the net input of a sSDNN 
node is above the threshold, the output node is 
accepted as the winner; otherwise a new uncommitted 
output node will be selected as the new winner and 
initialised with the current input pattern. In general 
terms, the snap-drift algorithm can be stated as: 

)()( driftsnapw σα += , whereα and σ  are toggled 
between (0, 1) and (1, 0) at the end of each epoch.  The 
point of this is to perform two complementary forms of 
feature discovery within one system. 

In this study the neural network is unsupervised 
Snap-Drift (SDNN). One of the strengths of the SDNN 
is the ability to adapt rapidly in a non-stationary 
environment where new patterns (new candidate road 
attributes in this case) are introduced over time. The 
learning process utilises a novel algorithm that 
performs a combination of fast, convergent, minimalist 
learning (snap) and more cautious learning (drift) to 
capture both precise sub-features in the data and more 
general holistic features. Snap and drift learning phases 
are combined within a learning system (Figure 3) that 
toggles its learning style between the two modes. 

On presentation of input data patterns at the input 
layer, the distributed SDNN (dSDNN) will learn to 
group them according to their features using snap-drift 
[1, 7 and 8]. The neurons whose weight prototypes 
result in them receiving the highest activations are 
adapted.  Weights are normalised weights so that in 
effect only the angle of the weight vector is adapted, 
meaning that a recognised feature is based on a 
particular ratio of values, rather than absolute values. 
The output winning neurons from dSDNN act as input 

data to the selection SDNN (sSDNN) module for the 
purpose of feature grouping and this layer is also 
subject to snap-drift learning. 
 

 
 

Figure 3.  Snap-Drift Neural Network (SDNN) 
architecture (Palmer-Brown & Lee [1, 7 and 8]) 

 
The learning process is unlike error minimisation 

and maximum likelihood methods in MLPs and other 
kinds of networks which perform optimisation for 
classification or equivalents by for example pushing 
features in the direction that minimizes error, without 
any requirement for the feature to be statistically 
significant within the input data. In contrast, SDNN 
toggles its learning mode to find a rich set of features 
in the data and uses them to group the data into 
categories. 

Each weight vector is bounded by snap and drift: 
snapping gives the angle of the minimum values (on all 
dimensions) and drifting gives the average angle of the 
patterns grouped under the neuron.  Snapping 
essentially provides an anchor vector pointing at the 
‘bottom left hand corner’ of the pattern group for 
which the neuron wins. This represents a feature 
common to all the patterns in the group and gives a 
high probability of rapid (in terms of epochs) 
convergence (both snap and drift are convergent, but 
snap is faster). Drifting tilts the vector towards the 
centroid angle of the group and ensures that an 
average, generalised feature is included in the final 
vector. The angular range of the pattern-group 
membership depends on the proximity of neighbouring 
groups (competition), but can also be controlled by 
adjusting a threshold on the weighted sum of inputs to 
the neurons. 

 



4. Snap-drift ADaptive FUnction Neural 
Network (SADFUNN) on Optical and Pen-
Based Recognition of Handwritten Digits 
 

SADFUNN is shown in figure 4. Input patterns are 
introduced at the input layer F1, the distributed SDNN 
(dSDNN) learns to group them. The winning F2 nodes, 
whose prototypes best match the current input pattern, 
are used as the input data to ADFUNN. For each 
output class neuron in F3, there is a linear piecewise 
function. Functions and weights and are adapted in 
parallel. We obtain the output error and adapt the two 
nearest f-points separately, using a function modifying 
version of the delta rule on a proximal-proportional 
basis. 

 
 

 
 

Figure 4.  Architecture of the SADFUNN network 
 

 
4.1. Optical and Pen-Based Recognition of 
Handwritten Digits Datasets 
 

These two complex cursive-letter datasets are those 
of handwritten digits presented by Alpaydin et.al [10, 
11]. They are two different representations of the same 
handwritten digits. 250 samples per person are 
collected from 44 people who filled in forms which 
were then randomly divided into two sets: 30 forms for 
training and 14 forms by distinct writers for writer-
independent test. 

The optical one was generated by using the set of 
programs available from NIST [12] to extract 
normalized bitmaps of handwritten digits from a pre-
printed form. Its representation is a static image of the 
pen tip movement that have occurred as in a normal 
scanned image. It is an 8 x 8 matrix of elements in the 
range of 0 to 16 which gives 64 dimensions. There are 
3823 training patterns and 1797 writer-independent 
testing patterns in this dataset. 

The Pen-Based dataset is a dynamic representation 
where the movement of the pen as the digit is written 
on a pressure-sensitive tablet.  It is generated by a 
WACOM PL-100V pressure sensitive tablet with an 
integrated LCD display and a cordless stylus. The raw 
data consists of integer values between 0 and 500 at 
the tablet input box resolution, and they are normalised 
to the range 0 to 100. This dataset’s representation has 
eight(x, y) coordinates and thus 16 dimensions are 
needed. There are 7494 training patterns and 3498 
writer-independent testing patterns. 

 

 
 

Figure 5.  The processing of converting the 
dynamic (pen-based) and static (optical) 

representations 
 

 
4.2. Snap-drift ADaptive FUnction Neural 
Network (SADFUNN) on Optical and Pen-
Based Recognition of Handwritten Digits 
 



In ADFUNN, weights and activation functions are 
adapted in parallel using a function modifying version 
of delta rule. If Snap-Drift and ADFUNN run at the 
same time, the initial learning in ADFUNN will be 
redundant, since it can only optimise once Snap-Drift 
has converged. 

All the inputs are scaled from the range of {0, 16} 
to {0, 1} for the optical dataset and from {0, 100} to 
{0, 1} for the pen-based dataset for best learning 
results. Training patterns are passed to the Snap-Drift 
network for feature extraction. After a couple of 
epochs (feature extraction learned very fast in this 
case, although 7494 patterns need to be classified, but 
every 250 samples are from the same writer, many 
similar samples exist), the learned dSDNN is ready to 
supply ADFUNN for pattern recognition. The training 
patterns are introduced to dSDNN again but without 
learning. The winning F2 nodes, whose prototypes best 
match the current input pattern, are used as the input 
data to ADFUNN. 

In this single layer ADFUNN, the 10 digits are the 
output classes. Weights are initialised to 0. F-points are 
initialised to 0.5. Each F point is simply the value of 
the activation function for a given input sum. F points 
are equally spaced, and the function value between 
points is on the straight line joining them. A weight 
limiter is also applied to ensure that the adaptation to 
weights will not be too large, in order to ensure 
stability. The two learning rates FL and WL are equal 
to 0.1 and 0.000001 respectively. These training 
patterns’ ∑awj has a known range of [-10, 10]. It has a 
precision of 0.01, so 2001 points encode all training 
patterns for output. 

Now the network is ready to learn using the general 
learning rule of ADFUNN outlined in 2.1. By varying 
the number of snap-drift neurons (features) and 
winning features number in F2, within 200 epochs in 
each run, about 99.53% and 99.2% correct 
classifications for the best can be achieved for the 
training data for the optical and pen-based datasets 
respectively. We get the following output neuron 
functions (only a few learned functions listed here due 
to space limitation): 
 

 
 

Figure 6.  Digit 1 learned function in optical dataset 
using SADFUNN 

 

 
 

Fig. 7. Digit 1 learned function in pen-based dataset 
using SADFUNN 

 

 
Fig. 8. Digit 8 learned function in optical dataset using 

SADFUNN 
 

 
Fig. 9. Digit 8 learned function in pen-based dataset 

using SADFUNN 
 
5. Results 
 

We test our network using the two writer-
independent testing data for both of the optical 
recognition and pen-based recognition tasks. 
Performance varies with a small number of parameters, 
including learning rates FL, WL, the number of   snap-
drift neurons (features) and the number of winning 
features.  

 



 
 

Fig. 10. The performance of training and testing for 
optical dataset using SADFUNN 

 

 
 

Fig. 11. The performance of training and testing for 
pen-based dataset using SADFUNN 

 
A large total number of features has a positive 

effect on the overall performance, however too many 
may limit generalisation if there is too much 
memorisation. The above performance charts show 
how the generalisation changes along with the total 
number of features. 

 
6. Related Work 
 

Using multistage classifiers involving a 
combination of a rule-learner MLP with an exception-
learner k-NN, the authors of the two datasets reported 
94.25% and 95.26% accuracy on the writer-
independent testing data for optical recognition and 
pen-based recognition datasets respectively [10, 11]. 
Patterns are passed to a MLP with 20 hiddens, and all 
the rejected patterns are passed to a k-nearest 
neighbours with k = 9 for a second phase of learning. 

For the optical recognition task, 23% of the writer-
independent test data are not classified by the MLP. 
They will be passed to k-NN to give a second 
classification. In our single network combination of a 
single layer Snap-Drift and a single layer ADFUNN 
(SADFUNN) network only 5.01% patterns were not 
classified on the testing data. SADFUNN proves to be 
a highly effective network with fast feature extraction 

and pattern recognition ability. Similarly, with the pen-
based recognition task, 30% of the writer-independent 
test data are rejected by the MLP, whereas only 5.4% 
of these patterns were misclassified by SADFUNN. 

Their original intention was to combine multiple 
representations (dynamic pen-based recognition data 
and static optical recognition data) of a handwritten 
digit to increase classification accuracy without 
increasing the system’s complexity and recognition 
time. By combing the two datasets, they get 98.3% 
accuracy on the writer-independent testing data. 
However, we don’t experiment with this on 
SADFUNN because they have already proved the 
combination of multiple presentations work better than 
single one, and also because SADFUNN has already 
exhibited extremely high generalisation ability 
compared to a MLP, and it is easy and fast to train and 
implement. 

Zhang and Li [13] propose an adaptive nonlinear 
auto-associative modelling (ANAM) based on Locally 
Linear Embedding (LLE) for learning both intrinsic 
principal features of each concept separately. LLE 
algorithm is a modified k-NN to preserve local 
neighbourhood relation of data in both the embedded 
Euclidean space and the intrinsic one. In ANAMs, 
training samples are projected into the corresponding 
subspaces. Based on the evaluation of recognition 
criteria on a validation set, the parameters of inverse 
mapping matrices of each ANAM are adaptively 
obtained. And then that of the forward mapping 
matrices are calculated based on a similar framework. 
1.28% and 4.26% error rates can be obtained by 
ANAM for optical recognition and pen-based 
recognition respectively. However, given its complex 
calculation of forward mapping and inverse mapping 
matrices, many subspaces are needed and also 
suboptimal auto-associate models need to be 
generated. SADFUNN is computationally much more 
efficient, simpler and achieves similar results. It will be 
a straight forward process to apply it to many other 
domains. 
 
7. Conclusions 
 

In this paper, we explored unsupervised Snap-Drift 
combined with a supervised ADFUNN acting on the 
activation functions alone, to perform classification.  
Snap-Drift is very effective in extracting distinct 
features from the complex cursive-letter datasets. 
Experiments show only a couple of epochs are enough 
for the feature classification. It helps the supervised 
single layer ADFUNN to solve these linearly 
inseparable problems rapidly without any hidden 



neuron. From the experimental results, it is clear that 
when combined within one network (SADFUNN), the 
two methods exhibited higher generalisation abilities 
than MLPs even though the learning process is 
simpler. 
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