
Snap-drift ADaptive FUnction Neural Network (SADFUNN) for Optical
and Pen-Based Handwritten Digit Recognition

Miao Kang, Dominic Palmer-Brown
University of East London, UK

M.Kang@uel.ac.uk, D.Palmer-Brown@uel.ac.uk

Abstract

An ADaptive Function Neural Network (ADFUNN)
is combined with the on-line snap-drift learning
method in this paper to solve an Optical Recognition
of Handwritten Digits problem and a Pen-Based
Recognition of Handwritten Digits problem. Snap-
Drift [1] employs the complementary concepts of
minimalist learning (snap) and drift (towards the input
patterns) learning, and is a fast unsupervised method
suitable for on-line learning and/or non-stationary
environments where new patterns are continually
introduced. The ADaptive FUction Neural Network
(ADFUNN) presented in this paper [2, 3] is based on a
linear piecewise neuron activation function that is
modified by a novel gradient descent supervised
learning algorithm. It has previously been applied to
the Iris dataset, and a natural language phrase
recognition problem, exhibiting impressive
generalisation classification ability with no hidden
neurons [2, 3]. The unsupervised single layer Snap-
Drift is effective in extracting distinct features from
these complex cursive-letter datasets, and the
supervised single layer ADFUNN is capable of solving
linearly inseparable problems rapidly. In combination
within one network (SADFUNN), these two methods
are more powerful and yet simpler than MLPs, at least
on this problem domain. We experiment with the
Optical Recognition of Handwritten Digits and the
Pen-Based Recognition of Handwritten Digits
problems [4] from UCI repository. The problems are
learned rapidly and higher generalisation results are
achieved than a MLP.

1. Motivation

Artificial neural network learning is typically
accomplished via adaptation between neurons. This
paper describes adaptation that is simultaneously

between and within neurons. The conventional
neurocomputing wisdom is that by adapting the pattern
of connections between neurons the network can learn
to respond differentially to classes of incoming
patterns. The success of this approach in an age of
massively increasing computing power that has made
high speed neurocomputing feasible on the desktop
and more recently in the palm of the hand, has resulted
in little attention being paid to the implications of
adaptation within the individual neurons. The
computational assumption has tended to be that the
internal neural mechanism is fixed. However, there are
good computational and biological reasons for
examining the internal neural mechanisms of learning.
Recent neuroscience suggests that neuromodulators
play a role in learning by modifying the neuron’s
activation function [5, 6] and with an adaptive function
approach it is possible to learn linearly inseparable
problems fast, even without hidden nodes.

The snap-drift learning algorithm was firstly
introduced by Palmer-Brown and Lee[1, 7 and 8] and
it emerged as an attempt to simplify and modify
Adaptive Resonance Theory (ART) learning in non-
stationary environments where self-organisation needs
to take account of periodic or occasional performance
feedback[7, 8]. Since then, the snap-drift algorithm has
proved invaluable for continuous learning in many
applications. In a Snap-Drift network, snap is based on
the logical intersection method from ART, which is
implemented here as a fuzzy AND; and drift is based
on Learning Vector Quantization (LVQ) [9]. Snap-
drift harnesses the complementary strengths of the two
forms of learning which are dynamically combined in
a rapid form of adaptation that balances minimalist
pattern intersection learning with Learning Vector
Quantization. This unsupervised single layer Snap-
Drift is very effective in extracting distinct features
from the complex cursive-letter datasets, and it helps

the supervised single layer ADFUNN to solve these
linearly inseparable problems rapidly without any
hidden neurons. Experimental results show that in
combination within one network (SADFUNN), these
two methods are more powerful and yet simpler than
MLPs.

2. A single layer adaptive function network
(ADFUNN)

We provide a means of solving linearly inseparable
problems using a simple adaptive function neural
network (ADFUNN), based on a single layer of linear
piecewise function neurons, as shown in figure 1.

Figure 1. Adapting the linear piecewise neuronal
activation function in ADFUNN

We calculate ∑aw, and find the two neighbouring f-

points that bound ∑aw. Two proximal f-points are
adapted separately, on a proximal-proportional basis.
The proximal-proportional value P1 is (Xna+1 -
x)/(Xna+1 – Xna) and value P2 is (x - Xna)/(Xna+1 -
Xna). Thus, the change to each point will be in
proportion to its proximity to x. We obtain the output
error and adapt the two proximal f-points separately,
using a function modifying version of the delta rule, as
outlined in 2.1 to calculate ∆f.

2.1. The General Learning Rule for ADFUNN

The weights and activation functions are adapted in
parallel, using the following algorithm:

A = input node activation, E = output node error.
WL, FL: learning rates for weights and functions.

Step1: calculate output error, E, for input, A.
Step2: adapt weights to each output neuron:
 ∆w = WL x Fslope x A x E
 w' = w + ∆w

 weights normalisation
Step3: adapt function for each output neuron:
 ∆f (∑aw) = FL x E
 f'1 = f1 + ∆f x P1, f'2 = f2 + ∆f x P2
Step4: f (∑aw) = f' (∑aw);
 w = w'.
Step5: randomly select a pattern to train
Step6: repeat step 1 to step 5 until the output error

tends to a steady state.

2.2. XOR Experiment using ADFUNN

The XOR is a simple binary example of linear
inseparability, and therefore serves as a good basic test
to establish that linearly inseparable problems can be
solved by ADFUNN. Two weights are needed for the
two inputs and there is one output. Weights are
initialized randomly between -1 and 1, they are then
normalised. F point values are initialised to a constant
value of 0.5. Each F point is simply the value of the
activation function for a given input sum. F points are
equally spaced with an interval of 0.4, and the function
value between points is on the straight line between
them. This network is adapted using the above general
learning rule.

The ADFUNN learns the problem very fast with a
learning rate of 0.5. An example of the weights after
learning is: w1 = 0. 62, w2 = 0.73, and therefore, the
sum of weighted inputs w1 * 0 + w2 * 0 = 0 for input
pattern (0, 0), w1 * 0 + w2 * 1 = 0.73 for input pattern
(0, 1), w1 * 1 + w2 * 0 = 0.62 for input pattern (1, 0)
and w1 * 1 + w2 * 1 = 1.35 for input pattern (1, 1).

As can be seen in figure 2, a characteristic XOR
curve is learned. The raised curve (between 0 and 1.2)
marks the learned region, within which adaptation has
occurred. The data all projects onto this range, so
beyond it none of the points are relevant in the final
analysis.

Figure 2. XOR problem solved using ADFUNN

From the above curve, we can see that when input
pattern is (0, 1), the corresponding f(x) = 1.0 where x =
0. 73. Similarly, the other three inputs give the
expected correct answers. In the region projected onto
between (0.3, 0.9), the slope of the activation is nearly
0 and f = 1, and beyond this region, the function slopes
down towards 0. Thus, we can see that ADFUNN has
learned a fuzzy XOR.

3. The Snap-Drift Algorithm

This type of network was first introduced by

Palmer-Brown and Lee [1, 7, and 8] is shown in Fig. 3.
The first layer, dSDNN learns to group the input
patterns according to their features. In this case, 10 F1
nodes whose weight prototypes best match the current
input pattern, are used as the input data to the sSDNN
module for feature classification (only 3 winners
shown in figure 3). In the dSDNN module, the output
nodes with the highest net input are accepted as
winners. In the sSDNN module, a quality assurance
threshold is introduced. If the net input of a sSDNN
node is above the threshold, the output node is
accepted as the winner; otherwise a new uncommitted
output node will be selected as the new winner and
initialised with the current input pattern. In general
terms, the snap-drift algorithm can be stated as:

)()(driftsnapw σα += , whereα and σ are toggled
between (0, 1) and (1, 0) at the end of each epoch. The
point of this is to perform two complementary forms of
feature discovery within one system.

In this study the neural network is unsupervised
Snap-Drift (SDNN). One of the strengths of the SDNN
is the ability to adapt rapidly in a non-stationary
environment where new patterns (new candidate road
attributes in this case) are introduced over time. The
learning process utilises a novel algorithm that
performs a combination of fast, convergent, minimalist
learning (snap) and more cautious learning (drift) to
capture both precise sub-features in the data and more
general holistic features. Snap and drift learning phases
are combined within a learning system (Figure 3) that
toggles its learning style between the two modes.

On presentation of input data patterns at the input
layer, the distributed SDNN (dSDNN) will learn to
group them according to their features using snap-drift
[1, 7 and 8]. The neurons whose weight prototypes
result in them receiving the highest activations are
adapted. Weights are normalised weights so that in
effect only the angle of the weight vector is adapted,
meaning that a recognised feature is based on a
particular ratio of values, rather than absolute values.
The output winning neurons from dSDNN act as input

data to the selection SDNN (sSDNN) module for the
purpose of feature grouping and this layer is also
subject to snap-drift learning.

Figure 3. Snap-Drift Neural Network (SDNN)
architecture (Palmer-Brown & Lee [1, 7 and 8])

The learning process is unlike error minimisation

and maximum likelihood methods in MLPs and other
kinds of networks which perform optimisation for
classification or equivalents by for example pushing
features in the direction that minimizes error, without
any requirement for the feature to be statistically
significant within the input data. In contrast, SDNN
toggles its learning mode to find a rich set of features
in the data and uses them to group the data into
categories.

Each weight vector is bounded by snap and drift:
snapping gives the angle of the minimum values (on all
dimensions) and drifting gives the average angle of the
patterns grouped under the neuron. Snapping
essentially provides an anchor vector pointing at the
‘bottom left hand corner’ of the pattern group for
which the neuron wins. This represents a feature
common to all the patterns in the group and gives a
high probability of rapid (in terms of epochs)
convergence (both snap and drift are convergent, but
snap is faster). Drifting tilts the vector towards the
centroid angle of the group and ensures that an
average, generalised feature is included in the final
vector. The angular range of the pattern-group
membership depends on the proximity of neighbouring
groups (competition), but can also be controlled by
adjusting a threshold on the weighted sum of inputs to
the neurons.

4. Snap-drift ADaptive FUnction Neural
Network (SADFUNN) on Optical and Pen-
Based Recognition of Handwritten Digits

SADFUNN is shown in figure 4. Input patterns are
introduced at the input layer F1, the distributed SDNN
(dSDNN) learns to group them. The winning F2 nodes,
whose prototypes best match the current input pattern,
are used as the input data to ADFUNN. For each
output class neuron in F3, there is a linear piecewise
function. Functions and weights and are adapted in
parallel. We obtain the output error and adapt the two
nearest f-points separately, using a function modifying
version of the delta rule on a proximal-proportional
basis.

Figure 4. Architecture of the SADFUNN network

4.1. Optical and Pen-Based Recognition of
Handwritten Digits Datasets

These two complex cursive-letter datasets are those
of handwritten digits presented by Alpaydin et.al [10,
11]. They are two different representations of the same
handwritten digits. 250 samples per person are
collected from 44 people who filled in forms which
were then randomly divided into two sets: 30 forms for
training and 14 forms by distinct writers for writer-
independent test.

The optical one was generated by using the set of
programs available from NIST [12] to extract
normalized bitmaps of handwritten digits from a pre-
printed form. Its representation is a static image of the
pen tip movement that have occurred as in a normal
scanned image. It is an 8 x 8 matrix of elements in the
range of 0 to 16 which gives 64 dimensions. There are
3823 training patterns and 1797 writer-independent
testing patterns in this dataset.

The Pen-Based dataset is a dynamic representation
where the movement of the pen as the digit is written
on a pressure-sensitive tablet. It is generated by a
WACOM PL-100V pressure sensitive tablet with an
integrated LCD display and a cordless stylus. The raw
data consists of integer values between 0 and 500 at
the tablet input box resolution, and they are normalised
to the range 0 to 100. This dataset’s representation has
eight(x, y) coordinates and thus 16 dimensions are
needed. There are 7494 training patterns and 3498
writer-independent testing patterns.

Figure 5. The processing of converting the
dynamic (pen-based) and static (optical)

representations

4.2. Snap-drift ADaptive FUnction Neural
Network (SADFUNN) on Optical and Pen-
Based Recognition of Handwritten Digits

In ADFUNN, weights and activation functions are
adapted in parallel using a function modifying version
of delta rule. If Snap-Drift and ADFUNN run at the
same time, the initial learning in ADFUNN will be
redundant, since it can only optimise once Snap-Drift
has converged.

All the inputs are scaled from the range of {0, 16}
to {0, 1} for the optical dataset and from {0, 100} to
{0, 1} for the pen-based dataset for best learning
results. Training patterns are passed to the Snap-Drift
network for feature extraction. After a couple of
epochs (feature extraction learned very fast in this
case, although 7494 patterns need to be classified, but
every 250 samples are from the same writer, many
similar samples exist), the learned dSDNN is ready to
supply ADFUNN for pattern recognition. The training
patterns are introduced to dSDNN again but without
learning. The winning F2 nodes, whose prototypes best
match the current input pattern, are used as the input
data to ADFUNN.

In this single layer ADFUNN, the 10 digits are the
output classes. Weights are initialised to 0. F-points are
initialised to 0.5. Each F point is simply the value of
the activation function for a given input sum. F points
are equally spaced, and the function value between
points is on the straight line joining them. A weight
limiter is also applied to ensure that the adaptation to
weights will not be too large, in order to ensure
stability. The two learning rates FL and WL are equal
to 0.1 and 0.000001 respectively. These training
patterns’ ∑awj has a known range of [-10, 10]. It has a
precision of 0.01, so 2001 points encode all training
patterns for output.

Now the network is ready to learn using the general
learning rule of ADFUNN outlined in 2.1. By varying
the number of snap-drift neurons (features) and
winning features number in F2, within 200 epochs in
each run, about 99.53% and 99.2% correct
classifications for the best can be achieved for the
training data for the optical and pen-based datasets
respectively. We get the following output neuron
functions (only a few learned functions listed here due
to space limitation):

Figure 6. Digit 1 learned function in optical dataset
using SADFUNN

Fig. 7. Digit 1 learned function in pen-based dataset
using SADFUNN

Fig. 8. Digit 8 learned function in optical dataset using

SADFUNN

Fig. 9. Digit 8 learned function in pen-based dataset

using SADFUNN

5. Results

We test our network using the two writer-
independent testing data for both of the optical
recognition and pen-based recognition tasks.
Performance varies with a small number of parameters,
including learning rates FL, WL, the number of snap-
drift neurons (features) and the number of winning
features.

Fig. 10. The performance of training and testing for
optical dataset using SADFUNN

Fig. 11. The performance of training and testing for
pen-based dataset using SADFUNN

A large total number of features has a positive

effect on the overall performance, however too many
may limit generalisation if there is too much
memorisation. The above performance charts show
how the generalisation changes along with the total
number of features.

6. Related Work

Using multistage classifiers involving a
combination of a rule-learner MLP with an exception-
learner k-NN, the authors of the two datasets reported
94.25% and 95.26% accuracy on the writer-
independent testing data for optical recognition and
pen-based recognition datasets respectively [10, 11].
Patterns are passed to a MLP with 20 hiddens, and all
the rejected patterns are passed to a k-nearest
neighbours with k = 9 for a second phase of learning.

For the optical recognition task, 23% of the writer-
independent test data are not classified by the MLP.
They will be passed to k-NN to give a second
classification. In our single network combination of a
single layer Snap-Drift and a single layer ADFUNN
(SADFUNN) network only 5.01% patterns were not
classified on the testing data. SADFUNN proves to be
a highly effective network with fast feature extraction

and pattern recognition ability. Similarly, with the pen-
based recognition task, 30% of the writer-independent
test data are rejected by the MLP, whereas only 5.4%
of these patterns were misclassified by SADFUNN.

Their original intention was to combine multiple
representations (dynamic pen-based recognition data
and static optical recognition data) of a handwritten
digit to increase classification accuracy without
increasing the system’s complexity and recognition
time. By combing the two datasets, they get 98.3%
accuracy on the writer-independent testing data.
However, we don’t experiment with this on
SADFUNN because they have already proved the
combination of multiple presentations work better than
single one, and also because SADFUNN has already
exhibited extremely high generalisation ability
compared to a MLP, and it is easy and fast to train and
implement.

Zhang and Li [13] propose an adaptive nonlinear
auto-associative modelling (ANAM) based on Locally
Linear Embedding (LLE) for learning both intrinsic
principal features of each concept separately. LLE
algorithm is a modified k-NN to preserve local
neighbourhood relation of data in both the embedded
Euclidean space and the intrinsic one. In ANAMs,
training samples are projected into the corresponding
subspaces. Based on the evaluation of recognition
criteria on a validation set, the parameters of inverse
mapping matrices of each ANAM are adaptively
obtained. And then that of the forward mapping
matrices are calculated based on a similar framework.
1.28% and 4.26% error rates can be obtained by
ANAM for optical recognition and pen-based
recognition respectively. However, given its complex
calculation of forward mapping and inverse mapping
matrices, many subspaces are needed and also
suboptimal auto-associate models need to be
generated. SADFUNN is computationally much more
efficient, simpler and achieves similar results. It will be
a straight forward process to apply it to many other
domains.

7. Conclusions

In this paper, we explored unsupervised Snap-Drift
combined with a supervised ADFUNN acting on the
activation functions alone, to perform classification.
Snap-Drift is very effective in extracting distinct
features from the complex cursive-letter datasets.
Experiments show only a couple of epochs are enough
for the feature classification. It helps the supervised
single layer ADFUNN to solve these linearly
inseparable problems rapidly without any hidden

neuron. From the experimental results, it is clear that
when combined within one network (SADFUNN), the
two methods exhibited higher generalisation abilities
than MLPs even though the learning process is
simpler.

8. References

[1] S. W. Lee, D. Palmer-Brown and C. M. Roadknight,
“Performance-guided Neural Network for Rapidly Self-
Organising Active Network Management (Invited Paper)”,
Journal of Neurocomputing, 61C, 2004, pp. 5 – 20.
[2] D. Palmer-Brown and M. Kang, “ADFUNN: An adaptive
function neural network”, the 7th International Conference
on Adaptive and Natural Computing Algorithms
(ICANNGA05), Coimbra, Portugal, 2005, pp. 1-4.
[3] M. Kang and D. Palmer-Brown, “An Adaptive Function
Neural Network (ADFUNN) for Phrase Recognition”, the
International Joint Conference on Neural Networks
(IJCNN05), Montréal, Canada, 2005, pp593-597.
[4] E. Alpaydin, F. Alimoglu for Optical Recognition of
Handwritten Digits and E. Alpaydin, C. Kaynak for Pen-
Based Recognition of Handwritten Digits
http://www.ics.uci.edu/~mlearn/databases/optdigits/
http://www.ics.uci.edu/~mlearn/databases/pendigits/
[5] G. Scheler, “Regulation of neuromodulator efficacy:
Implications for whole-neuron and synaptic plasticity”,
Progress in Neurobiology, Vol.72, No.6, 2004.

[6] G. Scheler, “Memorization in a neural network with
adjustable transfer function and conditional gating”,
Quantitative Biology, Vol.1, 2004.
[7] S. W. Lee and D. Palmer-Brown, “Phonetic Feature
Discovery in Speech using Snap-Drift. International
Conference on Artificial Neural Networks”, ICANN'2006,
Athens, Greece, 10th - 14th September 2006, pp. 952 – 962.
[8] S. W. Lee and D. Palmer-Brown, “Modal Learning in A
Neural Network”, 1st Conference in Advances in Computing
and Technology, London, United Kingdom, 24th January
2006, pp. 42 - 47.
[9] T. Kohonen, “Improved Versions of Learning Vector
Quantization”, Proc. IJCNN’90, 1990, pp.545 – 550.
[10] E. Alpaydin, C. Kaynak, F. Alimoglu, “Cascading
Multiple Classifiers and Representations for Optical and
Pen-Based Handwritten Digit Recognition”, IWFHR,
Amsterdam, The Netherlands, September 2000.
[11] F. Alimoglu, E. Alpaydin, “Combining Multiple
Representations for Pen-based Handwritten Digit
Recognition”, ELEKTRIK: Turkish Journal of Electrical
Engineering and Computer Sciences, 9(1), 2001, pp.1-12.
[12] M.D. Garris et al, NIST Form-Based Handprint
Recognition System, NISTIR 5469, 1991.
[13] J. Zhang and Z. Li, “Adaptive Nonlinear Auto-
Associative Modeling through Manifold Learning”, PAKDD,
2005, pp.599-604.

