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Abstract 

 
The issues raised in advanced process control 

applications lead control engineers to be aware of the 
need of integrating advanced information processing 
capabilities in the process control loop. In this paper a 
SIMULINK based tool has been developed for analysis 
and design of multivariable neural based control 
systems. This tool has been applied to the control of a 
high purity distillation column also modeled in 
SIMULINK including non linear hydrodynamic effects. 
Also LabVIEW environment has been employed as a 
graphical user interface for monitoring the 
neurocontrolled distillation column, by visualizing 
both the closed loop performance and the user selected 
control conditions. The proposed control scheme offers 
an optimal response for both theoretical and practical 
challenges posed in process control task, in particular 
when both, the quality improvement of distillation 
products and the operation efficiency in economical 
terms are considered 

 
1. Introduction 

 
Artificial neural networks have been used 

extensively for a number of process engineering 
applications such as sensor data analysis, fault 
detection and nonlinear plant identification and 
control, specifically of distillation column and reactors 
in chemical engineering. 

 
Focusing on the control problem, several control 

schemes based on knowledge of the plant model have 
been reported, such as generalized predictive control 
[1], inverse model control [2] and adaptive control [3] 
among others. 

 

The lack of tools for the design of controllers based 
on neural network models is particularly pronounced. 
The reason for this might be that development of 
generic software for control system design is relatively 
difficult as several types of control designs exist. A 
few non commercial tools for system identification and 
control system design have become available. One of 
these is the system identification and control 
MATLAB-SIMULINK tool [4] which offers an useful 
guided user interface (GUI) for predictive control, 
model reference adaptive control and feedback 
linearization control, all based on neural networks. 

 
In addition, [5] have developed two toolset for use 

with MATLAB, termed NNSYSID and NNCTRL for 
neural network based identification and control of 
nonlinear systems. These toolset allow the user to 
choose among several designs, such as direct inverse 
control, internal model control, feedback linearization 
and predictive control among others. However, these 
toolset are applied only to SISO nonlinear systems, 
being therefore invalid to be extended to general 
MIMO control problems as is frequently usual in 
process engineering. 

 
On the other hand LabVIEW [6] and SIMULINK 

are properly two widely used graphical code 
development environment which allow system level 
developers to perform rapid prototyping and testing. 
Unlike text-based programming languages, such as C, 
MATLAB and Java, graphical programming involves 
block-based code development and offers a more 
intuitive approach to designing control systems. 
Besides, both environments can be linked together 
through the LabVIEW simulation interface toolkit 
(SIT) allowing control engineers to custom user 
interface to interactively verify SIMULINK models 
and easily deploy these models to real-time hardware 



for control prototyping and hardware-in-the-loop 
testing, with proven results in industrial applications 
[7]. 

 
For many reasons, distillation remains the most 

important separation technique in chemical process 
industries around the world [8]. Therefore, improved 
distillation control can have a significant impact on  
reducing energy consumption, improving product 
quality and protecting environmental resources. 
However, distillation control is difficult because it is 
usually nonlinear, non-stationary, interactive, and is 
subject to constraints and disturbances.  

 

In this paper a MATLAB-SIMULINK based tool 
has been developed for analysis and design of 
multivariable neural based control systems. This tool 
has been applied to the control of a high purity 
distillation column modeled also in SIMULINK 
including non linear hydrodynamic effects. Also, 
LabVIEW environment has been employed as a 
graphical user interface for monitoring the 
neurocontrolled distillation column, by visualizing 
both the closed loop performance and the user selected 
control conditions, where the front panel has been 
designed mimicking the distillation column control 
scheme .  

 

 
 

Fig. 1. Scheme for monitoring and control of the distillation column 
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In section II we describe the overall structure of 
neurocontrolled system while the distillation column 
model programmed in SIMULINK is summarized in 
section III. In section IV we present the tool for 
analysis and design of multivariable neural based 
control systems. The design of the monitoring system 
under LabVIEW is described in section V, and 
computer simulation results for a 9 plates 
neurocontrolled column are also shown in section VI. 
Finally, conclusions and future works are also 
discussed in section VII. 

 
2. Description of the Control System 

 

The proposed architecture for neural control of the 
distillation column is shown (Fig. 1).  

The system is composed by a) A SIMULINK 
model of the distillation column, based on mass and 
enthalpy balances; b) An interactive tool running under 
SIMULINK for identification and control based on 
neural networks, using I/O data form the distillation 
plant and c) A graphical user interface for monitoring 
the neurocontrolled distillation column based on 
LabVIEW.  

The data taken from the SIMULINK distillation 
column model will be used to train both the neural 
network model and controller, which in turns once 
trained will feed the distillation plant to operate under 
working specifications. The outcome of both modules 
will be displayed at front panel of LabVIEW to show 
the user the state of the plant at any time.  

The overall system allows also the controlling of a 
experimental system instead of the simulation model, 
using instead the measures form the sensors of the 
column in order to train both the neural model and 
controller under LabVIEW interface.  

 
3. Distillation Column Model 

 

The distillation column is used for the separation of 
a binary mixture of methanol and n-propanol which 
enters as a feed stream with flow rate F , composition 
XF and enthalpy q between two sections (a rectifying 
section and a stripping section). Mass transfer occurs 
between the vapour flowing up and the liquid flowing 
down the column. The vapour exiting at the top of the 
column is condensed, and part of the resulting liquid 
flow is returned at the column at the top (reflux), while 

the remainder is taken as the distillate product D. Part 
of the liquid flow out of the bottom of the column is 
vaporized in a reboiler and sent back to the bottom of 
the column, while the remainder is taken as the bottom 
product B. 

The column consists of a N bubble cap trays. The 
overhead vapour is totally condensed in a water cooled 
condenser (tray N+1) which is open at atmospheric 
pressure. The reboiler (tray 0) is heated electrically, 
and the preheated feed stream enters the column at the 
feed tray as saturated liquid. The process inputs that 
are available for control purposes are the heat input to 
the reboiler Q and the reflux flowrate LN+1 (Fig. 2). 

 

 
 

Fig. 2. Scheme of the binary distillation column 

 

In this section we will describe the model of the 
distillation column developed by [9], composed by the 
mass, component mass and enthalpy balance equations 
used as basis to implement the SIMULINK diagram. 

 
3.1. Mass Balance 

 
The differential equations that determine the change 

of the molar holdup ln  of the trays are given by  

lllll LLVVn −+−= +− 11

.
 

Only valid for NNFNFl ,......,1,1,.....,1 +−=  
trays, where lV  is the molar vapour flux leaving the l-
th tray and lL  is the liquid flux leaving the l-th tray. 
For the feed tray NF the equation is given by 



FLLVVn NFNFNFNFNF +−+−= +− 11

.
 

and the corresponding for the condenser and reboiler 
are 

DLVn NNN −−= ++ 11

.
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3.2. Component Mass Balance 

 

For the most volatile component, the composition 
balance will follow the equation 
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valid for NNFNFl ,......,1,1,.....,1 +−=  where XL is 
the liquid concentration of the most volatile component 
and YL is the composition of the vapour flow out of the 
l-th tray. 

 
For the feed tray we will have 
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while for the reboiler and condenser we have  
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3.3. Enthalpy Balance 

 

We will assume that the condenser pressure is fixed 
to the outside atmospheric pressure, and that the 
pressure in the trays can be calculated under the 
assumption of constant pressure drop from tray to tray 

lll PPP ∆+= +1 , and the tray temperatures are 
implicitly defined by the assumption that the total 
pressure is equal to the sum of the partial pressures, 
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temperature of the l-th tray, and where the partial 
pressures S
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with different values of the constants according to the 
liquid we are evaluating. 

 
The non-ideality of the trays and other unmodelled 

effects are accounted in the tray efficiencies                             
αL. With these tray efficiencies we can calculate the 
composition of the vapour flow out of the l-th tray as a 
linear combination of the ideal vapour composition on 
the tray and the incoming vapour composition of the 
tray below by  
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We will formulate then the enthalpy balances in 

order to determine the vapour streams that leave each 
tray as follows 
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valid for NNFNFl ,......,1,1,.....,1 +−= , where k

lh  
is the enthalpy with k indexing to the phase ( L refers 
to liquid and  V  to vapour). 

 
For the feed tray and the condenser we will have 
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The enthalpies L

lh  and V
lh  are given by  
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with different values for the constants according the 
liquid were referring to, and the vapour enthalpies can 
be evaluated as  
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with coefficients according to the liquid or vapour we 
are considering in each case.  

 
The SIMULINK model corresponding to these 

equations is depicted in Fig. 3 showing the top level 
modelling description.  
 
 

 
Fig. 3. SIMULINK model of the distillation column 

 

 

4. Neural Modeling and Control Tool 
 
Neural networks have become a popular tool for 

identification and control of unknown nonlinear 
systems. The Neural Network Toolbox commercialised 
with MATLAB [4] is intended to serve as a general-
purpose package for this task, but the efficient 
exploitation of these services drastically depends on 
the programming skills and experience of the users. 

 
In this context, the design of MIMO Control Tool 

running under SIMULINK and specially conceived for 
building neural-network-type models becomes a more 
attractive perspective for developing applications than 
writing laborious MATLAB codes in a classical 
manner.  

 
In the context of this paper, we present a design 

tool for neural based modelling and control of 
nonlinear systems, built also to analyze the stability 
control problems associated (Fig. 4). We have applied 
this methodology for a high purity distillation plant, 
which is clearly a MIMO nonlinear system. 

 
 

 
 
Fig. 4. Scheme of the neural network design 

control tool 



 
4.1. Neural Identification Tool 
 

The data for training both the neural network model 
and controller were obtained from dynamic 
simulations using the SIMULINK model already 
developed in section III. The reflux rate LVol and heat 
flow Q were used as plant inputs together with top and 
bottom compositions XD  and XB, while feed variables 
(F, XF, q) have been treated as process disturbances. 

 
The training set for identification comprised 200 

data points belonging to the open loop operating  range 
for plant inputs reflux flowrate LVol (0-5E-06 m3/h) and 
heat flow Q  (0-2000 J/s) for fixed feed rate conditions 
F = 1 E-06 m3/h, XF = 0.3, and q = 1. An additional 
data set consisting of 150 data points was used to test 
the neural network model afterwards. For training 
pattern generation we assume an initial steady state for 
the column after a start-up process. 

 
The identification task was made using the 

Levenberg-Marquardt algorithm for a neural network 
with two layers in a tansig - purelin activation function 
scheme, by using automatic target vector generation 
with the plant outputs. With these results we obtained 
an optimum 2-10-2 network SIMULINK block that 
can be used for running several experiences (Fig. 5).  

 
 

 
 

Fig. 5. SIMULINK structure for training the neural 
network model 

 

Figure 6 shows the comparison between the actual 
(SIMULINK) and the neural network predicted values 

of distillate composition for reflux and heating flows 
signals selected in the operating ranges. 

 

Fig. 6. Prediction for distillate composition of the 
neural model for LVol = 3E-06 m3/h, Q = 1200 J/s 

 
4.2. Neural ControlTool 
 

This tool has been implemented using two 
approaches, direct design and indirect design [5]. In 
the direct design method the controller is in itself a 
neural network, while in the indirect design the 
controller is not a neural network at all, but the design 
is based on a neural network model of the plant to be 
controlled. Besides, the system can be specified either 
as SIMULINK model, a MATLAB file containing the 
algebraic differential equations or a neural network 
model of the system.  

 
The training set for control comprised 150 data 

points belonging to the closed loop operating range for 
desired and actual top and bottom compositions values 
XD (0.0-1.0) and XB (0.0-1.0). An additional data set 
consisting of 120 data points was used to test the 
neural network controller also. 

. 
The control task was made using the Levenberg-

Marquardt algorithm for a neural network with two 
layers in a tansig - purelin activation function scheme, 
coupled with a neural identification network 
previously trained with the Neural Identification Tool, 
so as to adjust the network controller parameters using 
the propagation of the output plant error through the 
neural network model [10]. We obtained an optimum 
2-12-2 network SIMULINK block for the neural 
controller, with top and bottom composition errors as 
inputs and reflux rate and heat flow as outputs (Fig. 7). 

 



  

 
Fig. 7. SIMULINK structure for training the neural network controller 

 
 
5. Monitoring of the Distillation Column 

 
One of the goals of the present work is to develop a 

system that allows the monitoring in line and 
manipulate the variables that take part in the 
distillation process, as well as to interact with the 
neuronal tool we have developed in a SIMULINK 
environment,. Therefore it will be of great interest to 
develop alternatives to solve this problem in an 
economic, efficient and reliable way.  

 
 The solution we propose is a graphic user interface 

developed in National Instrument’s graphical 
programming language LabVIEW [6]. In this way, the 
observation and manipulation of the variables is 
carried out using virtual instruments while the 
connection between the virtual instruments and the 
neural tool is solved using the Simulation User 
Interface Library, which  allows to develop, prototype, 
and test control systems using models developed in the 
SIMULINK simulation environment (Fig. 8). 
 
 
 

 
Fig. 8. Interaction between LabVIEW and 

SIMULINK 

In this way, the programming language LabVIEW 
was used for the tasks of acquisition, analysis and 
presentation of data in a friendly way to the user and 
also provides a efficient tool for the communication 
with the neural tool. So the solution we propose lead 
us to a flexible and versatile tool, being an efficient, 
economic and  simple way to monitorize a dynamic 
plant and both to model and control a distillation 
column by using the neural tool (Fig. 9). 

 
 



 
 

 
Fig. 9. Frontpanel of the monitoring tool 

6. Results 
 

In order to show the validity of the proposed control 
scheme, we have selected a binary high-purity 
distillation column, for separating a mixture of 
methanol and n-propanol, which consist in 40 bubble 
caps trays with heated electrically reboiler and water 
refrigerated tubular condenser. 
 

In Fig. 10, we show how the neural controller 
exhibit adequate control action to compensate a dual 
step change in distillate composition from 99% to 98% 
and bottom composition from 98.5% to 97.5% in t = 
40 s,  together with a change in feed composition from 
50% to 80%. Changes in the reflux and heat flows are 
determined by the neural network model-based 
controller for the column. 

 
  

 
 

Fig. 10. Response of the distillation control system to step changes in top and bottom compositions and 
change in feed composition 



7. Conclusions and Future Works 
 
A SIMULINK based tool has been developed for 

analysis and design of multivariable neural based 
control systems. This tool has been applied to the 
control of a high purity distillation column also 
modeled in SIMULINK including non linear  

 
hydrodynamic effects. Also LabVIEW environment 
has been employed as a graphical user interface for 
monitoring the neurocontrolled distillation column. 
The results obtained demonstrate the potential use of 
this control strategy in this field. 

 
 

 
 
 

Figure 11. Lab-scale pilot distillation column DELTALAB DC-SP 

 
 
Future works are directed towards the application of 

the described toolset to a experimental distillation 
column as is actually being made by the System 
Engineering and Automation Group as part of the 
researching project DPI2005-08344 (fig. 11), which 
utilizes the same scheme as Fig. 1 but replacing the 
simulation model by an experimental distillation 
column DELTALAB DC-SP, whose technical 
characteristics are displayed at web page below (in 
Spanish)http://www.isa.uma.es/C4/Control%20Neurob
orroso/Document%20Library/index.htm) 

 
At the same time, the stability issued involved in the 

neural control task are also object of research, since 
nonlinear and multivariable dynamics are present. 
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