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Abstract 

 
Monitoring of processing elements values and overall 
performance is one of the most critical issues of an 
Artificial Neural Network development process. This 
should happen as the network evolves and it is the 
actual task that enables the developer to make 
informed decisions about the proper network topology, 
math functions, training times and learning 
parameters. This manuscript presents the framework 
of a new model that uses Fuzzy Logic in order to 
perform the crucial neural network validation task. It 
offers a new flexible approach that is capable of 
viewing this task under different perspectives. The 
model has been tested for a specific case study with 
actual data and a comparison to the existing methods 
is presented. 
 
1. Introduction 
 
      The choice of an Artificial Neural Network’s 
(ANN) optimal configuration is based on minimizing 
the differences between the ANN predicted values and 
the actual experimental data after a certain number of 
iterations. This is performed in both Training and 
Testing processes by using various diagnostic methods 
called instruments. The instruments provide the 
developer with diagnostic information that can be 
considered as indications of the ANN’s good or poor 
performance. This paper presents the design and 
development principles and also the actual testing of a 
new ANN Evaluation Framework (NANNEF). 
 
2. Typical ANN evaluation instruments 
 
      Two well known ANN instruments are the Root 
Mean Square Error (RMS Error) and the Confusion 
Matrix (CM) that incorporates the Common Mean 
Correlation. The RMS Error adds up the squares of the 
errors for each PE in the output layer, divides by the 

number of PEs in order to obtain an average and 
finally estimates the square root of that average. Hence 
the name root square. The squaring of the errors gets 
rid of the sign of the error but increases the magnitude. 
The square root is used in order to remove the 
magnitude. The RMS Error is a valuable and common 
measure of an ANN’s performance.  
The CM provides an advanced way of measuring an 
ANN’s performance during the “learn” and “recall” 
phases. It allows the correlation of the actual output of 
an ANN to the desired results in a two dimensional 
visual graphical display [14][15]. This is achieved by 
providing the user with a graph consisting of numerous 
small cells called bins. The network with the optimal 
configuration must have the bins on the diagonal from 
the lower left to the upper right. In this way the CM 
can be considered as an instrument indicating how well 
the network is performing  
An important aspect of the CM is that the value of the 
vertical axis (in the produced histogram) is the 
Common Mean Correlation (CMC) coefficient of the 
desired (d) and the actual (predicted) output (y) across 
the Epoch. The CMC is calculated by the following 
equation 1. 
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      It should be clarified that d stands for the desired 
values, y for the predicted values where i ranges from 
1 to n (the number of cases in the data training set) and 
E for the Epoch size, which is the number of training 
data sets presented in the ANN learning cycles among 
weight updates.  
 



3. Materials and methods 
 

The main title (on the first page) should begin 1-3/8 
inches (3.49 cm) from the top edge of the page, 
centered, and in Times 14-point, boldface type. 
Capitalize the first letter of nouns, pronouns, verbs, 
adjectives, and adverbs; do not capitalize articles, 
coordinate conjunctions, or prepositions (unless the 
title begins with such a word). Leave two 12-point 
blank lines after the title. 
 
3.1. Fuzzy Sets 
 
      According to Fuzzy Algebra (FA) each object x of 

the universe X belongs to a fuzzy set 
~
S  with respect to 

a characteristic real number µs(x) called Degree of 

Membership (DOM) that is 
~
S ⊆X iff 

~
S ={(x,µs(x))/µs: 

X->[0,1]:x->µs(x)}[14].These, specific functions called 
Membership Functions (MF) are used to determine the 
DOM value (MV). For example, the Triangular 
Membership function (TRIAMF) is given by the 
following equation 2 [5], [10]. The Triangular 
Membership Values are also called “first order 
indices”. 
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where a<b<c                                      
Notice that, the only one point, where the DOM equals 
to 1, is x=c.  
The following equation 3 presents the Trapezoidal 
Membership function (TRAPMF) [7]. 
µs(x;a,b,c,d) = max{min{
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where a<b<c<d                     
      On the other hand, for each TRAPMF a tolerance 
[b,c] exists such that the DOM equals to one.  
The following function 4 corresponds to a parametric 
form of the Sigmoid MF family [18].  

e cxa )(1
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      It should be clarified that in the Sigmoid MF the 
parameters a and c determine its shape and position. 
Therefore by employing the above MFs a FS can be 
defined using the following equation 5 [8]. 
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3.2. Conjunction on Fuzzy Sets 
 
      Conjunction and Aggregation of FS can be 
performed by applying instances of various T-Norms 
families [10]. The following equations 3.2.1 to 3.2.5 
present five of the main T-Norm families of operations 
that perform Fuzzy Conjunction [16].  
The Hamacher Family 
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The Einstein Product      
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      There exist many other T-Norm families like the 
Aczel-Alsina, the Jane Doe1,  the Jane Doe 1 – 
Hamacher, the Schweizer, the Dombi and finally the 
Frank family [16]. Of course a good question would 
be the choice of the proper T-Norm. The answer is not 
obvious [10]. Each T-Norm offers a good approach 
and it sees things under a different perspective. Other 
T-Norms can be characterized as optimistic whereas 
others as pessimistic and others assign a case a high 
degree of membership when one or more parameters 
have extreme values [10]. For example according to 
the MIN Norm, the minimum DOM is the conjunction 
result whereas the Einstein and the Hamacher Products 
consider all of the factors equally [10]. 



      If we consider the above T-Norms as aggregation 
functions Agg(x) then we can have multiple attribute 
decision making with unequal weights for attributes 
[2], [3], [19].  
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where i=1,2…..k and k is the number of cases and n is 
the number of the attributes [5].  

The function f is defined as follows: ( ) Wawaf
1

, =    (12)                                                                                            

Note that +∞=
+0

1lim  so that w can be equal to zero.  

      In this way the attributes can be considered as 
having different contribution in the estimation of the 
conjunction DOM and various scenarios can be 
performed.  
      Also Alpha-cuts are used to estimate the number of 
cases that belong to a FS with a DOM higher than or 
equal to a specific value. An Alpha-cut of the 
membership function A (denoted aA) is the set of all x 
such that A(x) is greater than or equal to alpha a. 
Similarly, a strong alpha-cut (denoted a + A) is the set 
of all x such that A(x) is strictly greater than alpha a. 
Mathematically, the following equations 13 and 14 are 
used to define an aA and an a+A. 
aA={x|A(x)≥a}                                                      (13)                                                                                         
a + A = {x | A(x) > a}                                            (14)  
                                                                                       
4. A new ANN validation framework 
 
      In both Training and Testing processes, the output 
of the ANN can be considered as an nxm table (two 
dimensional matrix) where n is the number of used 
cases (data records) and m is the number of Processing 
Elements (PE) in the output layer. The following table 
OUT presents the structure of an ANN potential 
output. In this case there also exists another similar 
table called DES with the actual (desired) values for 
the output neurons.  
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      The final target is the minimization of the 
differences d1i = Oi – DOi, d2i = Yi – DYi , …….Dmi = Zi – 

DZi. where i=1,….., n and the number of differences 
equals to m. 
      This paper proposes a new innovative model that 
can be used to evaluate the performance of an ANN.  
According to this model, nXm Fuzzy Sets can be 
formulated and defined. Each Fuzzy Set corresponds to 
a desired value of the ANN. Each output neuron is 
assigned a vector of Fuzzy Sets of the following type: 
VD1= {FS1 =“Values equal to DO1”, FS2 = “Values 
equal to DO2”, ……, FSn = “Values equal to DOn”}. 
This can be also denoted as follows: 
VD1= {FS1 = (O1, µ1), FS2 = (O2, µ2),  ………, FSn =  
(On, µn)}.                                                       
      This means that if the ANN has m neurons in the 
output layer, m such Vectors of Fuzzy Sets VD1, VD2,  
….., VDm will be formed. Each element iOD of the 
DES (Desired Matrix) has its corresponding FS VDi 
and each element iO of the ANN output Matrix 
belongs to the FS VDi with a Degree of Membership 
µi. 
      The Degree of Membership of each output value to 
its corresponding FS can be estimated using the 
Triangular and with the Trapezoidal MF 3.1.1 and 
3.1.2 which constitute the NANNEF’s Individual 
Triangular Membership Values (ITRIMV) and the 
NANNEF’s Individual Trapezoidal Membership 
Values (ITRAMV). Thus from the ITRIMV and from 
the ITRAMV we obtain the Trapezoidal Mean 
Membership (TRAMM) and the Triangular Mean 
Membership (TRIMM). Finally the Trapezoidal Mean 
Error=1-TRAMM and the Triangular Mean Error=1-
TRIMM is a good overall error estimator. The 
following figures 1 and 2 present clearly the 
application of the TRIAMF in the ANN output Matrix.  
The most important aspect of all is the fact that the 
Fuzzy T-Norms can be applied as conjunction 
operators (with equal or with uneven weights) when 
the output Layer contains more than one neuron. In 
this case the TRAMM and the TRIMM corresponding 
to each neuron can be added to the TRAMM and to the 
TRIMM of another neuron and the Overall Mean 
Membership (OMM) is produced. This can be 
performed under different perspectives depending on 
the logic of each T-Norm. 
 



 
Figure 1: A single application of the TRIAMF 

on the output Matrix 
 

      In the case of the TRIAMF the value c that 
corresponds to the maximum Membership value of 1 is 
equal to the desired value DOi. The following figure 2 
makes a graphical display of the TRIAMF application 
on the ANN output Matrix after the completion of an 
iteration.  

 
Figure 2: Application of  the TRIAMF for an 

element of the ANN output Matrix 
 

      It should be clarified that in the TRIAMF equation 
a should be equal to 0, X should be equal to an output 
value of the OUT matrix, c should be equal to an 
actual value of the Desired matrix and b is a value 
much higher than the desired one after which the DOM 
is equal to 0. The definition of the Linguistic “much 
higher than” [9]. 
 
5. Application of NANNEF in wood 
industry 
 
5.1. Estimating Loss factor  
 

      The NANNEF has been tested for the wood 
dielectric properties prediction which is an important 
task of wood industry [1]. More specifically an 
artificial neural network that can predict the dielectric 
properties of wood has been developed and tested by 
our research team using actual experimental data [1]. 
The optimal ANN is capable of accurately predicting 
the loss factor of two wood species not only as a 
function of ambient electro-thermal conditions but also 
as a function of basic wood chemistry. Thus, an 
important predictive tool has been created that allows 
optimization of dielectric heating and drying for many 
wood species without significant experimentation.  Of 
course their chemical composition should be known 
under variable temperatures, moisture contents and 
electric field characteristics. In wood, radio frequency 
vacuum drying [11], [12], [13] and other high 
frequency electric field heating applications such as 
veneer and finger-joint gluing and parallam 
manufacturing [17], the knowledge of the fundamental 
dielectric properties of the material such as dielectric 
constant (ε'), loss tangent (tanδ) and loss factor (ε") are 
imperative in process design, control, optimization and 
simulation.   
 

Table 1. A small sample of MV and NANNEF’s 
evaluation in ANN testing 

ANN 
Loss 

factor 

Actual 
Loss 

factor 

NANNEF’s 
Individual 

Trapezoidal 
Membership 

Values 

NANNEF’s 
Individual 
Triangular 

Membership 
Values 

0.00189 0.001856 0.99371819 0.9937119 
0.00312 0.003181 0.98603476 0.9712535 
0.00386 0.003979 0.97249853 0.9592466 
0.00458 0.004659 0.99087918 0.9780556 
0.00192 0.001979 0.9564435 0.9358696 
0.00349 0.003375 0.97045024 0.9704218 
0.00448 0.004309 0.94217161 0.9421124 
0.00539 0.005131 0.87862632 0.8785178 
0.00202 0.002126 0.91896647 0.900656 
0.00359 0.003632 0.99776085 0.9836766 
0.00461 0.00474 0.97726772 0.9646835 
0.00575 0.005703 1 0.9698718 
0.00262 0.00237 0.9489066 0.9489066 
0.00405 0.004026 1 0.9925857 
0.00529 0.005288 1 0.9989873 

 
      During the development of the ANN eleven 
variables have been used as inputs, including: the 
percentage of glucose (GLU), mannose (MAN), xylose 
(XYL), galactose (GAL), arabinose (ARA), lignin 
(LIG), extractives (EXTR), density, moisture content, 



voltage, and temperature. Only one variable was used 
as an output, namely, dielectric loss factor [1].  
      The above Table 1 shows the optimal ANN’s 
output, the desired Loss factor values and the 
NANNEF evaluation output using the TRIAMF and 
the TRAPMF. Only in two cases the DOM are equal to 
0 which means that the optimal ANN has very bad 
performance in these two predictions. On the other 
hand due to the tolerance interval the TRAPMF 
characterizes the ANN as having perfect performance 
in more cases than the TRIAMF. 
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Figure 3. Evaluation of ANN in testing with 
TRIAMF 
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 Figure 4. Evaluation of ANN in testing with 
TRAPMF 

 
It is clearly shown in table 1 that in the case of the first 
ANN, the Trapezoidal Mean Membership (TRAPMM) 
is very high in the testing phase regardless the MF 
used. However table 2 shows that the TRAPMF 
produces a TRAPMM equal to 0.930975764 which is 
higher than the TRIAMF’s 0.923964354. Also both the 
Trapezoidal Mean Error and the Triangular Mean 
Error have quite low values and they are equal to 
0.069024 and 0.076036 respectively. Finally 13 cases 
have the highest MV of 1 using the TRAPMF whereas 
only one case has a MV of 1 using the TRIAMF. 
 
 
 
 

Table 2. Mean Errors and a-cuts 

Trapezoidal Mean Error Triangular Mean Error 

0.069024 0.076036 

Trapezoidal Mean 
Membership 

Triangular Mean 
Membership 

0.930975764 0.923964354 

Triangular a-cuts aA Trapezoidal a-cuts aA 
 MV =0 MV=0 

Number of cases 2 Number of cases 2 

MV interval = [0-0.5] MV interval = [0-0.5] 
Number of cases 0 Number of cases 0 

MV interval = (0.5-0.7] MV interval = (0.5-0.7] 
Number of cases 1 Number of cases 1 

MV interval = (0.7-0.8] MV interval = (0.7-0.8] 
Number of cases 3 Number of cases 3 

MV interval = (0.8-0.9] MV interval = (0.8-0.9] 
Number of cases 4 Number of cases 4 

MV interval = (0.9-1) MV interval = (0.9-1) 
Number of cases 61 Number of cases 49 

MV= 1 MV = 1 

Number of cases 1 Number of cases 13 

72 cases 72 cases 
 

6. Employing NANNEF for ANN that 
estimate two parameters  
 
      The bending strength and stiffness, numerically 
represented by the Modulus of Rupture (MOR) and 
Modulus of Elasticity (MOE), are arguably the two 
most important mechanical properties of wood. These 
flexural properties have been shown to exhibit strong 
correlations with several inherent wood properties [1]. 
For instance, both bending stiffness and strength 
increase with density and decrease when moisture 
content and MFA increase [4]. 
      An ANN has been developed towards MOR and 
MOE estimation. The input layer consisted of four 
neurons corresponding to the four input variables, 
including Density, Moisture Content, MFA, ICV and 
forest type and the output Layer consisted of two 
neurons corresponding to the two output parameters 
MOR and MOE. It should be clarified that ICV is the 
coefficient of variation of azimuthal intensity profile 
which represents the standard deviation of intensity 
when the azimuthal diffraction profile (including 
background scattering) is normalized to an average 
intensity of unity [6] as per Equation 15. 
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      The optimal ANN used the Back Propagation 
Optimization algorithm, the Tangent Hyperbolic 
Transfer function and the Extended Delta Bar Delta 
Learning Rule, whereas the Hidden Layer had two 
sub-Layers each comprising of 10 neurons. Using the 
traditional evaluation methods the developed ANN had 
RMS Error equal to 0.2726 and R2 =0.5150 for MOR 
whereas R2 =0.6500 for MOE in the testing phase that 
determines generalization ability.  
      Using NANNEF the main advantage is that we can 
obtain two vectors of Separate Performance Indices 
and also a Unified Performance Index that is an overall 
performance evaluator. 
 

Table 3. Actual and ANN values and 
NANNEF’s evaluation for MOE 

 

Actual 
MOE 
values 

ANN 
MOE 
values 

NANNEF’s 
Individual 

Trapezoidal 
Membershi
p Values for 

MOE 

NANNEF’s 
Individual 
Triangular 
Membershi

p Values 

11162.5 14540.89 0.609774 0.60175 
12497.1 14536.13 0.727479 0.714761 
13268.6 16706.19 0.470734 0.46094 

12978 15433.15 0.64432 0.631779 
12993.3 14492.61 0.790049 0.774618 
13499.4 15446.71 0.698511 0.683169 
18113.3 15087.81 0.579837 0.564727 
19167.5 15395.65 0.541787 0.528814 
19100.8 15646.8 0.578822 0.564894 
14706.7 14571.36 1 0.961812 
13073.8 13544.87 0.947162 0.92832 
13490.4 15370.85 0.710057 0.694495 
14248.6 13446.73 0.775995 0.740167 
13967.3 15404.03 0.765817 0.74698 
17015.7 15905.55 0.834597 0.810335 
15540.2 15868.55 0.956216 0.92002 

12634 14502.53 0.746968 0.733509 
15479.3 15414.69 1 0.985033 
14007.1 14952.48 0.853539 0.832335 

 
      The above Table 3 and the following Table 4 
present a small sample of the ANN’s evaluation for the 
cases of MOE and MOR estimation using the 
Trapezoidal and the Triangular Membership functions. 
The Degree of Membership equal to one is the perfect 
evaluation index. The following Table 5, presents the 
overall DOM which serves as the final ANN 
evaluation index for both of the estimated parameters 
MOE and MOR. The fact that numerous Evaluation 

indices are produced is an advantage of the model that 
offers different evaluation approaches under various 
perspectives. 
 

Table 4. Actual and ANN values and 
NANNEF’s evaluation for MOR 

 

Actual 
MOR 
values 

ANN 
MOR 
values 

NANNEF’s 
Individual 

Trapezoidal 
Membershi
p Values for 

MOR 

NANNEF’s 
Individual 
Triangular 
Membershi
p Values for 

MOR 
73.13655 74.56785 0.967768 0.936236 
68.72508 74.87505 0.791268 0.771021 
81.29023 84.78143 0.801316 0.755742 

60.3629 80.11546 0.446832 0.439174 
79.38127 78.19641 0.987669 0.96355 
77.54022 80.00497 0.902167 0.863396 
83.83874 76.97003 0.833073 0.814178 
88.45072 79.22047 0.794901 0.77799 

84.4025 79.89063 0.900014 0.879772 
77.36379 75.49725 0.963221 0.93878 
66.44044 72.85275 0.798167 0.77997 
52.71937 71.2153 0.575576 0.568497 
51.00478 63.74026 0.722581 0.714314 
59.04941 74.65203 0.58234 0.572928 
74.17541 74.52218 1 0.983802 
68.05146 73.74924 0.813147 0.793048 
60.52219 68.78273 0.777823 0.764396 
72.87583 73.21088 1 0.985245 
62.75246 71.3038 0.753945 0.739534 

 
Table 5: NANNEF instruments application for 

aggregation between two parameters 
 

UNIFIED Overall DOM (Evaluation index) for MOE and 
MOR 

Minimum T-Norm Einstein T-Norm 
Triangular 

MF 
Trapezoidal 

MF 
Triangular 

MF 
Trapezoidal 

MF 

0.422281523 0.431234864 0.572352898 0.610112 

Drastic Product Hamacher Product 

    
Triangular 

MF 
Trapezoidal 

MF 

0.100895426 0.572353 0.61011165 

Traditional instruments values 

MOR MOE 

R2 =0.5150  R2 =0.6500  
 



7. Discussion 
     
      Using the traditional evaluation methods in the 
case of the Loss Factor ANN, the RMS Error was 
equal to 0.0382 and the R2 was equal to 0.9945. The 
NANNEF’s results agree with the ones of the 
traditional methods and they prove that the optimal 
ANN that was developed by Avramidis et al. 2006, has 
a reliable performance.  
      Furthermore the NANNEF offers an aA analysis 
that makes a very clear presentation of the ANN’s 
performance categorization. Using the aA analysis we 
know how in many cases we have total agreement 
between the ANN and the desired values and in how 
many cases we have high, low and average agreement.  
Another very important achievement of the NANNEF 
is the fact that it produces both a vector of SPI that 
offer a clearer view of the network’s performance for 
each case and also a UPI for an ANN which includes 
more than one processing elements in the output level.   
The fact that the ANN’s UPI estimation is done under 
many different perspectives (due to the different nature 
of the T-Norms Aggregation functions) is very 
important and it offers a modern and flexible approach 
towards ANN evaluation. 
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