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Abstract 
 

In this paper, we compare the inference capabilities 
of three different types of Fuzzy Cognitive Maps. A 
Fuzzy Cognitive Map is a Recurrent Artificial Neural 
Network that creates models as collections of 
concepts/neurons and the various causal relations that 
exist between these concepts/neurons. The three 
different types of Fuzzy Cognitive Maps that we study 
are the Binary, the Trivalent and the Sigmoid Fuzzy 
Cognitive Map, each of them using the corresponding 
transfer function for their neurons/concepts. 
Predictions are made by viewing dynamically the 
consequences of the various imposed scenarios. The 
prediction making capabilities are examined and 
presented using a Fuzzy Cognitive Map concerning the 
Public Health of a city. Conclusions are drawn for the 
use of the three types of Fuzzy Cognitive Maps for 
making prediction.  
 
1. Introduction to Fuzzy Cognitive Maps 
 

Fuzzy Cognitive Map (FCM) is a type of Recurrent 
Artificial Neural Network that has been introduced by 
Kosko [1], [2] based on Axelord's work on Cognitive 
Maps [3]. It combines elements of fuzzy logic and 
artificial neural networks. FCMs create models as 
collections of concepts and the various causal relations 
that exist between these concepts. The concepts are 
represented by neurons and the causal relationships by 
directed arcs between the neurons. Each arc is 
accompanied by a weight that defines the type of 
causal relation between the two concepts/neurons. The 
sign of the weight determines the positive or negative 
causal relation between the two concepts/neurons.  

Methods for deriving the weights if FCMs can be 
found in [2,3]. An example of FCM concerning public 
health is given in Figure 1. 
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Figure 1: An FCM concerning public health [4] 
 

The structure of an FCM as a Recurrent Artificial 
Neural Network is that of Figure 2. Each 
concept/neuron iC of the FCM graph is accompanied 

by a number t
iA that represents the activation level of 

concept iC  at time step t. If n is the number of FCM’s 
neurons/concepts, then the vector 

[ ]t
n

tt AAA ,...,, 21=tA  gives the state of the FCM at 
time step t. 
 

 
Figure 2: FCM’s structure as a Recurrent Artificial 
Neural Network 
 



The weight matrix W of this Artificial Neural 
Network is defined by the n×n matrix, where each of 
its element ijw equals to the weight of the arc that 

connects concept/neuron iC  with concept/neuron jC . 

All elements iiw of the weight matrix W equals to 
zero, since FCM structure does not allow any direct 
connection between a concept and itself. All other 
elements ijw  ( ji ≠ ) belong to the interval [-1,1]. 

The FCM is a discrete time system where the 
activation levels of all the concepts are simultaneously 
updated, that is the system has synchronous updating 
[5]. The new state of the system 

[ ]11
2

1
1 ,...,, ++++ = t

n
tt AAA1tA  is calculated based on 

the classical operation of the Artificial Neural 
Networks, that is by evaluating each 1+t

iA  i=1,...,n, 
according the following function that ΜcCullock and 
Pitts [6] have proposed: 
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Using weight matrices, we can say 
that ( )WAA t1t f=+ . Crucial point to the design of 
the FCM is the selection of the transfer function f of 
the neurons, which determines the values that 
activation level t

iA  can take. The transfer functions 
that are most frequently used are: 

 
1)  The sign function [7,8, 9] 
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The use of this function allows the activation level 
of each neuron to be either 0 or 1, leading to the 
development of binary FCMs, where each concept is 
either activated or not activated. 

 
2) The trivalent function [7, 8] 
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In this case, three state FCMs are created. When the 
activation level of concept iC equals 1, it means that 
this concept increases, when the activation level equals 
-1, it means that the concept decreases, and when the 

activation level equals to 0, it means that the concept 
remain stable. 

 
3) The sigmoid function with saturation levels -1 

and 1 [8, 10]. 
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The activation level can now take any value from 
the interval [-1,1] and so continuous state FCMs are 
created. 

 
A binary FCM of n concept has n2  different states 

[ ]t
n

tt AAA ,...,, 21 and moves at the corners of the 
n]1,0[  hypercube. A trivalent FCM has 3n

 different 
states and moves at the corners, at the middle of the 
edges, the center of the sides and the center of the 

n]1,1[−  hypercube. On the contrary, if the FCM has 
continuous state values, like the trivalent FCM, then 
the system has infinite number of different states and 
moves freely across the whole space of the 

n]1,1[− hypercube. In this case, the study of the 
dynamical behavior of the FCM is the study of the 
trace of the system to the n]1,1[−  hypercube that the 
system defines. 

 
2. Dynamical Behavior of FCMs  
 

Conclusions about the model that the FCM 
represents, are drawn by the study of the dynamical 
behavior of the FCM system. This resembles the recall 
phase of the ANN, where the ANN is asked to behave 
according to the knowledge that has been encoded on 
the weights of its connections. The inference 
mechanism of the FCM starts with the initialization of 
the system [2]. This is done by setting specific values 
to the activation level of each FCM’s concept, based 
either on the opinions of the experts on the current 
state of the concepts of the FCM model, or based on a 
specific scenario of which the consequences we want 
FCM to predict. After that, the concepts are free to 
interact. The activation level of each concept 
influences the other concepts according to the 
weighted connections that exist between them. This 
interaction continues until one of the following 
happens: 

 



1) An equilibrium point is found. In this case, 
∃ t

i
1t

i0 AA :Nt =∈ + , n1,...,i ,t t 0 =≥∀ . The 

state 0tA  is the final equilibrium point of the system 
and it is the state to which, the various positive and 
negative interactions between the neurons/concepts of 
the FCM, have reached equilibrium. 

 2) A limit cycle behavior is reached [5, 11]. In this 
case, ∃ t

i
Tt

i0 AA :NT,t =∈ + , n1,...,i ,t t 0 =≥∀ . 
The system exhibit a periodic behavior where after a 
certain number of time steps, equal to the period T of 
the system, the system reaches the same state. 

3)  The system exhibit a chaotic behavior [11,12]. 
 
The FCM system is deterministic and so, if it 

reaches a state to which it have been previously, the 
system will enter a closed orbit which will always 
repeat. In the case of the binary FCM, since the system 
has only n2 different state, it is apparent that after a 
maximum of n2  time steps, it will return to a 
previously visited state. So binary FCM can reach a 
equilibrium point or a limit cycle behavior (of 
maximum period n2 ) but never chaotic behavior. For 
the same reason, a trivalent FCM can never exhibit 
chaotic behavior but only reach an equilibrium point or 
a limit cycle behavior with maximum length n3 . On 
the contrary, a continuous state FCM can additionally 
exhibit also chaotic behavior. 

 
The equilibrium point and the limit cycles that the 

FCM reach correspond to hidden patterns that are 
encoded in the connections present at the FCM graph 
[9]. The encoding of these patterns in the FCM 
structure corresponds to the classical training 
procedure of the ANNs and is an open research 
problem.  
 
3. Inference procedure in Binary and 
Trivalent FCMs 
 

To study the inference procedure of the binary and 
trivalent FCMs, we will use the FCM of Figure 1. 
Generally, FCMs reply to “what-if” type of questions. 
For example, we can assume that there is increase to 
the city’s “Population” ( 1C =1), increase to the 

“Migration” into the city ( 2C =1), and increase to its 

“Modernization” ( 3C =1). According to these, the 
initialization of the system must be done with the 
vector [1 1 1 0 0 0 0]. Imposing this data to the binary 
FCM, the dynamical behavior is the following: 

 
Time step 

t 
Population 

of city 
Migration 
 into city 

Modernization Garbage 
per area 

0 1 1 1 0 
1 1 1 1 1 
2 1 1 1 1 
3 1 1 1 1 

Time step 
t 

Sanitation 
Facilities 

Number of 
diseases per 

1000 resident 

Bacteria per 
area 

 

0 0 0 0  
1 1 0 0  
2 1 0 0  
3 1 0 0  

 
It can be noticed that the system, after a short period 

of 3 time steps, it reached an equilibrium point. At that 
point, there is also increase to the “Garbage per area” 
and the “Sanitation facilities”. An explanation to the 
above is the following: The increase of the “Population 
of the city” led to an increase of the “Garbage per 
area”. Moreover, the increase of the “Modernization” 
led to an increase to the provided “Sanitation 
Facilities”. “Bacteria per area” are not increased, 
although there is an increase of the “Population of the 
city”, because of the improvement to the “Sanitation 
Facilities”. This also explains why “Number of 
diseases” is not increased. 

 
It should be stressed that the value 0 at concepts 

“Bacteria per area” and “Number of diseases” means 
“no increase”. Binary FCM does not allow us to 
separate the case where a concept is stable, from the 
case where a concept decreases. A solution comes with 
use of trivalent FCMs. 

 
Initializing the trivalent FCMs with the same 

values, the system evolves in the following way: 
 

Time step 
t 

Population 
of city 

Migration 
 into city 

Modernization Garbage 
per area 

0 1 1 1 0 
1 1 1 1 1 
2 1 1 1 1 
3 1 1 1 1 
4 1 1 1 1 

Time step 
t 

Sanitation 
Facilities 

Number of 
diseases per 

1000 resident 

Bacteria per 
area 

 

0 0 0 0  
1 1 0 0  
2 1 -1 0  
3 1 -1 0  
4 1 -1 0  

 
Once again the system reached quickly an 

equilibrium point. The final stable state is similar with 



that of the binary FCM with the difference that concept 
“Number of diseases” has activation value -1 and so it 
appears to decrease. So the additional conclusion to 
those of the binary FCM is that the “Number of 
diseases” is decreasing while the “Bacteria per area” 
remain stable. 

 
The increased representing capabilities of the 

trivalent FCM when compared with the binary FCM, 
are also illustrated with the following scenario. Let’s 
assume that due to some external to the FCM systems 
reasons, there is an increase to the “Sanitation 
facilities” of the city ( 16 =C ). Using the binary FCM, 
no increase is predicted to any other concept of the 
FCM, since the system reaches immediately the 
state 1A =[0 0 0 0 0 0 0], where all concepts are stable 
and not increasing. On the contrary, the trivalent FCM 
has the following behavior: 

 
Time step  

t 
Population  

of city 
Migration 
 into city 

Modernization Garbage 
per area 

0 0 0 0 0 
1 -1 0 0 0 
2 0 0 -1 -1 
3 0 -1 0 0 
4 -1 0 0 0 
5 -1 0 -1 -1 
6 -1 -1 -1 -1 
7 -1 -1 -1 -1 
8 -1 -1 -1 -1 

Time step  
t 

Sanitation 
Facilities 

Number of 
diseases per 

1000 resident 

Bacteria per 
area 

 

0 0 1 0  
1 0 0 0  
2 0 0 0  
3 -1 0 -1  
4 0 1 1  
5 0 1 0  
6 -1 0 -1  
7 -1 1 0  
8 -1 1 0  

 
 We see that after 8 time steps, the system reached 

an equilibrium point that is different from that reached 
by the binary FCM. The trivalent FCM predicts 
decrease of the “Population of the city”, leading also to 
a decrease of the “Modernization” of the city, which in 
turns lead to a decrease of the “Migration into city”. 
The decrease of the “Modernization” also tends to 
increase the “Bacteria per area”. But the decrease of 
the “Population” leads to a decrease of the “Garbage 
per area” which in turn leads to the increase of the 
“Bacteria per area”. These two opposite influences 
neutralize one another and as a result the “Bacteria per 

area” remain stable. Although this happens, the 
“Number of diseases” is increasing because of the 
decrease of the “Sanitation facilities”. All the above 
can not be predicted by binary FCM since it can not 
separate the decrease of a concept from the case where 
the concept remains stable. 

 
Moreover, in trivalent FCMs, we can ask the system 

to predict the consequences of a decrease of a concept. 
For example, we can examine the predictions for the 
case where there is an increase to the “Population of 
the city” and a decrease to the “Sanitation Facilities”. 
The evolution of the system is the following: 

 
Time step 

t 
Population 

of city 
Migration 
 into city 

Modernization Garbage 
per area 

0 1 0 0 0 
1 0 0 1 1 
2 -1 1 0 0 
3 -1 0 -1 -1 
4 1 -1 -1 -1 
5 1 -1 1 1 
6 -1 1 1 1 
7 -1 1 -1 -1 
8 1 -1 -1 -1 
9 1 -1 1 1 
10 -1 1 1 1 
11 -1 1 -1 -1 
12 1 -1 -1 -1 

Time step 
t 

Sanitation 
Facilities 

Number of 
diseases per 

1000 resident 

Bacteria per 
area 

 

0 -1 0 0  
1 0 1 1  
2 1 1 1  
3 0 -1 -1  
4 -1 -1 -1  
5 -1 1 0  
6 1 1 1  
7 1 -1 0  
8 -1 -1 -1  
9 -1 1 0  
10 1 1 1  
11 1 -1 0  
12 -1 1 0  

 
It can be noticed that the state of the trivalent FCM 

at time step 4, 8 and 12 is the same. The same applies 
for time steps 5 and 9, time steps 6 and 10 and also 
time steps 7 and 11. In other words, the system reached 
a limit cycle behavior with period of 4 time steps 
which will never stop, unless it is influenced by an 
external, to the FCM system, factor. The four 
successive state of the limit cycle are the following: 

 
 
 



1A =[1 -1-1 -1 -1 -1 -1] 
2A =[1 -1 1 1 -1 1 0] 
3A =[-1 1 1 1 1 1 1] 
4A =[-1 1 -1 -1 1 -1 0] 

 
We can noticed that all concepts in some of the 

states above increase and in some decrease. Moreover, 
state 3A is the opposite of state 1A , and 4A is the 
opposite of state 2A . These mean that the city does not 
reach a stable situation but changes periodically 
reaching again and again the same or the exact 
opposite states. It can be concluded that an increase to 
the “Population of the city” and a decrease to the 
“Sanitation Facilities” will lead the city to a series of 
periodic increases and decreases of the FCM’s 
concepts, meaning cycles in the status of the city. 

 
A technique that is frequently used by FCM 

researchers [7, 9, 13] is that of the restrain of the value 
of a concept to a certain degree. In this case, we study 
the consequences of the constant increase or constant 
decrease of a concept, to all other concepts of the 
FCM. We can apply this technique in our FCM, 
assuming that we want to examine what the system 
predicts for a scenario where the “Sanitation Facilities” 
of the city constantly decreases and the “Population” 
of the city initially was increasing. To do that, the 
concept “Sanitation Facilities” is set to -1 for the whole 
transition phase of the system towards equilibrium. 
The transition phase is the following: 

 
Time step  

t 
Population  

of city 
Migration 
 into city 

Modernization Garbage 
per area 

0 1 0 0 0 
1 0 0 1 1 
2 -1 1 0 0 
3 -1 0 -1 -1 
4 -1 -1 -1 -1 
5 -1 -1 -1 -1 

Time step  
t 

Sanitation 
Facilities 

Number of 
diseases per 

1000 resident 

Bacteria per 
area 

 

0 -1 0 0  
1 -1 1 1  
2 -1 1 1  
3 -1 1 1  
4 -1 1 0  
5 -1 1 0  

 
As it is shown above, the system reaches an 

equilibrium point and not a limit cycle. From the state 
of the system at equilibrium, we can conclude that the 
constant decrease of the “Sanitation Facilities” of the 
city leads to a decrease of the “Population”, the 

“Modernization”, the “Migration into city” and the 
“Garbage per area”. The decrease of the “Garbage” 
does not lead to a decrease of the number of “Bacteria” 
which remains stable because of the influence of the 
decrease of the “Sanitation Facilities”. Only the 
“Number of diseases per 1000 residents” increases. It 
should be stressed that this technique resembles the 
existence of bias to ANN, since having a concept 
constantly activated to certain level, influences all 
other concepts that are connected with it, in a similar 
manner with that of steady bias. 
 
3.1. Studying the Number of different 
equilibriums that a Binary or Trivalent FCM 
can reach 

 
Both binary and trivalent FCMs can exhibit a 

different number of limit cycles or equilibrium points 
(which also are limit cycles of period 1). To determine 
all the different limit cycles that such FCMs can reach, 
we must examine the behavior of the system for all 
different initial states of the FCM. For the 7-concept 
FCM of Figure 1, there are 72 =128 different initial 
states for the binary FCM and 73 =2187 for the 
trivalent FCM. To examine all these case, we 
developed a computer program written in C 
programming language, that gives the different limit 
cycles that the FCM reaches, accompanied with the 
number of different initial states that reach each of 
them. For the FCM of Figure 1, the computer program 
gave the following results: 

 

Behavior Final State 

Length 
of 

limit 
cycle 

Number of initial 
states that reach 
this final state 

Α [0 0 0 0 0 0 0] 1 36 
Β [1 1 1 1 1 0 0] 1 6 

C 
[1 0 0 0 0 0 0] 
[0 0 1 1 0 0 0] 
[0 1 0 0 1 0 1] 

3 54 

D 
[0 1 1 1 1 0 1] 
[1 1 0 0 1 0 0] 
[1 0 1 1 0 0 0] 

3 32 

 
From the above, we see that there are two 

equilibrium point and two limit cycles of period 3. For 
the case of the trivalent FCM, the corresponding 
results are the following: 

 
 
 
 



Behavior Final State 
Length of 

limit 
cycle 

Number of 
initial states 

that reach this 
final state 

Α [0 0 0 0 0 0 0] 1 1 
Β [1 -1 -1 -1 -1 1 0] 1 279 
C [1 1 1 1 1 -1 0] 1 279 

D [-1 -1 1 1 -1 -1 -1] 
[1 1 -1 -1 1 1 1] 2 104 

E 

[-1 1 -1 -1 1 1 1] 
[1 -1 1 1 -1 1 0] 

[1 -1 -1 -1 -1 -1 -1] 
[ -1 -1 -1 -1 1 0] 

4 470 

F 

[1 1 1 1 1 1 1] 
[1 1 -1-1 1 -1 0] 

[1 -1 1 1 -1 -1 -1] 
[-1 1 1 1 1 -1 0] 

4 470 

G 

[-1 1 1 1 1 1 1] 
[1 -1 1 1 -1 1 0] 

[1 -1 -1 -1 -1 -1 -1] 
[-1 1 -1 -1 1 -1 0] 

4 584 

 
In this case there are three equilibrium points, one 

limit cycle with period 2 and 3 limit cycles with period 
4. We notice that, as we were expecting, trivalent FCM 
has more complex and wealthy dynamical behavior 
than that of binary FCM. We should also mention, that 
the above results are useful, since they shown all the 
different dynamical behavior that the FCM can exhibit. 
In this way, we can lead the system to the desired 
behavior, choosing the correct initial state, leading to a 
strategic plan for the problem that FCM models. 
Moreover, we can identify the various limit cycles that 
the FCM systems can reach and so examine the cycles 
that for example a city’s public health can enter. 
 
4. Inference procedure in Sigmoid FCMs 
 

In the case of the sigmoid FCM, the activation level 
of the concepts are in the interval [-1,1] and so the 
initialization of the system can be done with values 
from the whole interval [-1,1]. Imposing the first 
scenario that we used for the binary and trivalent FCM, 
we initialize sigmoid FCM with a “big” increase of 
city’s “Population” ( 0

1A =0.8), “medium” increase to 

“Migration into city” ( 0
2A =0.5) and a “small” increase 

of the “Modernization” ( 0
3A =0.3). The system, after a 

transition phase that is shown in Figure 3, reaches an 
equilibrium point. The initial and the final state of the 
system are the following: 

 
 
 

Time step 
t 

Population 
of city 

Migration 
 into city 

Modernization Garbage 
per area 

0 0.8 0.5 0.3 0 
24 0.742 0.888 0.805 0.931 

Time step 
t 

Sanitation 
Facilities 

Number of 
diseases per 

1000 resident 

Bacteria per 
area 

 

0 0 0 0  
24 0.948 -0.976 -0.037  

 
We can notice that qualitatively, the conclusion is 

the same with that of the trivalent FCM, with all 
concepts to be positively activated, except the 
“Number of diseases” that is negative and “Bacteria 
per area” that is close to zero. The advantage of the use 
of the sigmoid FCM is that now we have an indication 
of the degree of increase or decrease of the FCM’s 
concepts. 
 

 
Figure 3: Transition phase of sigmoid FCM having 

initial state 0
1A =0.8, 0

2A =0.5, 0
3A =0.3. 

 
We can also impose the scenario that we have 

imposed to trivalent FCM and it reached a limit cycle 
behavior. In that scenario, we had increase to the 
“Population of the city” and decrease to the “Sanitation 
facilities”. Since in sigmoid FCMs, also the degree of 
these increases and decreases can be expressed, we 
introduce the scenario that initially there is a “big” 

increase to the “population” (
0
1A =0.8) and “medium” 

decrease in the “Sanitation facilities” (
0
5A =-0.5). The 

dynamical behavior of the sigmoid FCM is shown in 
Figure 4, where we can notice that, after 45 time steps, 
it finally reached an equilibrium point. The initial and 
final state of the sigmoid FCM are the following: 

 
 



Time step  
t 

Population  
of city 

Migration 
 into city 

Modernization Garbage 
per area 

0 0.8 0 0 0 
45 -0.742 -0.888 -0.805 -0.931 

Time step  
t 

Sanitation 
Facilities 

Number of 
diseases per 

1000 resident 

Bacteria per 
area 

 

0 -0.5 0 0  
45 -0.948 0.976 0.037  

 

 
Figure 4: Transition phase of sigmoid FCM having 

initial state 0
1A =0.8, 0

5A =-0.5. 
 

 This dynamical behavior is different from the 
periodic behavior that the trivalent FCM exhibited. We 
can also notice that it reaches the exactly opposite 
equilibrium point from that of Figure 3. This happens 
because now the weights of the arcs between the 
neurons of the FCM play a much more important role 
to that played in binary or trivalent FCMs, since these 
weights can, in more detail, lead or not to the 
neutralization of the positive and negative influences a 
concept/neuron receives from all other neurons.  
 

To illustrate that, we can impose the same scenario 
of Figure 4, with only one change. The initial decrease 
of the “Sanitation facilities” from “medium” ( 0

5A =-

0.5) is changed to “very small” ( 0
5A =-0.1). The system 

exhibits the dynamical behavior of Figure 5.  
 
 
 
 
 
 

 
Figure 5: Transition phase of sigmoid FCM having 

initial state 0
1A =0.8, 0

5A =-0.1. 
 

After a transition phase of 57 time steps, sigmoid 
FCM reached an equilibrium point. The initial and the 
final state of the sigmoid FCM are the following: 

 
Time step 

t 
Population 

of city 
Migration 
 into city 

Modernization Garbage 
per area 

0 0.8 0 0 0 
57 0.742 0.888 0.805 0.931 

Time step 
t 

Sanitation 
Facilities 

Number of 
diseases per 

1000 resident 

Bacteria per 
area 

 

0 -0.1 0 0  
57 0.948 -0.976 -0.037  

 
It can be noticed that this equilibrium point is the 

opposite of that reached in the case of Figure 4. This 
shows that a small change in the initialization of the 
system can dramatically change its final equilibrium 
state and also proves that the advanced representing 
capabilities of sigmoid FCMs leads to better prediction 
capabilities, with the neuron’s/concept’s activation to 
be in the whole interval [-1,1]. 
 
5. Summary - Conclusions 
 

 After a short introduction to Fuzzy Cognitive Maps 
and their dynamical behavior, the inference procedure 
for Binary, Trivalent and Sigmoid FCMs is presented 
using an FCM concerning the Public Health of a city. 
Various scenarios have been imposed and simulated 
and conclusions are drawn based on the final state that 
FCM reached. Comparing the inference capabilities of 
these three types of FCMs, we draw the following 
conclusions: 

• Binary, Trivalent and Sigmoid FCMs have 
inference capabilities. 



• Binary FCMs can only represent an increase 
of a concept or represent a stable concept but 
lack the capability of representing a decrease 
of a concept. 

• Trivalent and Sigmoid FCMs can represent 
increase or decrease of a concept and also 
represent a stable concept.  

• Binary and Trivalent FCMs can not represent 
the degree of an increase or a decrease of a 
concept. 

• Sigmoid FCMs, allowing neuron’s activation 
level to be in the whole interval [-1,1], can 
represent also the degree of an increase or a 
decrease of a concept. 

• In Sigmoid FCMs, small changes to their 
initial state can lead to a dramatic change to 
the final state of the FCM.  

 
We can conclude that FCMs can be used as a useful 

tool for making inference, especially in cases of 
problems with increased uncertainty and fuzziness. 
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