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Abstract

Huge amounts of operation data, including system
logs, are being collected from communication
networks. System operators and developers need easy
to use and robust decision support tools based on
these data. One of their key applications is to detect
anomalous phenomena of the network. We present an
anomaly detection method that describes the normal
states of the system with a self organizing map (SOM)
identified from the data. Anomalous behavior is
specified as one in which the data deviate from
clustered SOM nodes by more than a threshold.
Instead of one global threshold, we use local
thresholds. Threshold to use depends on the set of
close by nodes according to how much variation the
identification data have around the nodes. Our
anomaly detection method can be applied both in on-
line monitoring and in analysis of history data.

1. Introduction

The number of security tools and their complexity
is rapidly growing. They produce a growing number of
logs that are collected and stored. It is impossible to
analyze all the data manually. Therefore, automatic
methods are needed to scan the data sets and detect the
most interesting or suspicious parts of the data. These
potentially interesting data are then to be examined by
human expert.

Detection of anomalies or outliers is important in
log data analysis. Locating rare or suspicious parts of
the data can reveal new valuable information from the
system. As Kruskal wrote in 1960 [1]: An apparently
wild (or otherwise anomalous) observation is a signal
that says: "Here is something from which we may
learn a lesson, perhaps of a kind not anticipated
beforehand, and perhaps more important than the
main object of the study.".

Outliers can be errors or signs of otherwise
undesired performance and, they should be detected as

soon as possible. Logging data are available from a
period of time in history. The data usually include
samples from normal states as well as abnormal
situations. With such data we have to assume that the
vast majority of the data are from normal functionality
and the rare states present some sort of anomalies or
errors.

A general definition for an outlier was given by
Hawkins [2]: An outlier is an observation that
deviates so much from other observations as to arouse
suspicion that it was generated by a different
mechanism. This definition is very extensive but it
gives no guidelines how to determine whether an
observation is an outlier or not.

Various statistical methods have been used in
outlier detection [7]. For online monitoring purposes
there are specific tests in statistical process control
(SPC) [8]. These are mostly univariate methods and
rely on the knowledge of the underlying distribution.
Multivariate SPC methods [9] also assume
multinormal distributions. Log activity counters,
however, do not usually follow any known
distribution. Therefore, these methods can not be
applied to our problem.

ICA (Independent Component Analysis) has been
applied for MSPC in order to perform better with
nonnormally distributed variables [10]. Knorr et al.
present notion of distance based outliers [11]. This
requires no assumptions of distribution, but is based
on the distances between the data samples.

All the methods mentioned above are global in a
sense that they treat all the data set as one group. If
the data are clustered, they may fail completely.
Definition of local outliers by Breunig et al. [3] takes
the clustering structure of the data into account. Their
method detects the degree of a sample being an outlier
in the local neighborhood.

Höglund et al. [4] presents an anomaly detection
method based on quantization errors of self organizing
map (SOM) [12]. This method is independent of the
distribution and cluster structure of the data since the
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SOM approximates the data. Due to effective SOM
algorithm, it can be used also with large data sets.
This method works well in most cases. However it has
shortcomings if the data are not homogenous and
doesn’t have constant variance. The global threshold
is likely to be too low in those parts of the data space,
where the natural variation is large, thus producing
false alarms. On the other hand, where the natural
variance is low, the global threshold tends to be to
high, leaving locally anomalous samples undetected.

We have developed an improvement to that method
to emphasize the local characteristics of the data. We
cluster the rest of the SOM nodes to groups and
calculate thresholds for each group separately. This
way we have more sensitivity locally where the data
have less variance. At the same time number of false
positives can be reduced in those parts of the data
space where there is larger variance. In addition to
detecting individual samples, this method can reveal
new states that are rare, but contain too many samples
to be detected as outliers. Such cases can be a new
unseen behavior in the process to learn about, or
caused by a longer lasting error and require attention.

In this paper we present the original and the
improved algorithms. Main features of the methods
are shown with a synthetic example. Finally use cases
are presented. The first case is to analyze history data
to find anomalous samples and suspicious groups. The
second case applies the identified anomaly detection
model to a new data to find out whether it complies
with the previous behavior of the system. The
performance of the original and our improved method
are compared in this use case. The second use case is
then repeated with another data set and the
performance of the methods is discussed.

2. Method description

Our goal was to improve the anomaly detection
method by Höglund et. al. [4]. Our improved method
detects local distance based outliers. In this
section/chapter we first describe the original method
and after that, we introduce the improved version.

2.1 Original

The original method is based on quantization errors
of a SOM. Reference data are used to train 1
dimensional SOM, which is more flexible than 2-D.
Quantization error of the data samples are compared
to a threshold that is a predefined quantile of the
quntization error in training data. Samples exceeding

the threshold are labeled as anomalous to be further
examined by human experts. The basic idea of the
algorithm is listed step by step.

1  Fit  a  SOM  to  a  reference  data  set  of  n
samples, drop out nodes with no hits

2 Calculate distances D1 …  Dn to  BMUs
(quantization errors) for the reference data. A
predefined percentile is used as anomaly threshold

3 For a sample to test calculate distance Dn+1
from its BMU, considered as anomaly if it exceeds the
threshold

An example was generated to visualize the method.
Figure 1 shows a 2 dimensional example case. The
blue dots are the data. The data set consists of three
groups. Each group contains gaussian random samples
with similar variances in a group and the means close
to  each  others.  Group  1  has  small  variance,  group  2
had medium variance and group 3 has largest
variance. The small red circles, connected by line, are
the SOM nodes after training. The larger black circles
present the anomaly threshold, which was selected to
be 95th percentile of the quantization errors. Any data
points outside these circles are assumed to be
anomalies, marked with pentagrams.

Group 1

Group 2

Group 3

Figure 1 Scatter plot of the generated
example data with anomaly thresholds
Figure 1 demonstrates the ability of the SOM to

approximate the data space regardless of the
distribution or the clustering structure. Especially 1-
dimensional line, instead of the more used 2-
dimensional grid, is very flexible and useful for this
purpose. The original method uses one global
threshold for anomaly detection. That makes the
anomaly threshold circles equal in size around the
data space. Therefore in this example, most of the
detected anomalies are located in group 3, which has
the largest variance. Only one sample close to group 2
is considered an anomaly.



2.2. Improved

In order to further emphasize the local structure of
the data, we introduce local thresholds. This takes into
account also the local variance of the data.

We form groups of SOM nodes and calculate a
threshold for each group. Groups are created by
clustering the SOM code vectors. The algorithm:

1 Train SOM and drop out nodes that have less
than a specified number of hits

2 Cluster the code vectors, these clusters will be
called reference groups later on.

3 Set anomaly threshold to predefined
percentile of the distances from BMUs (quantization
error) in each reference group.

4 For a sample to test calculate distance Dn+1
from its BMU, considered as anomaly if it exceeds the
local threshold

This way we have higher threshold in those parts of
the space, where samples are deviated more from
BMUs.

When new data are available, the BMU and the
distance from BMU are calculated for each data
sample. The distance is compared to the threshold in
that reference group which the BMU belong in. If the
threshold is exceeded, the sample is labeled as
anomaly.

Results of this method for the same generated
example in 2-D are presented in Figure 2. The
anomaly threshold is calculated for each group. The
threshold is larger where the data have more variation
and smaller in the parts of the data space, where the
there are more dense clusters.

Group 1

Group 2

Group 3

Figure 2 Anomaly thresholds for each
reference group

Now the sizes of the threshold circles vary
according to the variance of the data. There are fewer
anomalies detected in group 3 than with the original
method. Thus the risk of false positive detections is
reduced in those parts of the data space, where the
natural variance of the data is higher. At the same
time, there are more detected anomalies in groups 1
and 2. The sensitivity of the method is locally adapted
to the variation in the data.

Figure 3 shows the histograms of the quantization
errors in different groups. The detection thresholds in
each group are marked with a vertical line. As can be
seen, the threshold varies from 0.57 in the group 1 to
1.33 in the group 3.
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Figure 3 Histograms of the quantization
errors

3. Results in use cases

The method has been tested with two data sets from
a network used for new mobile technology field tests.
The data have been collected from network
management system servers. The collected data
contain information about the automatic system
processes and manual operator activity. Thus, it can be
used for monitoring system behavior for maintenance
purposes and for searching for security incidents in
security monitoring.



In networks a major system malfunction causes a
clear sign to system logs. Some processes can either
begin to produce huge amounts log entries or they can
stop logging. In both cases the resulting logging
activity is anomalous when compared to the normal
logging behavior that changes in quite static cycles.
Also in security monitoring all anomalies in system
component behavior or user activity or appearance of
new software may be signs of an incident.

We have used the method for two types of analysis
on two data sets. First we have analyzed the reference
data by training a SOM with it and by clustering the
SOM nodes. There have been 7 groups of SOM nodes
in both data sets. The groups represent common
system states that can be analyzed, described and
named. The SOM nodes represent 95% of the data.
The rare states are presented as anomalies that differ
from all the groups. Their number is quite low, which
enables us to analyze them manually. This kind of
analysis can be used, for example, for periodical audits
of the systems or on-demand analysis of the system
history, where we suspect that, for example, a security
incident has taken place.

The other type of analysis that we have done, is the
comparison of test data set against the previously
identified model. This has resulted in a set of
anomalies that are analyzed further. This type of
analysis can be used to do continuous monitoring of a
system. All anomalous data points might or might not
be signs of something interesting that must be
analyzed further.

In analysis we have used variables that record
logging activity level of system components and
functions. 7 variables were available in the data set 1
and 8 variables in the data set 2.

These examples simulate real world cases. We have
the previously collected reference data to calculate the
scaling parameters and to tune the anomaly detection
model. The model is then used to examine the
performance of the system and to detect potential
problems later on.

The examples represent a real life situation also in
a sense that there is no information available about
whether a sample is truly anomalous or not. Thus
there are no “right results”. The method is aimed to
find the most suspicious parts of the data for the user
for further study.

3.1 Preprocessing

In anomaly detection, the scaling plays very
important part. Scaling defines more or less what kind

of anomalies will be detected [5, 6]. Proper scaling
should make the variables equal in their importance in
the problem they are used in.

All multivariate methods based on distances or
variance, are very sensitive to scaling. Variables with
larger variance dominate in the methods. It is common
to scale all the variables to zero mean and unit
variance. This is rarely the best possible choice.
Variables with small variance are amplified and
therefore could be overvalued in the analysis. Also the
noise is amplified. At the same time the variables with
high variance are attenuated and possibly underrated
in the analysis.

Log data consist of event counts. Significance of a
difference in counts depends on the total number, the
value of a variable. A difference of 2 events, for
example is more significant if there are 10 events
altogether, than 2 events of total 1000 events. We use
a robust logarithmic scaling for log data that preserves
the importance of the variables.

The basic normalization is done by subtracting the
mean and dividing by the standard deviation. Our
scaling first takes a natural logarithm of the variable
plus one and then divides by a robust standard
deviation.

,)1ln(
log s

xx s

where s = std{ln(x+1) | x > 0, x < q99}
and q99 refers to 0.99 quantile of the variable x.
Adding one to the variable eliminates the need to

separately handle the zeros in the data. Now zeros will
remain zeros instead of minus infinity. This also
separates ones and zeros in original scale, since values
of one will be scaled to ln(2) instead of ln(1), which
equals zero. The standard deviation is calculated
ignoring zeros and 1% from the upper tail.

Finally the mean is subtracted.

}{ loglog ssscaled xmeanxx
The following figure shows an example of the

difference between normalization and the logarithmic
scaling applied to a variable that has peaks and
smaller scale variation. The normalized scaling leaves
high peaks and attenuates the smaller scale variation
so that any changes within that are hard to detect. The
logarithmic scaling attenuates the peaks, which still
remain detectable, but leaves more variation to the
smaller scale.
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Figure 4 Example of scaling, normalized
and log scaled

3.2 Use case 1, the reference data on data set 1

Reference data set 1 contain 7 variables, 33 days
hourly samples, total of 792 samples.

First we train a 1 dimensional SOM using the SOM
Toolbox for Matlab [15]. We use N/5 nodes, where N
is the number of samples in the reference data. Nodes
that have less than 3 hits are dropped out. In the
original method nodes with no hits are dropped. The
nodes are then clustered to form reference groups. We
use hierarchical clustering with ward linkage [16].
The number of clusters is determined by maximum
Davies-Bouldin index [14]. We limit the number
between 3 and 10. The anomaly threshold for each
group is determined as the 95th percentile of the
distances from the BMU in each reference group.

In this case we end up with a SOM of 121 nodes
and 7 reference groups. The histograms of the
distances from BMUs are presented in the following
figure. The first histogram at top shows the Distances
of  the  whole  data  set  and  the  global  threshold.  The
following histograms are for each of the 7 reference
groups.
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Figure 5 Histograms of the quantization
errors in all the data on top and in each

reference group below.
Here we find the small groups 1, 2 and 3, where the

size of a reference group refers to the number of
samples in the reference data associated to the group.
They should be studied in case they present a
repeating error or otherwise undesired state.

Centroids of the reference groups are presented in
Figure 6. Groups 1 and 2 are clearly distinguished
from others. Variable 5 has very high values in both
groups. There groups are separated from each others
by variable 2, which is high in group 2 and variable 6,
which is low in group 2.

In  group  3,  variable  3  has  high  values,  which
distinguishes it from all the other groups.
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Figure 6 Bar plot of reference group centroids.
Component planes are a common way to visualize

2-dimesional SOM. A component plane presents the
SOM grid for each variable and the values of the
variables in each node of the grid are color coded on
the plane. In this case, when we have 1-dimensional
SOM, the component planes can be replaced by line
plots as in Figure 7. Each line plot presents the values
of the SOM code vectors corresponding to each
variable.  The  x  axis  is  the  number  of  the  SOM  node
along the one dimensional “grid”.

Clustering of the code vectors in 2-D SOM is
usually presented color coded or with markers on
another plane [17]. In this 1-D case the clustering
information can be integrated into the line plots. The
clusters are separated by vertical lines. The numbers of

the clusters from 1 to 7 are below variable 1 at the
bottom of the figure.

Groups 1 and 2 are located at the end of the SOM
line. They are clearly the only ones having high values
in variable 5. These states of the system are common
enough not to be detected as anomalies. But still rare
enough, so that they should be examined further.
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Figure 7 Code vectors of the SOM with
reference groups numbered below.

The end users in real life application don’t want to
see the anything but the essential. Plain time series
plot with the detected outliers is often useful for the
system expert. Figure 8 gives an example of a time
series. The anomalies detected in the reference data
are highlighted with a horizontal line and a star. The
most interesting anomalies can then be further studied
from the original logs.
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Figure 8 Time series plot of the reference data, outliers marked with stars
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Figure 9 Time series zoomed in for one day,
reference groups of samples shown by markers
Figure 9 shows the time series plot zoomed in for a

one day period. The reference groups, where each
sample belongs to, are coded by markers shown below.

3.3 Use case 2, the test data on data set 1
In the second use case we have a new data set, test

data, recorded after the anomaly detection model was
identified. It contains 9 days, 216 samples of hourly
data right after the reference data set. The test data are
scaled the same way than the reference data, using the
scale factors calculated from the reference data.

The BMU is searched for each sample of the test
data. The BMU defines the reference group and the
anomaly threshold to use for each sample.

Table 1 Number of samples and detected
anomalies in test data associated to reference
groups

Reference
Group

Number of
samples in test

data

Anomalies in
test data

1 1 0
2 0 0
3 9 0
4 36 5
5 3 0
6 129 35
7 38 5

Table 1 lists the number of samples of the test data
that are assigned to each reference group together with
the number of samples detected as anomalies. Majority
of  the  data  are  assigned  to  group  6.  There  are  also  a
lot of anomalies in that group.

Next we want to find out why there are so many
anomalies. Figure 10 shows box plots [13] of the error
vectors from the anomalous samples in group 6. Error
vectors gives distance between data sample and its
BMU code vector. The most obvious reason for
anomalies is variable 4, which is far on the negative
side. This indicates that in all these samples this
variable has much lower values than the
corresponding code vector in their BMU nodes.
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Figure 10 Box plot of the quantization error of
the anomalies in test data, which are assigned to

reference group 6.

Figure 11 compares the test data that was assigned
to the group 6 and the code vectors in the same group.
The code vectors present the approximated normal
behavior in the group. Values of variable 4 are well
below the ones in code vectors. On the other hand,
those  values  of  variable  4,  close  to  -2,  do  exist  in  the
reference data as seen in Figure 8. Such states are
assigned to groups 5 and 7; it is the combination of the
other variables that makes these samples to be
assigned to group 6 in the test data.
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Figure 11 Box plots of the anomalies in test data
and SOM code vectors in reference group 6

Variable 2 is also lower in the test data anomalies
than in code vectors. This motivated to inspect the
combination of variables 2 and 4, which is illustrated
in Figure 12. The figure shows a part of the reference
data and the test data of variables 2 and 4. They seem
to be able to explain the anomalous behavior in the
group 6. Only the anomalies detected in that group are
presented in the figure by stars over the line. All the
data after the gray vertical line are test data.
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Figure 12 Variables 4 and 2
The samples detected as anomalies in the end of the

test data set are from normal operational state. Both
variables are in their normal range. But this kind of
combination was not present in the reference data.
Such  groups  of  similar  anomalies  are  a  sign  of  new
unseen behavior and the model should be updated.

When the whole model is identified, the reference
groups will change. Reordering the new groups so that
the new group number 1 is the one that is the most
similar with the old group 1 etc. will help the users in
practice.

3.5 Comparison of methods on data set 1

Both, the original global method and the new local
one were applied to the data set 1. The anomalies
detected by both methods are presented in Figure 13.
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Figure 13 Variable 4 with the anomalies
detected by local and global methods

The global method detects 17 anomalies while the
local one finds 45. More sensitive detection is not
generally desirable. However in this case the system
has entered a new state, not present in the reference
data as described in previous section. The local
thresholds in the improved model allow this state to be
detected earlier. The global threshold is too high for
this state to be detected to be something new, until at
the very end where the variable 4 has very low values.

3.5 Comparison of methods on data set 2

The second data contains 8 variables recorded from
a similar system as the first data set. The reference
data, which was received fist, contains 13 days of data,
312 samples. 205 samples were received later to be
used as test data.

The anomaly models were identified using the
same scaling and model parameters as in the previous
case. In this case we end up with a SOM of 30 nodes
and 7 reference groups in the local model.

The numeric results of the local method are
presented in Table 2. The first column is the reference
group number. The second column is the number of
samples in the reference data associated in each group.
The  third  and  fourth  volumes  are  the  numbers  of
samples and the detected anomalies from the test data
set.

The test data differs from the reference data. There
are no normal samples in two biggest reference groups
1 and 7. Most of the test data falls into groups 4 and 5,
which cover only 18% of the reference data. This is a

clear indication that the identified model is not valid.
The global method doesn’t provide this information.

Table 2 Number of samples in reference and test
data associated to reference groups followed by the
number of anomalies detected from the test set in
each group
Reference

Group
Samples

in
reference

data

Samples
in test data

Anomalies
in test data

1 84 11 11
2 11 0 0
3 24 0 0
4 17 57 5
5 40 127 13
6 16 10 0
7 120 0 0

Total number of anomalies detected by the local
method is 29. The global method detects 77
anomalies. Time series of one variable and the
locations of the anomalies are presented in Figure 14.
The third plot at the bottom is the reference group
associated for each sample in the test data.
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Figure 14 Time series example with anomalies
and the reference group in test data set 2.



In this case the global method detects more
anomalies, most of which are within normal local
variation according to the local method.

In on-line anomaly detection the test data will be
analyzed either one sample at a time or 24 samples if
used on a daily basis. In that use the global method
gives a number of unnecessary detections. Finally
towards the end the number of anomalies rises high
enough to indicate the need to update the model.

The local method gives less anomaly detections
since the samples are from system states, where the
variation was larger also in the reference data.
However there is still the indication of the need for
model update visible in a very early phase. The test
data is mostly associated to the reference groups 4 and
5 in the beginning of the test set. Both these are small
groups. The test data falling into these groups is
indication that the system is in a states which were not
sufficiently covered in the reference data.

4. Conclusion

We have introduced an anomaly detection method
that uses SOM and clustering. This method is
independent of the distribution or clustering structure
of the data. It also takes into account the local
variations in variance. Therefore it can be used in
various systems that produce multivariate data. The
scaling of the data is essential, as in all methods using
distances or variances. We introduce scaling that is
suitable for the system log data. When transferring the
method to another environment, the scaling has to be
revised to match the importance of the variables used
in the analysis. The method scales up to larger systems
and it can be used also for large data sets.

We compared the original global method to our
local method using two data sets. In one data set the
local method gives a warning about the system
entering a new state earlier than the global method. In
the other data set the local model gives fewer false
alarms while the system performs within normal
variation in the state it is in, whereas the global
threshold given by the original method is lower
resulting in a larger amount of detections.

This method has proved in practice to be useful in
finding outliers and new phenomena in network
system log data. It is applicable to both on-line
monitoring and analysis of the history data.
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