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Abstract

Hopfield Neural Networks have been used as
universal identifiers of non-linear systems, because of
their inherent dynamic properties. However the design
decision of the number of neurons in the Hopfield
network is not easy to make, in order for the network
model to have the necessary complexity, extra neurons
arerequired. This poses a problem since the role of the
states that these neurons represent is not clear.

Adding a hidden layer in the Hopfield network
model increases the complexity of the model without
posing the extra states problem. Alternatively breaking
the problem down by having different interconnected
Hopfield networks modeling each state, also increase
the complexity of the problem.

A comparison between the three approaches
(traditional Hopfield, Hopfield with a hidden layer,
and multiple interconnected Hopfield networks)
indicates equivalence between the three structures, but
with the alternative cases having increased
connectivity in the feedback matrix, and limited
connectivity in the weight matrices.

1. Introduction

Hopfield Neural Networks (HNNs) have been very

by the extra neurons is sometimes necessary for the
HNN to approximate the process correctly.

In this paper we propose ways to increase the
complexity of the neural network model, with out
increasing the external states, thus alleviating th
problem.

2. HNNs as non-linear systems

Hopfield Neural Networks are neural networks that
exhibit dynamic properties due to internal/external
feedback. [1-5]. These properties allow for theinal
dynamics of unknown processs to be identified in
contrast to the usual input-output identificatidmatt
Feed Forward Neural Networks are limited to.
Hopfield Networks have of the form:

X=-Bx+Wa(x)+Tu
- () } )
y=X
or in a more precisely:
X ==B% + Y Wal(x)+7u
JZ;‘ n 2)

y=X
where xeR" is a vector with the states of the

network, xe R" is the first derivative ok, B R™"
is the feedback matrix (usually a diagonal matrix),

popular in literature as universal non-linear medel i . ) i )
The dynamic properties of the HNNs makes them ideal W € R™ is the weight matrix,I' e R" is the input

for capturing the complete non-linear dynamié¢sany matrix, ando(x) is a sigmoidal function likeanh{x ).
unknown non-linear process, as long as accuratewith out loss of generality, from now on it will be
estimates of the process states exist. Howevey, ver gssumed thah(x) = X,.

often when HNNs represent the dynamics of a process The equations that characterise a Hopfield network
they often have more internal states than the seoce are those of a non-linear control affine system:

they are representing. The extra states are hard to
initialise, as they do not represent any of thecpss

real states. Nevertheless, the extra complexitgreff

X= f(x)+g(x)u} @)

y=h(x)



Therefore, Hopfield networks are a class of non-
linear control affine systems, and thus all analysi
such systems can be also applied to them.

2.1. Relative Order of HNN

Relative order is an invariant property of physical
systems. It defines the number of times the inagtto
be integrated in order to affect the output. Acaugdo
Isidori [6]:

The system (3) is said to have relative order r at a

point x° if

e L, L“h(x) =0 for all x in a neighbourhood of X
and all k<r-1

e L, L h(x%) # 0.

Where Li(x) is the Lie derivative of h(x) in the

direction of f(x) defined as:

L, h(x):Zn:;Th f,(%)

i

Since the Hopfield network is a control affine
system of the form (3), the concept of the relative
order, is also be applicable it. By applying thiatige
order definition to the HNN, Dimopoulos and

r e[2,m+1], if the following conditions are
satisfied:

Wi iy -0 Wi, = 0

Wigseen s Wy o2y Wa gy ayseee Wy

Wy greee s Wa 010 Wa g 1yre - Wy =

=0

Wo )61 We-3)0- 10 We- 200 1y W 2 = 0

W2y 1000 Wee—2),0- 10 Wee- 13,00 1) = O
If y, # 0, then therelative order r will be 1.

e |If y=0,iel,m)um,n],y, =0, then the
relative order of the system is r, where
ref2,muvu(m,n].

Proofs of the above propositions can be found in

[4].
2.2. Zero Dynamics of HNN

Zero dynamics are another invariant property of
physical systems. In many instances they play a rol
exactly similar to that of the ‘zeros’ of the tréars

Kambhampati have proved that the structure of thef,nction in a linear system [6]. Zero dynamics tre

HNN can determine its relative order, and vice aers

differential equations that describe the internal

[4], and that the relative order of the HNN will be henhayiour of the non-linear system when the system’
upper limited by the number of states the neural output is ‘forced’ to be zero.

network has. Specifically:

Relative Order Proposition:
For the Hopfield network in (2);

e If 5 =0,i=1...(0-1), and y,=#0, the
relative order of the systemis r €[2,n], if the
following conditions are satisfied:

W, =0
Wogs Wy gy, Wy = 0

Wor )1+ Wi 3)0-10 W 230 = 0

We—2yr -+ W -2),0-1» We-1yn # O
If , =0, thentherelativeorder ris 1.

o If »=0,i=1... m,y, # 0,j= m+ 1),..n,
the relative order of the system is r, with

Let us assume a Hopfield network of the form of
(2) and further assume that this network has divela
orderr<n and has the appropriate structure as defined
in the relative order proposition. Then becausé¢hef
structure of the weight matrices, the Hopfield Woibk
like:

i+1

X ==BX% +Z\Nijo-(xj) i

1...

I

X =—B % +Zn:V\Iij0'(Xj)+}/iu i=r+1...,n
j=1

y=X

Since the output of the network is the first statad
since each of the first states is a function of only the
first r states, then the firststates will be zero, and the
zero dynamics of the Hopfield will be given by:

X ==FX%+ Z [\Nij _;/_iwrj

j=r+1 r

]a(xj) i=r+1...n



(4)

X=—-Ax+Co(Dx+E)+Fu
In order for the inverse of the model to be statlese

zero dynamics have to be stable. Stability of these y=x _ . .
be in the same way as stability of a Hopfield can b Wwhere A R™" is the diagonal feedback matrix, much

determined; by linearising and examining the Eigen- the same with the feedback matrix (@), CeR™"
values. The linearised zero dynamics are given by: and DeR™" are the weight matricest e R™ is a
bias matrix, F e R" is the input weight matrix and

2= Azt Bu xeR" is the state vector. In a more detailed form (4)
with B=0 andA given by: becomes: i n
X =—&X +chj0|:2(dikxk +e1<)}+ fiu
hr+1,r+1_ﬁr+1 hr+ln i=1 k=1 (5)
A= : hi-4 : y=x
gl M — 5, _ _
3.1. Equivalence between Simple HNN and

hy :[\Nij —ﬁW”. ]a’(xj) i,j=r+1..n HNN with a hidden layer

Comparing the description of the hidden layered

When recurrent networks represent the dynamics ofnetwork in (2) with the description of the Hopfield
a system, they often have more internal statestiiean  network of (5)it is clear that the proposed structure has
system they are representing. Suppose that thiseis many attributes of the original structure. To begith,
case with a network witn states that is modelling a both structures utilise external feedback. Eacte st
non-linear process ah states where<m<n (r being directly connected to itself, separately from the
the relative order of both process and model). then  connection with the state vector. Secondly the oath
non-linear process will haverr zero dynamics, while  of connection of the input to the network is ideatiin
the network model will haven-r zero dynamics. both structures. Finally, both structures use the
Therefore the extra states of the network model weighted sigmoid of a function of tima&(f) in the case
represent extra zero dynamics. Thus it is posdiile  of the Hopfield, Dx(t)+E in the case of the hidden
the network to have more zero dynamics than thelayer structure). Therefore one can expect thahtre
process it models. Nevertheless, training rastate linear properties investigated in the previous thap
network to identify amn state process, whene<n, has will also hold for this structure.
the same effect as with training the same network t Consider the proposed structure for a moment.
identify ann state process using limited information Given that
(say the firstm states) about the non-linear process.

Since we have no information about the fasn states, Xx=-Ax+Co(Dx+E)+Fu
it is difficult not only to decide the role theygyl but
also how to initialise them. from (4) let us define a new auxiliary variable

&=Dx+E, &eR™. Then the derivative of this new

3. HNN with a hidden layer variable is given by = Dx, and substituting (4) into

Extra neurons are needed in order to increase thehis we obtain:
complexity of the Hopfield network, without
increasing the number of states. This can be aeliiev £ = —DAx+ DCo(Dx+ E) + DFu (6)
by adding a hidden layer inside the Hopfield networ
||n this T?gse_, the nStV\r/IOFK is colmposed out Ol;ngh&ee Now let us define a new state vector
ayers. The input and the output layer are compode _ T nem -
n neurons, i.e. the number of states the network is z_[x,/;]. <R"T. By combining (4) and (6) we can
trying to model. The hidden layer is composednof see that:
neurons. It is these neurons that will provide eh&ra )
complexity to the model. This architecture was Z:[).(}:{ A 0}Z+[0 C }G(Z)J{ F }u )
proposed in [7] and is described by the following & DA 0 0 DC DF
equations:



But this is similar to the form of the Hopfield but inputs (the regular inputi and the othen-1 states)

with the matrice®, Wand /" given by: instead of jusu. Therefore the resulting structure for
A O 0 C = the K" network modelling th&" process state will look
_[DA o] {o DC}’ _{DF} ke:

M
o Z,= _ﬂk,lzk,1+zwk @i P(Z)
It could be noted that thB matrix is no longer a i=1

diagonal matrix. Although the first states are fed- n
back to themselves, the laststates are fed with only +Z7k,1,j Ziat Vians M
the firstn states. This hints to a special significance of 1%
the firstn states. Under closer inspection of (7) it can :
be seen that the firgtstates are the ‘revealed’ states or m
thq approximations to the states that the netwerk i 2 =iz +ZWk,(i 0(Z;)
trained for. =1
Another important observation is that the weight n 9)
matrix W is sparse. The ‘revealed’ states are not +Z7/k,i,jzj 1t Vil
j=1

directly connected here. Instead there is an intlire I
connection through the auxiliary states and the :
feedback matrix.

To summarise, the proposed hidden layered
architecture o input neurons andh hidden ones is
equivalent to a Hopfield structure oN=n+m n
neurons but with the feedback matrix not being +Z7/k,rr1<,jzj,1+7/k,w,n+1u

diagonal, and the weight matrix being sparse. %

M
Zem = BemZm + 2 W 119 ()
j=1

wherem is the number of neurons for this network and
4. Multiple Interconnected HNNs the state of the process is modelled by the ftetesof
the network. In the case where the weights haweethr
The proposed structure is composed of many indexes, the first one identifies the network, seeond
simple Hopfield Neural Networks, each modelling an the state, and the last the connection they betong
aspect of the problem, thus breaking the main erabl  Therefore the weighti;4 is a weight belonging to the
to smaller ones. This structure was inspired from third network connecting the sixth state to thertiou
multiple or stacked networks [8-11]. These types of state.
networks have been successfully employed in various
applications ranging from image recognition to @att
prediction. In some of those cases the networksevhe “ En
trained to solve the same problem and the final . HPLANT 1
decision was taken by means like voting. In ourecas
smaller networks are employed for different parts o ‘
the problem, the solution to which rises from the
combination of the smaller networks.
As an example consider a system withstates,
similarly to (3): =

f—§—3
I
-
-

T
1]

f—§—3
I
-

E:_..._..
!

% LPLANT 2/}

X = fl(x) + gl(x)u

L & . -
% = £,(X) +g,(¥u il TpLant s =50
: 8 = C
. ( ) B Complete
% =, () +9,(Xu Plant
Dynamics

y=X
Figure 1. Multiple Interconnected network structure
We can consider this as input-output problems modeling a non-linear process
instead of one input-state problem with tracking
parameters. Specifically we can train smaller
networks each modelling one state of (8) but with



4.1. Equivalence between Simple HNN and Solving this for %, (t) we get
multiple inter connected HNNs
% (8) = %, (t) +n(t) (10)
As it can be seen from (9), the proposed strudture
composed out of smaller Hopfield networks. As far a This expresses that at any time the state
each network is concerned, the process thatiyiist  approximation of the network model equals the stte
to model has multiple inputs and a single output. ihe process plus a small value. In (10Jt) can be

Therefore from a collective point of view the caclien . . . .
. . approximated by noise with zero average (Figure 2).
of the networks are modelling a collection of preses . ST
Now, let us consider the structure in Figure 1.lHEac

each with many inputs but one output, as it casdsm S X .
. ) S of the individual networks will be described by .(9)
in Figure 1. This has the advantage that it is ibesso Define a state vectof as the composition of all the

train each network independently of the rest. Since ot fth tworke:
each network structure has to model only one vhrjab states ot the networks:
it is much easier to train (Figure 2).

E=[&, bl

R o (1)
INET 1l =[ 2z Zimror B By e 2 g 2y |
%
and let the matrice§;;, C ,W , be:
]/i,.n+
u Yisj 0 - 0 }[1 ! Wi o W
PLANT A T o i VA I :
Vim.j 0 - 0 Vit Wime o W
; Then by combining networks of the form (9) and
LI substituting for the states with (11) we get the
\ NET“E description:

Figure 2: Training of a multiple interconnected

B T, . W, 0 0 o}
network structure.
. |r, B T, 0 W, - 0 | (12)
S=| o g+, e U
Once all the networks are trained, it is a simple
T T Bn 0 0 an Cn

matter of putting together the building blocks teate mon

the complex representation required. A second

advantage of this structure is noise immunity. @ive This description is a Hopfield network.
that noise was included in the states that weretded Nevertheless there are subtle differences betweisn t
the networks as inputs during training, the overall representation and (2Jhe feedback matrix retains its
structure will be immune to disturbances. Sinceheac diagonal, but now there are additional feedback
network output will be an approximation to the real connections between the states. Thenatrices have
state of the process, it can be therefore congiderbe zero elements everywhere except the first coluniis T
the state of the process with some noise added Thihints to a special significance for these states.aA
can be seen more clearly if we consider the folhlgwi  matter of fact these are the first states of eativark

Let at timet,, x (t,) be thek" state of the process, and therefore according to our design of the mieltip

- th structure, the approximating states to the noraline
and X (t,) be thek™ state of the network. Len(t) be states. Thus each state in the new structure has

the function which defines the difference between feegpback connections to itself (because of the B
% (t) and x,(t) . Assuming that the network is trained, matrices) and to the states that approximate dtesst
then at any time this difference must be in a of the process (because of thE matrices).

neighbourhood of zero: Furthermore, the weight matrix is a sparse mairhe
distributed system approach of the multiple network
% (1) —x () =n(t), n(t)e(~&,,&,) vt structure can be clearly seen here: the weightixnatr

provides connections between ‘neighbourhoods’ of



states. In each case, these sates correspondgtatee  structure of one, will also arise for the structofehe
of a network in the multiple network structure aon  other. Consider a fully connected network:
The connections between these ‘neighbourhoods’ of
statgs are left Fo .We'zights in the feedback mat-'riilxally X ==PuXg == BrXy Wi o (X) +... + Wyo(X,)
the input matrix is in exactly the same formatrashie : : :
original Hopfield configuration of2). ] ' ’
The similarities between the two proposed % ==Fu% ==X +W,0o (X)) +...+ W0 (X,)
structures should be noted. In both cases, thebfed : : :
matrices have increased in connectivity, allowing  _ _
information to pass directly from one state)t/omlthaer. 9 K= B Pk F WO () W (X)) + 7
On the other hand, the connectivity in the weight ¥ =%
matrices has been limited and fewer states ardreshju
to pass through the sigmoid function. A first glarto which can be re-arranged as:
this indicates that it is not important. Nevertlssle
most neural network applications are implemented in % =[-/5,,X; +w1p(x)]+ A ﬁnxn +W,yo( X)]
software rather than in hardware because of peictic : :
implications. Calculating the sigmoid of a stated an
then multiplying it with a weight is less efficietttan % =[- ﬂ,lxl+ o (X)) +.. 4 ,6,an +W,o( )]
just multiplying the two numbers together, not just :
because of the extra calculation need, but becausey % =[- ﬂnlxl+ O]+ + ﬂnnxn+ o(X)] +7,u
calculating the sigmoid (a non-linear function) af
number is also computationally expensive. =%

5. Alternative Neural Networks as non- Considering the above structure, it can be seen tha
linear systems the network is characterised by functions of themfo

—fX;, +W;o(x;). This also indicates to a similar

behaviour of the structures of the feedback andhtei
matrices as far as the relative order is concerired.
order for the relative order to belong in the regaf
[2,n] the combination of the feedback matrix and the
weight matrix must give rise to a structure similar
that of the structure of the weight matrix in the
Relative Order Proposition.

The network structures presented in this sectien ar
equivalent to the Hopfield network, with the feedka
matrix no longer a diagonal matrix, and the weight
matrix being sparse. The equivalent equations (&) a
(12) of the alternative structures still descritmntcol
affine non-linear systems and thus the concepts
discussed in the previous part still apply to théys.a

mater of fact, with little effort, that analysis rcde ) )
easily extended to cover the alternative structures 5.2. Zero dynamics of the alternative structures

5.1. Relative order of alternative structures Previously we demonstrated that the extra states of
a Hopfield Neural Network could describe extra zero

dynamics. It has also been demonstrated that in the
equivalent structure of the hidden layered Hopfiéhe

first n states approximate the process states, and the
lastm states (wheren is the number of neurons in the
hidden layer) are extra states. Therefore thedessta
describe extra zero dynamics.

Similarly, in the equivalent form of the multiple
interconnected networks, only the first state ofhea
network approximates a state of the non-linear ggsc
Since the remaining states in each network alseapp
in the equivalent structure, they must also describ
extra zero dynamics.

Generally, from the point of view of a Hopfield
network with more states than the process it is
modelling, we can say that the Hopfield network is
trying to model a process with an equal number of

Consider the propositions about the relative order
of the Hopfield network. There the relative order i
defined from the structures of the weight and tiput
matrices. In the case of simple Hopfield netwotthe t
feedback matrix is not taken into account, becatise
connects a state with itself. In order to extend th
propositions for the cases of the alternative netwo
structures, the effect of the feedback matrix leabe
taken into account. Here the effect of the weightrin
in relation with that of the feedback matrix hasbi
considered. The feedback matrix is associated tlih
states directly, while the weight matrix is assteza
with the threshold function, which is a sigmoid. So
generally, both matrices are multiplied with a ftioe
of the states, and therefore whatever issues farighe



states but with using limited knowledge of the mpex
states to train. In the case of the HNN with a biud
layer, the extra states are internal, and do np¢aipin
the output of the network. Therefore no matter the
number of hidden neurons, the network will always t
to model a process with the same number of obskrvab
states. Similarly, in the multiple interconnected
Hopfield structure, each sub-network is modelling a
state of the process and it is that state thatésl uo
connect it to the other sub-networks. The othetesta
of each sub-network only appear in that network and
not in the output of the resulting structure. T lere,

the resulting structure will always model a process
with the correct number of states.

5.3. Which network?

We have argued that a Hopfield network can be

used to model the dynamics of a non-linear process.

When extra complexity in the network model is
needed, there exist three alternatives. The fr&b use

a Hopfield network but with extra neurorEhis gives
rise to the problem of identifying the role of the extra
neurons when these do not represent extra zero-
dynamics. If the number of neurons of the network is
N, then the number of variablegg that need training
(and therefore the dimensionality of the training
problem) is: N variables from the feedback matrix,
NxN variables from the weight matrix, ahdvariables
from the input matrix, a total of:

Ve=N+NxN+N=N?+2N

A second solution is to add a hidden layer to the
Hopfield model, thus increasing its complexity. §hi
structure has been seen to be equivalent to tkg fir
with the number of input / output neurons and the
hidden ones equal to the total number of neuronisan
first case. i.e. a hidden layer Hopfield withinput /
output neurons andn hidden (wheren is also the
number of states of the process), is equivaleribrim
to a simple Hopfield withN =n+m neurons. But
because the equivalent structure is sparse, théeum
of variables that need traininy. ) can be seen from
(4) asn variables from theA matrix, nxm variables
from theC matrix, mxn from theD matrix, m from the
E matrix, andh from theF matrix. A total of

V, =N+nxm+mxn+m+n=2n+m+ 2(nm)

But sincem= N -n the total number of variables
in terms of number of modelled states and equivalen
neurons is

V. =2n+N-n+2[n(N-n)]=2n+N-n+2Nn- 2n* =

V, =n+N+2Nn-2n’

2 approximating states

500

400

300

200

100

number of variables

9
equivalent neurons

—a— Simple —i— Hidden layer — Multiple ‘

Figure 3: The three cases with varying number of
neurons in their equivalent forms, when the protess
2 states

Finally, the third option is to use many simpler
interconnected Hopfield networks, each modelling on
state of the process. Assuming that each sub-nktwor
hasm neurons, then the overall structure is equivalent
to the first case, with the total number of neurionthe
equivalent formN = m-n wheren is again the number
of states of the process (and consecutively nurober
sub-networks in the structure). Then the number of
variables that need traininy\) are the number of sub-
networks times the number of variables in each sub-
network:

2
N :>VM :n-(2ﬂ+N—2]:>
m=— n
n
N2
VM =2N +T

These three equations have serious implications on
the choice of network model. In the first case the
number of variables can be seen to be independent o
the number of process states, but it is proportitma
the square of the number of neurons in the network.
Therefore as the number of extra neurons incredses,
number of variables that need training increases
proportionally to the square of that value. In $eeond
case, the relation between the number of variahias
need training and the total number of neurons in al
layers is of a first degree, but is also propowdido the



square of the number of process states. Finallthéen and multiple neural networks of different
case of the multiple interconnected networks, the configurations were trained as models for this pssc
number of variables that need training is propogio

to the square of total number of neurons in all the 6.1. The non-linear process

networks, but is inversely proportional to the n@mb

of states of the process. The implications of these The process selected for the simulations is a well-
be seen more clearly in Figure 3 and Figure 4. known, well-used non-linear system [3, 4, 12-18jeT
Single Link Manipulator (SLM) is essentially a
36 neuron equivalence pendulum, and the control problem is to contrchmy
1600 point in time, its position and velocity. Given a
# weightless rod of length a dimensionless mass is
L . = e pla_ceq at one _end and the other is pivoted to edfix
2 point in space in such way as to allow the rod tiven
E in only one direction. The friction coefficient &te
w800 “a pivot point isv. This system is illustrated in Figure 5.
5 /"k Given an input torqua at the pivot, then at an andle
£ 400 L using Newton’s Laws we can get:
g iy — . dT=1-0d<u-mglsing—vd=mb <
O T
) ) 12 e fir éz—gsinﬁ—i6’+iu
approximating states ml ml
—l—5Simple —— Hidden layer ——Multiple

Figure 4: The three cases with varying number of
states in the process, when their equivalent fdrave
36 neurons.

Where the number of states in the process that will
be modelled are not many, but increased compléity
needed, the most efficient structure in terms ohiber
of variables that need training is the Hopfieldhatibhe
hidden layer. Then the effect of a smallin the
equation will be minimal, and at the same timesit i
possible to increase the complexity of the model by
adding neurons in the hidden layer since theirceffe Transferring the above equation in to state space b
linear. setting x; equal to the position ang, equal to the

On the other hand, where increased complexity is velocity, and by settingw=2kg, |1=1m andv=6kg mf/s
needed in modeling a process with many states, thewe get:
multiple interconnected network structure would be

Figure5: The Single Link Manipulator

most efficient, since the number of variables tnegd X =X,
ggggg will be inversely proportional to the nuertof % =-9.8sinx — X, + 0.6 (14)

At this point we should note that while minimising y=X
the number of variables that need training is dbdr,
there should be a limit in the minimisation. As This system has a relative order of 2. Once the
someone would expect there is a trade off betweensystem is linearised around the equilibrium point
number of variables and complexity of the model. (%,,u,)=(0,0), we see that the system is stable, and

that it has eigenvalues afl.5+ j 2.74¢.
6. Simulations
6.2. Specifying thetraining algorithm
To test the modelling abilities of the proposed

structures, a well-known non-linear process iscieté In order to compare the proposed neural network
structures with simple HNN, five sets of training



experiments were performed using a simple Genetic
Algorithm (GA). Each set composed of ten trials for

the same structure, with each trial starting from a
different random number (seed for the random number
generator). The same ten seeds were used fortall se

In all tests direct encoding was used to desigrgdre

6.3. Training the models

The first set of experiments involved training
simple HNNs with five neurons, as models of the
SLM. This way the network model has more states
than the process. This will form the basis of

sequences that encode the neural networks: The&omparison with the proposed structures. The reslt

sequence was composed out of real values, each

uniquely corresponding to a weight in the matrices

his set are displayed in tablEl, in the appendix.
Figure 6, shows the phase portrait of the best orktw

In all cases, the fitness was defined based on the, this set.

Normalised Mean Square Error (NMSE) [4] of the
states as defined by:

[10 (max — min )

1 N
NMSE:NZ 5

P
_ > 6 =% )2]
i=1 j=1

WhereN is the number of states of the systéhis
the number of training patternsax is the maximum
output value of output, min, is the minimum value
output of output, x° is the system output and is the
model output.

Furthermore, training was stopped when either the
NMSE of the best network dropped bellow1®°®, or
when the algorithm finished the 300generation,
whichever criteria was reached first. This was beea
from preliminary tests it was observed that the NEMS
did not improve significantly after 300 generatiotrs
all cases a population of 50 networks was used. A
mutation rate of 40% was used in all GA simulations
Although this percentage seems large for a mutation
rate for a GA, it is not the percentage for eachega
the gene sequence, but it is the possibility tinaet gene
in the gene sequence will mutate. This ensuresahat
most only one gene in a genotype will mutate. This
wanted because in many cases the genomes ar@ sort
length, and therefore if two genes mutate, a large
percentage of the genome changes.

The pseudo-code describing the training algorithm

follows:
1. Create and initialise a new popul ation

of 50 networks.

2. For every network in the population,
test it and cal cul ate the NVSBE.

3. Short the population from smallest
NVSE to | argest.

4. |If the stopping criteria are reached
END SI MULATION. Else go to 5.

5. Do crossover and nutation operations

using the 10 networks with the | owest
NVSE, creating 18 new  networks
substituting the 18 networks with the
hi ghest NMSE. CGo to 2.

The stopping criteria are described above.

In order to test the Hopfield network with the
hidden layer, a network with two output neuronse(on
for each process state) and three nodes in theemidd
layer was used. As we have seen this is equivadent
the five-neuron simple HNN. For this set of
simulations a GA was used to train the network
similarly to the previous case. For reasons of
comparison, the same random number seeds where
used to produce ten networks. The results for gbis
are presented in tabl®, in the appendix. Figure 7,
shows the phase portrait of the best network i 4bt.
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Figure 6: The phase portrait of the best 5-neuron
network compared with the process, for differeitiah
conditions.

In the final set of simulations the multiple netk®r
architecture was tested. Since the non-linear poce
has two states, a double Hopfield network was #&cin
with each network modelling a state. Training the
networks was done with a GA, with each sub-network
trained not separately, but in parallel with eatien
Similarly with all previous sets, the training peature
was repeated ten times with ten different initieéds
for the random number generator. The results f th
set are presented in the appendix, tal8e Figure 8,
shows the phase portrait of the best network i gbt.



6.4. Discussion of results

In Figure 6, Figure 7 and Figure 8, the phase
portraits of the best networks of each set, anstilated
for different initial conditions. In order to illtsite the
ability of the networks to extrapolate, the initial
conditions used in the phase portraits are outiide
region used for training the networks. This regisn
illustrated in the attached detail, in each figure.

We can clearly see how the networks are quite
capable of imitating the phase portraits of thecpss
in the region they were trained in, while outsitiatt
region they do not perform as well. In particultre
five-neuron network originally seems to performyer
well inside the training region, but on a closeoKp
one can clearly see that the performance is ngbed
as those in the next two cases.

In the case of the Hopfield network with hidden
layer, the performance is equally good in bothargi
(Figure 7). Using networks of this type does not
compromise the ability to identify the non-linear
dynamics between the two regions.
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Figure 7: The phase portrait of the best Hopfield
with a hidden layer compared with the process, for
different initial conditions.

Furthermore, in Figure 8 the phase portrait of the
best double network structure is illustrated (cB24).
Comparing this with the previous phase portraies th

advantages of this structure become evident. This

network outperforms all the previous cases, inside
outside the training regions.

Comparing the results obtained from training a
HNN with a hidden layer and that of its equivalent
five-neuron network, it can be seen that on avethge
Hopfield with the hidden layer performs worst tithe
equivalent five-neuron case. Under closer examonati
though, it becomes evident that more networks ef th

first case have test errors in the order of fitan in the
second.
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Figure 8: The phase portrait of the best double
Hopfield compared with the process, for different
initial conditions.

A second alternative is to wuse multiple
interconnected networks, each modelling a statihef
process. Earlier it was shown that this structaral$o
equivalent to a larger Hopfield network. In order t
investigate the approximating properties of this
structure a number of double networks were traioed
approximate the process. In each case, the each sub
network was composed of two neurons, and was
trained to model a state of the process. This &ireds
roughly equivalent to the five-neuron case, and the
Hopfield with the hidden layer. Comparing this case
with its equivalents, one can see that on averhge t
double structure outperforms both previous casms, f
both train and test input sets.

By inspection of the tables T1, T2 and T3 located a
the appendix, we can see that the simple HNN with 5
neurons has the largest average training errdoweb
by the HNN with the hidden layer. The best average
training error (lowest value) is achieved by theildle
HNNSs. Under closer inspection, we can see that the
training error of all double HNNs is located in the
range of 10, while this is also true about most HNN
with a hidden layer. In contrast, there is only dse
(case 4 of table T1) of a simple HNNs where the
training error is so low. This is a clear indicatithat
the alternative networks structures are easiaain.t

In order to ensure that the networks are not over-
trained (perform very well only for data used dgrin
training, and not very well for other data), a testor
for all networks is calculated, using data unseatng
training. It is usual to assume that if a Neuratk
(NN) has a small training error but a large tesorer



then the NN has over-trained since it no longer only some of the neurons are directly connecte& Th
performs well with other data from what it was el advantage of this network type is that while itrgases
with. the complexity of the network, the problem asseciat
By inspecting table T3 we can clearly see that the with choosing initial conditions is no longer prese
double HNN structure again outperforms the other tw The second alternative investigated, was to use
structures, having an average test error in thgeranf multiple interconnected networks, each modelling a
10“, while the average training error is in the ranfle  single state of the process, thus breaking down the
10°. This is true for all double HNNSs, indicating that problem. Such a structure with networks andm
none of the double HNNs have over-trained. neurons was found to be equivalent to a single
The average test error of the HNN with the hidden Hopfield neural network witin times m neurons but
layer is above that of the simple HNN, and afteset with the feedback matrix including extra feedback
inspection of tables T2 we can see that thereigee f between the states, and the weight matrix beingsepa
cases where the test error is much larger than the In a comparison of the number of variables needed
training error (cases 2, 5, 7, 9 and 10). Therefore to be trained in equivalent forms in each caseyas

these five cases the networks have over-trained. found that in all cases as the number of equivalent

Finally, in table T1, there is only one case whamt neurons increase the number of variables incredbe w
test error in much larger than the test error (egsdt a higher rate in the case of the simple HNN, with a
is very interesting to observe case 9 in tablelii this slower rate in the Hopfield with the hidden layand

case, the test error is very high in respect tatier with much slower rate in the case of the intercates:
cases. However this is also true about the trainingHopfield networks.
error. Therefore in this case the network has wet-o Experimental results indicated that both proposed
trained; rather it not trained very well. structures (multiple interconnected Hopfield netkgor
The test errors indicate that there multiple HNN and HNN with hidden layer) have better approximatio
structures are also harder to over-train, than leimp capabilities than the Simple Hopfield network of
HNNs and HNNs with a hidden layer. However, the equivalent number of neurons, and better extrajpolat
opposite can be claimed about HNNs with a hidden capabilities. In addition multiple HNN structuresea

layer. easier to train and harder to over-train, while HNN
with hidden layer are easy to train, but there Hgh
7. Conclusions probability that the network will over-train.
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