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University of Paris 13, LIPN / CNRS UMR 7030

99, avenue JB. Clement - F-93430 Villetaneuse, France
{sebastien.guerif, younes.bennani}@lipn.univ-paris13.fr

Abstract

As the storage technologies evolve, the amount of avail-
able data explodes in both dimensions: samples number
and input space dimension. Therefore, one needs dimen-
sion reduction techniques to explore and to analyse his huge
data sets. Many features selection approaches have been
proposed for the supervised learning context, but only few
techniques are available to address this issue in the un-
supervised learning context. Actually, the problem of un-
supervised feature selection becomes more difficult as the
samples points’ labels disappear. Thus, most of the meth-
ods proposed rely on feature correlations and only pairs of
variables are considered. In this paper, we extend the w-
kmeans algorithm proposed by Huang to the self-organizing
maps (SOM) framework and we propose a feature selection
approach which relies on the weighting coefficients learned
during the optimization process. This SOM-based approach
addresses the difficult issue of unsupervised feature selec-
tion and is ready to handle high dimensional data sets.

1 Introduction

In a recent study [9] about the most often used data min-
ing or analytic methods used in the year 2006, clustering is
placed at the second rank just behind the decision trees and
association rules with near 40 % of the voters. Although
the success of the clustering approach for exploratory anal-
ysis is uncontested, the methods have to be adapted to deal
with more and more data. Actually, as the storage tech-
nologies evolve, the amount of available data “explodes” in
both dimensions: sample size and input space dimension.
Now, in machine learning the number of necessary sample
points grows exponentially with the dimension of the fea-
ture space; this problem is known as thecurse of dimen-
sionality. Therefore, one needs techniques to reduce the
dimension of the sample points description and should use
either features extraction, features selection or a combina-
tion of the both.

The features extraction approaches build new features
using the original variables while the features selection
techniques select the most relevant dimensions. Although
the former generally achieves to higher accuracy classifiers
in supervised learning context, the latter leads to a more un-
derstandable description of the data samples. In this paper,
our purpose is to furnish the user with a minimum effort so-
lution to get an insight into the hidden knowledge of his data
and to assess the relevancy of further analysis. Therefore,
the approach proposed includes both a feature selection ap-
proach and a powerful visualisation technique, namely the
self-organizing maps (SOM).

The remainder of this paper is organized as follows:
first, section 2 presents briefly some related works, then
the section 3 presents the k-means and the self-organizing
maps algorithms which are extended in the section 4. The
weighting based feature selection approach proposed is de-
velopped in the section 5 and the experimental results are
shown in the section 6. Perspectives and further research
are presented as a conclusion.

2 Related Work

Most of the unsupervised dimension reduction approach
are feature extraction methods such the Multidimensional
Scaling (MDS), the Isometric Mapping (Isomap) [14] or the
Locally Linear Embedded (LLE) [13]. But these techniques
are computationnally expensive because they require an es-
timation of the geodesic distance matrix between sample
points and the computation of its inverse. Thus, whereas
some techniques of incremental computation have been re-
cently developped, they are not suitable since the dataset are
large.

Although feature selection has been extensively studied
in the context of supervised learning, this field is relatively
new in the unsupervised learning. A broad part of the meth-
ods which proposed to achieve feature selection in the un-
supervised context try to eliminate the redundancy among
a feature subset and thus they rely either on correlation or
an estimation mutual information [6, 12, 15]. Actually, P.



Mitra and al. uses a similarity measure that corresponds
to the lowest eigenvalue of correlation matrix between two
features [12], J. Vesanto and al. proposed to visually de-
tect correlation using a SOM-based approach [15] and S.
Guérif and al. used a similar idea and integrated a weight-
ing mechanism in the SOM training algorithm to reduce the
redundancy side effects [6]. Some others techniques try to
approximate an ultra-metric in an euclidian space [11] or to
preserve the set of the k-nearest neighbors. More recently,
some approaches have been proposed to adress the difficult
issue of irrelevant features elimination in the unsupervised
learning context [1, 5]; these approaches use quality mea-
sures of partition such the Davies-Bouldin index [2, 5], the
Wemmert and Gancarski index or the entropy [1].

3 K-Means and the Self-Organizing Maps

3.1 Notations

Let X = {xi ∈ R
n : i = 1, . . . , N} be a set sam-

ple points;N et n respectively stands for the sample size
and the input space dimension. A partitionP = {Pj :
j = 1, . . . ,K} of X can be represented by a partition
matrix U = (uij) where the indexesi = 1, . . . , N and
j = 1, . . . ,K refer respectively to one sample pointxi ∈ X

and to one clusterPj ∈ P ; thus,uij = 1 means that the
sample pointxi ∈ X belongs to the clusterPj ∈ P and for
all i = 1, . . . , N we have

∑

j uij = 1.

3.2 K-Means algorithm

K-means [4] is one of the most widely used clustering al-
gorithm. Each cluster is represented by a prototypezj ∈ R

n

that belongs to the input space. K-means algorithm opti-
mizes the following cost function:

RKM (U,Z) =
∑

i

∑

j

uij × d2(xi, zj) (1)

whereU is a partition matrix,Z is the matrix whose rows
are the clusters’prototypes andd : R

n × R
n → R+ is the

dissimilarity measure used to cluster the sample points. A
common choice for the dissimilarity measure when one uses
the k-means algorithm is the euclidian distance which is de-
fined as follows:

d2(xi, zj) =
∑

k

(xik − zjk)2 (2)

wherexi and zj are respectively a sample point fromX
and the prototype of the clusterPj ∈ P . The loss function
given by (1) can be optimized by selecting randomly the
initial prototypes and then iterating the two following steps
until convergence:

1. Affectation optimization: the clusters’prototypesẐ are
fixed and the cost functionRKM (U, Ẑ) is optimized
by assigning the cluster with the nearest prototypes to
each sample point,

uij =

{

1, if j = argmin
Pl∈P

d2(xi, ẑl),

0, otherwise.
(3)

2. Prototypes optimization: the partition matrixÛ is fixed
and the cost function functionRKM (Û , Z) is opti-
mized by updating each cluster prototype with the
mean of the sample points assigned.

zj =

∑

i

ûij xi

∑

i

ûij

(4)

Ones used to reproach this algorithm for its main weakness:
the initial prototypes determine the solution and the algo-
rithm often converges to a local minimum.

3.3 Self-Organizing Maps

The Self-Organizing Maps (SOM) was introduced in
the early 80’s by Prof. Teuvo Kohonen as a multidimen-
sional data visualization method [10]. This approach can
be seen as an enhancement of the k-means algorithm intro-
duced above where the clusters’prototypes are subjected to
a neighborhood constraints that preserve the topological or-
dering of the input space. Therefore, the clusters’centers,
also refers as units or neurons, are organized according a
lattice to form a map. The length of the shortest path be-
tween two units, expressed as the number of edges that
separates them on the map, defines a distanceδ in the pro-
jection space. The topological ordering preservation means
that neighbors sample points in the input space have to be
assigned to the same unit or to neighbors units. This can be
achieved by introducing the neighborhood constraint in the
k-means cost function (1) in the following way:

RSOM (U,Z) =
∑

i

∑

j

uij ×

[

∑

l

hjl × d2(xi, zl)

]

(5)

wherehjl is the value of the neighborhood function between
the unitsj andl. A gaussian kernel parameterized byλ is
usually used as neighborhood function:

hjl = exp

(

−
δ2(j, l)

2 λ2

)

(6)

The SOM cost function (5) is optimized either by a gradi-
ent descent approach, or by a procedure similar to the one



described above for the k-means cost function. The sec-
ond step has to be modified to take into account the neigh-
borhood function, and the prototypes are updated using the
weighted centroid of the sample points assigned to one unit
or its neighbors. One should be aware that the value of the
gaussian kernel parameterλ have to decrease over the time
and that a too small value at the beginning can avoid the
self-organization process.

4 Weighting feature during clustering

4.1 The ω-k-means algorithm

Huang and al. [8] proposed to introduce a weighting co-
efficient in the k-means cost function by replacing the eu-
clidian distance by the weighted euclidian distance defined
as:

d2
ω(xi, zj) =

∑

k

ω
β
k × (xik − zjk)2 (7)

with ωk ≥ 0 and
∑

k

ωk = 1. Therefore, they modified the

k-means cost function as follows:

RωKM (U,Z,W ) =
∑

i

∑

j

uij × d2
ω(xi, zj) (8)

whereW is the column matrix of the weighting coefficients
used in the computation ofdω. The k-means optimization
procedure presented in the previous section can be used to
optimize the cost function above (8); the weighting coeffi-
cientsŴ are fixed during the two first steps and according
to the theorem given in [8], the following third additional
step optimizes (8) againstW :

3. Weights optimization: the partition matrix̂U and the
clusters’prototypeŝZ are fixed and it is shown in [8]
that the cost functionR(Û , Ẑ,W ) attains its minimum
for the following weighting coefficients values:

ωk =







0, if Dk = 0,
(

∑

t

[

Dk

Dt

]
1

β−1

)−1

, otherwise.
(9)

with Dk =
∑

i

∑

j

ûij × (xik, ẑjk)2 (10)

4.2 The ω-SOM algorithm

Theω-k-means algorithm presented above can be extend
to the SOM framework by introducing neighborhood con-
traints between prototypes to preserve the input space topo-
logical ordering. Therefore, theω-k-means and the SOM
cost functions can be combined as follows:

RωSOM (U,Z,W ) =
∑

i

∑

j

uij ×

[

∑

l

hjl d2
ω(xi, zl)

]

(11)

The optimization of theω-SOM cost function (11) is
achieved using the same algorithm as for theω-k-means one
(8). Whereas the expression (10) of theDk terms used in
(9) have to be rewritten as follows:

D
(SOM)
k =

∑

i

∑

j

ûij ×

[

∑

l

hjl (xik − zlk)2

]

(12)

the proof of the theorem proposed in [8] remains valid. In
the high level algorithm 1 that summarizes theω-SOM op-
timization procedure,t andTmax refers respectively to the
current iteration and to the number of training epochs.

Algorithm 1 ω-SOM algorithm
Initialize W andZ at random.
for t = 1, . . . , Tmax do

OptimizeRωSOM (U, Ẑ, Ŵ ): each sample point is as-
signed to its best matching unit according thedω dis-
tance measure,
OptimizeRωSOM (Û , Z, Ŵ ): clusters’prototypes are
updated using the weighted centroid of the sample
points that belong neighborhood units,
Optimize RωSOM (Û , Ẑ,W ): weighting coefficients
are updated according the theorem proposed in [8] ex-
tended to the SOM framework.

end for

5 From Weighting Feature to Feature Selec-
tion

It is often argued that the feature extraction methods lead
to more accurate classifiers, but in the context of cluster-
ing feature selection approaches should be preferred; actu-
ally, the remaining dimensions are directly understandable
by the user and do not require any additional interpretation
effort as the features extracted need. A feature selection
procedure is composed from three following essential ele-
ments: a pertinence measure, a search procedure and a stop
criterion.

5.1 Pertinence measure

In the supervised learning context, the pertinence of a
feature subset is often evaluated according a model perfor-
mance criterion that depends on the task it has been de-
signed for: regression or classification. In the unsupervised
learning context, define a pertinence measure become more
difficult because there is neither a value to predict nor a
correct class to assign to each samples points. Anyway,
the weighting coefficients learned by theω-SOM algorithm
give the relative importance of each dimension: the bigger



is ωk, the more thek-th dimension contributes to the clus-
tering result. Therefore, the features’weights provide usa
reliable pertinence measure.

5.2 Search procedure and Stop criterion

To find an optimal solution involves an exhaustive search
over the2n − 1 possible feature subsets. Although efficient
algorithm asBranch and Boundhave been proposed, they
requires the monotonicity of the evaluation criterion which
is usually difficult to insure. Therefore, the exhaustive ap-
proach is infeasible sincen is large and we have to adopt an
suboptimal approach. Anyway, the pertinence measure pro-
posed in the previous paragraph defines an ordering relation
between features and not between features subsets. There-
fore, the criterion proposed suggests the use of a nested
subset approach such forward selection or backward elim-
ination. The former starts with the empty set and the fea-
tures are progressively added according their decreasing rel-
evance, whereas the latter begins with the whole feature set
and removes the less interesting features. It is often ar-
gued that the forward selection is computationnally more
efficient, but the backward elimination has been preferred
in this paper because it takes into account the mutual perti-
nence of features; two dimensions can be interesting when
they are considered together whereas each is individually
uninteresting.

Anyway, a correct feature selection procedure requires
an update of the pertinence measure after the feature re-
moving or adding, but this is not feasible since we want
to address the problem of feature selection with high di-
mensional datasets. Therefore, we use a criterion based on
the following assumption: the lowest weighting coefficients
which share the same order of magnitude corresponds to
uninteresting dimensions and a significant change of order
should indicates that the other features might be selected.
To detect this change, weighting coefficients are sorted and
we compute the ratio between adjacent weights. Assuming
these ratio are normally distributed, we can considered that
a significant change occurs when the ratio value exceeds a
truesholdθ = µ + tα σ whereµ andσ are respectively the
mean and the standard deviation of the ratio values. We set
tα = 1.64 which corresponds toα = 5% in the unilateral
case.

5.3 Feature selection algorithm

The outlines of the feature selection approach proposed
are summarized by the following high-level algorithm:

Algorithm 2 Feature selection algorithm
Standardize the data (zero mean and unit variance).
Train a SOM using theω-SOM algorithm
Sort the weighting coefficientsW in ascending ordering
Compute ratiosq(i) = ω(i+1)

ω(i)

Search the firstq(i) > µ + tα σ

Select all features with a weight greater thanω(i)

6 Experimental results

6.1 Datasets

We used several datasets with different size and com-
plexity to evaluate our approach and the results from two
datasets are presented in this paper: the first dataset is from
the UCI repository [3] and the second one was proposed
during the NIPS’2003 Feature Selection Challenge [7]:

• The waveformdataset is composed of 5000 sample
points from three classes. Each classes has been gen-
erated from a combination of 2 of 3basewaves and a
gaussian noise has been added in each dimension. The
original dataset was in dimension 21 but 19 additional
normally distributed noisy dimensions has been added.

• Themadelondataset is a 2 classes problem originally
proposed in the NIPS’2003 feature selection challenge
[7]. The samples points are situated on the vertices
of a five dimensional hypercubes, but 15 redundant
features and 480 probes has been added. Theprobes
dimensions are distributed according the same distri-
bution that the interesting features but they are inde-
pendant from the labels assigned to each vertices by
random. The original dataset was splitted into 3 parts
(training, validation and testing subsets) and we use
only the 2600 sample points from the training and the
validation subsets because labels from the testing sub-
set were not available.

6.2 Evaluation methodology

A ten-folds cross-validation approach was used to eval-
uate the performance of our approach: 90 per cents of the
samples points were used for training and the remaining 10
per cents were used for the performance evaluation. The
class labels of the sample points were available, thus the ac-
curacy of a k-nearest neighbors classifiers could be used to
evaluate the relevance of the feature subset selected. Then,
the significance of the accuracy improvement was verified
by comparing the results with those obtained 10 different
random permutations of the weighting coefficients. Each
experiments was repeated for the value from 2 to 10 of the
parametersβ.
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Figure 1. Smoothing effect of the β parame-
ter (median weights obtained for the waveform
dataset): the weighting coefficients ω

β
j have

been normalized such that
∑

ω
β
j = 1. One

can observed that as the β values increases,
the weights become more smoothed.

6.2.1 Selected subset relevance

The figure 2, 3 and 4 show respectively the k-nearest neigh-
bors classifiers accuracies one thewaveformfor the values
2, 5, and10 of the parameterβ. The worst results are ob-
tained for a random feature selection and the best one ap-
pears when the feature selection approach proposed is used.
It should be noticed that as the value ofβ increases, the
gap between the baseline and the distance with permuted
weights decreases. This phenomenon is due to the smooth-
ing effect of the parameterβ which is highlighted by the
figure 1. The same phenomenon explains why the gap be-
tween the line corresponding to the non permuted weighted
distance and the baseline decrease asβ increases. Any-
way, the feature selection approach proposed, which does
not used the information about class labels, leads to an ac-
curacy improvement of more than 5 points regardless of the
parameterβ values.

The behavior of the weighted distances (with or without
weights permutation) is confirmed by the figure 5, 6 and 7.
One should notice that the approach proposed leads to an
accuracy improvement of at least 15 points with themade-
lon dataset.

6.2.2 Selected subset stability

For each runs of the feature selection method proposed, ex-
cept one, the features 3 to 19 of thewaveformdataset were
selected. The only run which leads to a different result se-
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Figure 2. k-nearest neighbors classifiers ac-
curacies using 90 per cents of the waveform
dataset as training set with β = 2.
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Figure 3. k-nearest neighbors classifiers ac-
curacies using 90 per cents of the waveform
dataset as training set with β = 5.
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Figure 4. k-nearest neighbors classifiers ac-
curacies using 90 per cents of the waveform
dataset as training set with β = 10.
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Figure 5. k-nearest neighbors classifiers ac-
curacies using 90 per cents of the madelon
dataset as training set with β = 2.
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Figure 6. k-nearest neighbors classifiers ac-
curacies using 90 per cents of the madelon
dataset as training set with β = 5.
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Figure 7. k-nearest neighbors classifiers ac-
curacies using 90 per cents of the madelon
dataset as training set with β = 10.



lected features 4 to 18. The stability of our algorithm was
also observed when it was applied to themadelondataset
with reasonable values of the parameterβ. Actually, the
features 29, 65, 106, 129, 154, 242, 282, 319, 337, 339,
434, 443, 452, 454, 473, 476 and 494 from themadelon
dataset were selected for more than half of the execution
for eachβ values. Anyway, the little decreasing of stabil-
ity observed is once again related to the smoothing effect of
theβ parameters which affects the cutting value of the two
adjacent weights ratio.

6.2.3 Discovery of true classes

After the feature selection process has been achieved, one
would like to get an insight into the structure of his data.
The two-levels clustering approach proposed in [16] can be
used for this purpose: a self-organizing map is trained us-
ing the reduced features subset and the k-means algorithm
is applied to cluster the maps units. The number of clus-
ters can be determined using the Davies-Bouldin index [2]
which is defined as follows:

IDB =
1

K

K
∑

j=1

max
j 6=l











∑

i

uij ‖xi − zj‖
2

+ uil ‖xi − zl‖
2

‖zk − zl‖
2











(13)
whereK is the number of clusters. This clustering pro-
cedure aims to find internally compact spherical clusters
which are widely separated.
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Figure 8. Davies-Bouldin index for different
number of clusters when the SOM of the re-
duced madelondataset is clustered. The mini-
mum 0.76 is reached for K = 14.

The figure 8 shows the Davies-Bouldin index values for
different segmentation of the SOM trained with the selected

Clustered SOM (K = 14) − MADELON

Figure 9. The SOM of the reduced madelon
dataset is segmented in 14 clusters accord-
ing the Davies-Bouldin index.

features subset from themadelondataset. According to this
criterion, the best segmentation of the map is obtained for
14 clusters and is presented by the figure 9. The contin-
gency table 1 shows us the repartition of the true classes
in the 14 clusters discovered. One should notices that the
accuracy of this classification which does not use the class
labels information is better than the baseline of the k-nearest
neighbors classifiers, and is not really worse than the perfor-
mance obtained by the supervised classifier afeter feature
selection.

The figure 10 shows the Davies-Bouldin index values for
different segmentation of the SOM trained with the selected
features subset from thewaveformdataset. According to
this criterion, the best segmentation of the map is obtained
for 6 clusters and is presented by the figure 11. The contin-
gency table 2 shows us that the 6 clusters discovered corre-
spond either to the real classes or to their important two by
two overlapping; this is confirmed by a visual inspection of
the relative position of clusters on the map.

7 Conclusion

In this paper, we propose a feature selection approach
for unsupervised learning. It relies on the computation of
weighting coefficients using a SOM based clustering algo-
rithm which is more robust than the k-means algorithm and
provides us stable weights. On the one hand, these weight-
ing coefficients provides us a pertinence measure which
considers the ability of a feature to structure the dataset
and which takes into account the mutual pertinence. On the
other hand, they permit a progressive evaluation of the fea-
tures relevance and they avoid the definitive elimination at



Table 1. Composition of the 14 clusters: -
1 and +1 corresponds to the real madelon
classes and by assigning the majority class
to each cluster, the misclassification rate is
0.31.

-1 +1 Purety
Cluster 1 160 47 77.29 %
Cluster 2 112 113 50.22 %
Cluster 3 105 65 61.76 %
Cluster 4 72 48 60.00 %
Cluster 5 51 155 75.24 %
Cluster 6 49 107 68.59 %
Cluster 7 96 55 63.58 %
Cluster 8 87 169 66.02 %
Cluster 9 117 21 84.78 %
Cluster 10 66 138 67.65 %
Cluster 11 10 139 93.29 %
Cluster 12 163 22 88.11 %
Cluster 13 64 104 61.90 %
Cluster 14 148 117 55.85 %
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Figure 10. Davies-Bouldin index for different
number of clusters when the SOM of the re-
duced waveformdataset is clustered. The min-
imum 0.65 is reached for K = 6.

Clustered SOM (K = 6) − WAVEFORM

Figure 11. The SOM of the reduced waveform
dataset is segmented in 6 clusters according
the Davies-Bouldin index.

Table 2. Composition of the 6 clusters: 1,
2 and 3 corresponds to the real waveform
classes and by assigning the majority class
to each cluster, the misclassification rate is
0.30.

1 2 3 Purety
Cluster 1 5 0 545 99.09 %
Cluster 2 602 2 3 99.18 %
Cluster 3 6 622 1 98.89 %
Cluster 4 577 615 0 51.59 %
Cluster 5 0 414 444 51.75 %
Cluster 6 502 0 662 56.87 %



the beginning of a backward procedure with a possibly in-
correct pertinence measure such as in [5]. Next, the method
proposed furnishes us with an efficient way to deal with
high dimensional dataset. Future works includes an eval-
uation of the techniques proposed with tiny dataset in very
high dimensional input space which are commonly used in
bioinformatic or in spectrometry. In the latter case, the di-
mension are highly correlated and our method needs a sig-
nificant enhancement to eliminate the redundancy by esti-
mating the mutual information between features with the
largest weights for instance.
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