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ABSTRACT
This paper presents a set of analyses aiming at better understand-

ing the SQLShare workload [13] and learning users’ analysis

behavior. SQLShare is a database-as-a-service platform targeting

scientists and data scientists with minimal database experience,

whose workload was made available to the research commu-

nity. According to the authors of [13], this workload is the only

one containing primarily ad-hoc hand-written queries over user-

uploaded datasets. In this paper we analyze this workload, by

comparing users’ explorations (sequences of queries), looking

for common SQL operations performed by the users during data

analysis. We use a clustering algorithm to retrieve groups of sim-

ilar explorations and we analyze the obtained clusters through

many statistical and visual indicators for explaining analysis pat-

terns inside clusters. To our knowledge, this is the first attempt

to characterize human analysis behavior in SQL workloads.

1 INTRODUCTION
The analysis of a database workload to support Interactive Data-

base Exploration (IDE) [12] receives increasing interest as it of-

fers many practical interests, from the monitoring of database

physical access structures [5] to the generation of user-tailored

collaborative query recommendations for interactive exploration

[8, 21].

Characterising user behavior while analysing data, i.e. learn-

ing the way users analyse data (the type and order of operations,

the level of detail, the degree of focus) is a step forward in the

understanding of analysis activities and offers new applications,

for instance to understand users’ information needs, to identify

"struggling" during the exploration, or to provide better query

recommendations. Notably, IDE systems usually do not offer such

facilities. The prediction of next analysis steps is particularly in-

teresting, enabling beforehand execution of probable queries and

caching of results, as well as advanced optimization strategies.

Finally, we mention the detection of clandestine intentions [2]

as another potential benefit. Indeed, as reported by [2], query se-

quences may reflect such intentions, where users prefer to obtain

information by means of sequences of smaller, less conspicuous

queries to avoid direct queries which may disclose their true

interests. The identification of typical analysis patterns may help

distinguishing normal from clandestine intentions.

In this paper we deal with the identification of analysis pat-

terns in a log of SQL explorations devised by real users. We

consider that an exploration is a coherent sequence of queries

over a database schema, done by a user with the goal of fulfilling

an information need. We experiment on the SQLShare workload

of hand-written
1
queries over user-uploaded datasets [13]. In

1
Consistently with the authors of [13], we use the term hand-written to mean, in

this context, that the query is introduced manually by a human user, which reflects

genuine interactive human activity over a dataset, with consideration between two

consecutive queries.
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particular, we use the segmentation of the SQLShare workload

in coherent explorations proposed in [29].

Some previous works consider analysis patters within OLAP

explorations. In [30], Rizzi and Gallinucci described 4 recurrent

types of user analyses and propose a tool for generating realistic

explorations based on these usage types. In [24], we cluster to-

gether explorations showing similar analysis patterns, learning

11 analysis patterns from OLAP workloads devised by students

and expert analysts.

The idea behind analysis patterns is to look for sequences of

common operations performed together when analysing data,

as some kind of movements in a data space. From this point of

view, OLAP operations (e.g. drilling down, adding a filter, chang-

ing a measure) are first class citizens, while the actual analyzed

data is less important. For example, we can retain that a user

performed a sequence of drills down, disregarding the dimension

that was drilled down or the semantics of the underlying data.

Explorations are compared in such terms, i.e. to what extent they

share the same sequences of operations and evolve at the same

level of aggregation and filtering.

Transposing such approach to regular, non multidimensional

SQL workloads raises many challenges. Even if a sequence of SQL

queries is issued to explore the database content, non multidimen-

sional relational schemata do not have regularities one expects

from the multidimensional model, explorations may not be ex-

pressed through roll-up or drill-down operations, SQL queries

may deviate from the traditional star-join pattern commonly

used for analytical purpose, etc.

In this paper we present an extension of our previous work

[24] for learning analysis patterns in SQL workloads. In partic-

ular, we reuse and extend similarity measures for comparing

queries and explorations, and pair them with clustering algo-

rithms. Contrarily to [24], which uses hierarchical clustering,

we combine UMAP and DBSCAN methods, which proved to be

well adapted to complex sequences [22]. The obtained clusters

are then analyzed using several statistic and visual indicators,

allowing to characterize analysis behavior in each cluster.

Our contributions include: (i) a representation of queries and

explorations in the space of SQL operations, including similarity

functions tailored for SQL queries and explorations (described in

Section 3), (ii) a statistical analysis of the SQLShare workload in

terms of queries and operations (Section 4), (iii) a proposal for

clustering SQL explorations, (Section 5), and (iv) a large analysis

of the obtained clusters, via many complementary statistical

and visual indicators, revealing several (common and specific)

patterns of users’ analysis behavior (Section 5).

2 RELATEDWORK
In this section we briefly describe the SQLShare workload and

we present related work concerning workload analysis and in-

dicators tailored for analyzing sequences. Finally, we discuss

clustering algorithms adapted to sequences.



2.1 SQLShare
The SQLShare workload is the result of a Multi-Year SQL-as-a-

Service Experiment [13], allowing any user with minimal data-

base experience to upload their datasets on-line and manipulate

them via SQL queries. What the authors wanted to prove with

this experiment is that SQL is beneficial for data scientists. They

observed that most of the time people use scripts to modify or vi-

sualize their datasets instead of using the SQL paradigm. Indeed,

most user needs may be satisfied by first-order queries, that are

much simpler than a script, but have the initial cost of creating

a schema, importing the data and so on. SQL-as-a-Service frees

the user of all this prior work with a relaxed SQL version.

The SQLShare workload is composed of 11,137 SQL statements,

57 users and 3,336 user’s datasets. To the best of our knowledge,

as reported by the authors of [13], this workload is the only

one containing primarily ad-hoc hand-written queries over user-

uploaded datasets. As indicated in the introduction, hand-written

means that the query is introduced manually by a human user,

which reflects genuine interactive human activity over a dataset,

with consideration between two consecutive queries.

The SQLShare workload is analyzed in [13], particularly to

verify the following assumption: "We hypothesized that SQLShare
users would write queries that are more complex individually and
more diverse as a set, making the corpus more useful for designing
new systems." . The authors showed empirically that the queries

in the SQLShare workload are complex and diverse. They also

analyzed the churn rate of SQLShare users and conclude thatmost

users exhibit a behavior that suggest an exploratory workload.

Other SQL workloads, as SDSS [32] or REACT-IDA [21] in-

clude SQL queries generated with specific GUI or applications.

Although generated SQL queries are less richer than hand-written

ones [13], the approach presented in this paper can be applied to

these workloads, and to smaller ones, as those presented in [17].

2.2 Workload analysis
Other scientific domains close to Database, like Information Re-

trieval or Web Search, have a long tradition of log analysis aim-

ing at facilitating the searcher’s task [37]. Many works extract

features from queries or search sessions and use them to dis-

ambiguate the session’s goal, to generate recommendations, to

detect struggling in sessions, etc. Since databases tend to be more

used in an exploratory or analysis fashion, as evidenced by the

SQLShare workload, it is not a surprise that many recent works

pay attention to the analysis of database workloads, in addition to

those works analyzing workload for optimization or self-tuning

purposes. We present some recent advances in this area, differ-

entiating by the type of logs (OLAP logs and SQL logs).

Analyzing OLAP explorations. Logs of OLAP analyses are sim-

pler than SQL ones in the sense that they feature multidimen-

sional queries that can easily be interpreted in terms of OLAP

primitives (roll-up, drill-down, slice-and-dice, etc.). In one of our

previous works [31], we proposed an approach for detecting

OLAP analyses phrased in SQL, by converting SQL queries into

OLAP queries and then checking if two consecutive queries are

sufficiently close in terms of OLAP operations. Later, we used

supervised learning to identify a set of query features allowing to

characterize focus zones in OLAP explorations [7], or to identify

queries that better contribute to an exploration [6].

In a more recent work [24], we analyzed OLAP workloads

devised by students and expert analysts, looking for sequences of

common operations performed together when analysing data.We

identified 11 analysis patterns corresponding to different analysis

behavior. For example, focused explorations (which regularly

increase the level of detail and filtering by adding drill-downs and

filters), oscillating explorations (alternating drill-downs and roll-

ups with few filters), short explorations with few operations and

even explorations with repeated queries. We used a hierarchical

clustering algorithm, paired with a Contextual Edit Distance [23]

to cluster explorations representing the same behavior.

The present work is a continuation of our previous work, in

particular [24]. Themain differences are that wemake no assump-

tion about the type of queries in the workload (particularly, they

may not be multidimensional queries), and we have no ground

truth (i.e., no human manual inspection of each query) on the

workload.

Analyzing SQL logs. SQL workload analysis has recently at-

tracted attention beyond query optimization, for instance for

query recommendation [8], query autocompletion [16], or user

interest discovery [26]. All these works use the SDSS workload

for their tests. In [21], Milo and Somech identify and generalize

relevant previous sessions, in the REACT-IDAworkload, to gener-

ate personalized next-action suggestions to the user. In [33], they

study interestingness measures for mining workloads. Embedded

SQL code is analyzed in [34] to measure its quality, mainly for

maintainability purpose. The authors quantify quality based on

the number of operators (joins, unions), operands (tables, sub-

queries) and variables in the SQL code, experimenting with SQL

codes embedded in PL/SQL, COBOL and Visual Basic.

Jain et al. ran a number of tests on the SQLShare workload

[13], some of them being reported above, showing the diversity

and complexity of the workload. In [35], Vashistha and Jain an-

alyze the complexity of queries in the SQLShare workload, in

terms of the following query features: number of tables, number

of columns, query length in characters, numbers of operators

(Scan, Join, Filter), number of comparison operators (LE, LIKE,

GT, OR, AND, Count), and the query run-time. They define two

complexity metrics from these features: the Halstead measure

(traditionally used to measure programs complexity) and a linear

combination whose weights are learned using regression.

Finally, a recent work investigated various similarity met-

rics over SQL queries, aiming at clustering queries [17] for bet-

ter workload understanding. Queries are issued separately, not

within explorations, and are compared in terms of query struc-

ture, not in terms of SQL operations w.r.t. previous queries. Thus,

they capture users interests (e.g. which attributes are projected),

not the way user navigates among data. The authors run their

tests on smaller SQL workloads.

To our knowledge, this is the first attempt to learn human

analysis behavior in SQL workloads.

2.3 Indicators for sequence analysis
Other research communities, in particular mobility science, study

human behavior represented as sequences of actions. Data explo-

ration can be viewed through the prism of mobility science [11].

Indeed, an exploration is a sequence of user’s queries, where the

movement is no longer conducted in space but in the data space.
Thus, many indicators proposed for the analysis of mobility

sequences can be reused or adapted for the study of sequences

of queries. Mobility researchers explored sequences of activities

and tested the existence of simple universal rules underlying hu-

man movement like travel distance, top ranked visited locations,

predictability of human activity and origin-destination flows,



Techniques Description Visual. method
Statistical distribution

Length distribution Frequency distribution of sequence length in the dataset Boxplot

State distribution Frequency distribution of elements inside the sequences of the dataset Barplot

Vector description
ℓ1 norm Sum of vector coordinates. ∥𝑣 ∥

1
=

∑𝑛
𝑖=1 𝑣𝑖 Boxplot

Correlation Correlation of vector dimensions in the dataset Correlogram

Component analysis Frequency of vector components Barplot / Stackplot

Transitions
Origin-Destination matrix Number of transitions from a vector 𝑞𝑖 to 𝑞 𝑗 Chord diagram

Scattering and outliers

UMAP

Dimensional reduction. Visualization of complex elements in 2D Euclidean

spaces with a preservation of local topology

Euclidean projection

Table 1: Indicators for sequence and vector analysis

mainly studying recurring patterns/regularity in the sequence or

clustering mobility behavior ([4] presents an important survey).

In substance, results show that mobility is strongly characterized

by exponential distribution (e.g. heavy-tailed, Zipf) and people

constantly exploit a small set of repeatedly visited locations.

Inspired by these considerations, we propose to adapt a set

of indicators from mobility mining to analyse data explorations.

These complementary techniques, summarized in Table 1, high-

light different aspects of explorations.

This capacity to explain models, both for practical and ethical

issues, is a crucial point for the understanding of machine learn-

ing models. With this aim in mind, Guidotti and al. [10] suggested

some techniques, partially borrowed from these above, like statis-

tical methods and prototype selection elements, to explain black

box systems in order to make their results more interpretable and

understandable. In line with the vision of these techniques, we be-

lieve that the elaboration of indicators is essential to understand

and explain discovered behavior in complex clusters.

2.4 Clustering methods
The extraction of behavior from a dataset is a process usually

performed thanks to unsupervised machine learning. Indeed,

clustering methods are widely used for the discovery of human

behavior in datasets representing sequences of elements, in par-

ticular in sequences of mobility [14, 23, 27].

Clustering methods are based on similarity measures. A pair-

wise comparison of sequences results in a distance matrix that

is the input of the clustering process. Many methods have been

proposed for computing the similarity of categorical sequences.

Most of the approaches are based on Optimal Maching (OM)

methods [1], typical measures include those of the Edit Distance

family (see [22] for a review of methods and similarity measures).

In particular, the Contextual Edit Distance (CED) [23] is a gen-

eralization of Edit Distance, conceived for the comparison of

semantic sequences (an overview of CED measure is given in

Subsection 3.3).

However, the topology created by similarity measures for se-

quences is hard to apprehend. In particular, for OM methods,

spaces are often not euclidean nor metric. To the best of our

knowledge, the clustering algorithms able to deal with arbitrary

distances (not necessarily metrics) are PAM [28] (or K-medoid),

hierarchical clustering [15], density clustering (DBSCAN [9], OP-

TICS [3]) and spectral clustering [25], each one making different

hypothesis about cluster topology.

According to the similarity measure and the representation of

the sequences, dimensionality reduction methods can be used in

order to extract primary dimensions [14]. However, commonly

used methods like PCA can only be used for Euclidean spaces

in practice. Alternatively, methods like UMAP [20], allow the

reduction of a complex topology defined by an arbitrary metric

into a low Euclidean space, which facilitates the visualisation

of clustering results and enable the usage of other clustering

methods, in particular, those requiring an Euclidean space like

K-means [19]. In addition, UMAP offers a better preservation

of the data global structure, fewer hyperparameters to tune and

better speed than previous techniques like t-SNE [18].

In [22], we empirically compared several clustering methods

and similarity measures, in order to find the most adapted to se-

quences of semantic elements. The combination of CED measure

and UMAP reduction, paired with K-means, Spectral or DBSCAN

algorithms, outperformed all other combinations of methods.

3 EXPLORATION MODEL
This section introduces the description of queries and explo-

rations used all along the paper as well as their representation in

a space of SQL operations.

The SQLShareworkload contains 11,137 SQL statements, among

which 10,668 correspond to SELECT statements. The remaining

statements (mainly updates, inserts and deletes) were filtered.

This workload was fragmented in 2,809 explorations containing

among 1 and 98 queries [29].

3.1 Query and exploration abstractions
In what follows, we use the term query to denote the text of

an SQL SELECT statement. In [29], queries are represented as a

collection of fragments extracted from the query text, namely,

projections, selections, aggregations and tables. We extend such

representation adding group by and order by sets. These frag-

ments abstract the most descriptive parts of a SQL query, and

are the most used in the literature (see e.g., [8, 16, 21]). But note

that we do not restrict to SPJG (selection-projection-join-group)

queries. Indeed, we consider all queries in the SQLShare work-

load, some of them containing arbitrarily complex chains of sub-

queries.

Definition 3.1 (Query). A query over database schema 𝐷𝐵 is a

6-uple 𝑞 = ⟨𝑃, 𝑆,𝐴,𝑇 ,𝐺,𝑂⟩ where:



Id Name Abbrev. Description Computation
𝐹1 NAP +P Number of added projections 𝐹1 (𝑞𝑘 , 𝑞𝑘−1) = |𝑃𝑘 − 𝑃𝑘−1 |
𝐹2 NDP -P Number of deleted projections 𝐹2 (𝑞𝑘 , 𝑞𝑘−1) = |𝑃𝑘−1 − 𝑃𝑘 |
𝐹3 NAS +S Number of added selections 𝐹3 (𝑞𝑘 , 𝑞𝑘−1) = |𝑆𝑘 − 𝑆𝑘−1 |
𝐹4 NDS -S Number of deleted selections 𝐹4 (𝑞𝑘 , 𝑞𝑘−1) = |𝑆𝑘−1 − 𝑆𝑘 |
𝐹5 NAA +A Number of added aggregations 𝐹5 (𝑞𝑘 , 𝑞𝑘−1) = |𝐴𝑘 −𝐴𝑘−1 |
𝐹6 NDA -A Number of deleted aggregations 𝐹6 (𝑞𝑘 , 𝑞𝑘−1) = |𝐴𝑘−1 −𝐴𝑘 |
𝐹7 NAT +T Number of added tables 𝐹7 (𝑞𝑘 , 𝑞𝑘−1) = |𝑇𝑘 −𝑇𝑘−1 |
𝐹8 NDT -T Number of deleted tables 𝐹8 (𝑞𝑘 , 𝑞𝑘−1) = |𝑇𝑘−1 −𝑇𝑘 |
𝐹9 NAG +G Number of added group by expressions 𝐹9 (𝑞𝑘 , 𝑞𝑘−1) = |𝐺𝑘 −𝐺𝑘−1 |
𝐹10 NDG -G Number of deleted group by expressions 𝐹10 (𝑞𝑘 , 𝑞𝑘−1) = |𝐺𝑘−1 −𝐺𝑘 |
𝐹11 NAO +O Number of added order by expressions 𝐹11 (𝑞𝑘 , 𝑞𝑘−1) = |𝑂𝑘 −𝑂𝑘−1 |
𝐹12 NDO -O Number of deleted order by expressions 𝐹12 (𝑞𝑘 , 𝑞𝑘−1) = |𝑂𝑘−1 −𝑂𝑘 |

Table 2: Query features

(1) 𝑃 is a set of expressions (attributes or calculated expres-

sions) appearing in the main SELECT clause (i.e. the out-

ermost projection). We deal with * wild card by replacing

it by the list of attributes it references.

(2) 𝑆 is a set of atomic Boolean predicates, whose combina-

tion (conjunction, disjunction, etc.) defines the WHERE

and HAVING clauses appearing in the query. We consid-

ered indistinctly all predicates appearing in the outermost

statements as well as in inner sub-queries.

(3) 𝐴 is a set of aggregation expressions appearing in the main

SELECT clause (i.e. the outermost projection).

(4) 𝑇 is a set of tables appearing in FROM clauses (outermost

statement and inner sub-queries). Views, sub-queries and

other expressions appearing in FROM clauses are parsed

in order to obtain the referenced tables.

(5) 𝐺 is a set of expressions appearing in GROUP BY clauses

(outermost statement and inner sub-queries).

(6) 𝑂 is a set of expressions appearing in ORDER BY clauses

(outermost statement and inner sub-queries).

Note that although we consider tables, selections, group by

sets and order by sets occurring in inner sub-queries, we limit to

the outermost queries for projections and aggregations, as they

correspond to attributes actually visualized by the user. We in-

tentionally remain independent of presentation and optimization

aspects, specially the order in which attributes are projected (and

visualized by the user), the order in which tables are joined, etc.

All the queries we considered are supposed to be well formed,

and so we do not deal with query errors.

Finally, an exploration is a sequence of queries of a user.

Definition 3.2 (Exploration). Let 𝐷𝐵 be a database schema. An

exploration 𝑒 = ⟨𝑞1, . . . , 𝑞𝑝 ⟩ over 𝐷𝐵 is a sequence of queries

over 𝐷𝐵. We note 𝑞 ∈ 𝑒 if a query 𝑞 appears in the exploration 𝑒 ,

and 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛(𝑞) to refer to the exploration where 𝑞 appears.

3.2 Query features
For each query, we extract a set of simple features computed

from the query text and its relationship with previous query in

an exploration. The set of features is inspired from our previous

work [6, 7, 24], which models OLAP queries as a set of features

capturing typical OLAP navigation. It intends to capture the set

of SQL operations that express one query w.r.t. the previous one

(e.g. adding a projection, which means that a query projects an

additional attribute w.r.t. the previous one).

Table 2 presents the considered features, where added (resp.,

deleted) indicates the modification made compared to the pre-

vious query. In their definitions, let 𝑞𝑘 = ⟨𝑃𝑘 , 𝑆𝑘 , 𝐴𝑘 ,𝑇𝑘 ,𝐺𝑘 ,𝑂𝑘 ⟩
be the query occurring at position 𝑘 in the exploration 𝑒 over

the instance 𝐼 of schema 𝐷𝐵. Features are computed compar-

ing the query 𝑞𝑘 to the previous query in the exploration 𝑒 ,

𝑞𝑘−1 = ⟨𝑃𝑘−1, 𝑆𝑘−1, 𝐴𝑘−1,𝑇𝑘−1,𝐺𝑘−1,𝑂𝑘−1⟩. For the first query
of 𝑒 , i.e. 𝑞1, we consider as predecessor the "empty" query 𝑞0 =

⟨∅, ∅, ∅, ∅, ∅, ∅⟩. All the features are defined for 𝑘 ≥ 1.

In what follows, we represent a SQL query in the space of

query features, i.e. as a 12-dimensional vector, each position

corresponding to one of the features 𝐹1 ...𝐹12 described in Table 2.

This representation is at the core of our proposal for computing

the similarity between queries. It focuses in operations between

queries and is independent of the underlying database, i.e. a given

sequence of operations, even on different databases, will result

in the same sequence of query vectors.

Definition 3.3 (Query vector). Let 𝑞 be a query and 𝑞′ its pre-
decessor in an exploration. A query vector is a 12-dimensional

vector 𝑣 = ⟨𝑣1, ...𝑣12⟩ where 𝑣𝑖 = 𝐹𝑖 (𝑞, 𝑞′).
Example 1. Consider an exploration 𝑒1 composed of 4 queries:

𝑞1: SELECT species FROM All3col;
𝑞2: SELECT species FROM All3col WHERE longitude < 0;
𝑞3: SELECT species, longitude, latitude FROM All3col;
𝑞4: SELECT species, longitude FROM All3col ORDER BY species;

Vector for 𝑞1, ⟨1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0⟩, indicates an added
projection (species) and an added table (All3col) w.r.t. the empty
query. Vectors for 𝑞2, 𝑞3 and 𝑞4 indicate the differences w.r.t. previ-
ous queries, an added selection (longitude <0 ), 2 added projections
(longitude, latitude) with a deleted selection, and 1 deleted projection
with an added order by attribute (species): ⟨0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0⟩,
⟨2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0⟩, ⟨0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0⟩, resp. □

As vectors are long and may have many 0-valued coordi-

nates, we concisely represent them by listing the occurring op-

erations (the ones not 0-valued) in the form "±𝑛𝐿", where 𝐿 ∈
{𝑃, 𝑆,𝐴,𝑇 ,𝐺,𝑂} and 𝑛 ≥ 1 (omitted if 1). Letters and signs refer

to features (as abbreviated in Table 2) and 𝑛 represents feature

magnitude. For instance, the queries of Example 1 can be noted

+P+T, +S, +2P-S, -P+O, resp.

Remark that this representation captures both, the richness

of the exploration in terms of query fragments (projections, se-

lections, etc.), captured by the vector of the first query in the

exploration (which is compared to an empty query), and the differ-

ences among consecutive queries, captured by the vectors of the



following queries. As a consequence, in some explorations, the

norm of the first vector may be greater that those of the follow-

ing ones. For instance, vectors of exploration 9 of the SQLShare

workload are: +10P+T, +T-T and +S+T-T.

Finally, in some analyses in Section 5, we focus on the type

of operation, disregarding the magnitude (e.g. how many pro-

jections are concerned) and sign (addition or deletion). To this

end, we define aggregated 6-dimensional vectors (one dimen-

sion per type of operation). Analogously, they can be concisely

represented with letters P,S,A,T,G,O.

Definition 3.4 (Aggregated vector). Let 𝑣 = ⟨𝑣1, ...𝑣12⟩ be a

query vector. An aggregated vector is a 6-dimensional vector

𝑤 = ⟨𝑤1, ...𝑤6⟩ where𝑤𝑖 = 1 if (𝑣2𝑖−1 > 0) or (𝑣2𝑖 > 0), 0 else.

Example 2. Aggregated vectors for queries in Example 1 are:
⟨1, 0, 0, 1, 0, 0⟩, ⟨0, 1, 0, 0, 0, 0⟩, ⟨1, 1, 0, 0, 0, 0⟩, ⟨1, 0, 0, 0, 0, 1⟩, resp.
In concise notation, they are sketched: PT, S, PS and PO. □

3.3 Query and exploration similarity
We use cosine similarity for computing similarity between query

vectors. This measure is well suited to compute the similarity

between two vectors and is normalized in [0, 1]. In this way, it

favors more the nature of SQL operations than their number.

To deal with null vectors, which are frequent in the SQLShare

dataset (see Section 4), we set border cases as follows: (i) two

null vectors are considered identical (similarity is 1), and (ii) one

null vector is considered as completely different from a non-null

vector (similarity is 0). Formally, given two query vectors 𝑣 and

𝑣 ′, cosine similarity is calculated as follows:

cos(𝑣, 𝑣 ′) =


1 if ∥𝑣 ∥ = 0 and ∥𝑣 ′∥ = 0

0 if ∥𝑣 ∥ = 0 or ∥𝑣 ′∥ = 0

𝑣 ·𝑣′
∥𝑣 ∥ ∥𝑣′ ∥ else

(1)

In order to compare explorations, we pair CED measure with

the cosine similarity measure among query vectors.

CED is a generalization of the Edit Distance, adapting cost

computation to typical characteristics of semantic sequences. In

particular, CED answers the following requirements: (i) edition

cost depends on the similarity of nearby elements (the more

similar and closer the elements, the lower the cost of operations),

(ii) edition of repeated close elements has low cost, and (iii) similar

and close elements can be exchanged with a low cost.

We describe CED computation as defined in [23] and tuned

in [24]. Firstly, CED modifies the cost function 𝛾 of Edit Dis-

tance to take into account the local context of each element in

the sequence. Consider contextual edit operations of the form

𝑂 = (𝑜, 𝑒, 𝑞, 𝑘), denoting the operation 𝑜 ∈ {add, mod, del} on
exploration 𝑒 = ⟨𝑞1, ...𝑞𝑛⟩ at index 𝑘 by query 𝑞. Let O be the

set of all possible contextual edit operations, the cost function

𝛾 : O → [0, 1] is defined as:

𝛾 (𝑂) = 1 − max

𝑖∈⟦1,𝑛⟧
{𝑠𝑖𝑚(𝑞𝑖 , 𝑞) × 𝑣𝑖 (𝑂)} (2)

where: 𝑠𝑖𝑚 is a similarity measure between two queries, com-

puted as the cosine similarity of query vectors, and 𝑣 (𝑂) ∈ [0, 1]𝑛
is a contextual vector which quantifies the notion of proximity

between queries. Usually, bigger |𝑖 −𝑘 | is, lesser 𝑣𝑖 (𝑂). As in [24],

we use: 𝑣𝑖 (𝑂) = exp

(
− 1

2

(
2

√
𝑘+1(𝑖−𝑘)
|𝑒 |

)
2

)
CED is computed as Edit Distance, using dynamic program-

ming and Wagner-Fisher algorithm [36].

In next sections we describe how this representation of queries

and operations is used for profiling the SQLShare workload and

clustering explorations.

4 DATASET PROFILING
The SQLShare workload contains 2,809 explorations, totalizing

10,668 queries. Length of explorations follows the Zipf’s law. In-

deed, 1,379 explorations are one-shot (i.e. they contain only one

query), median exploration contains 2 queries and the longest

one contains 98 queries. Figure 1a shows the boxplot of the dis-

tribution.

The number of operations in a query (w.r.t. previous query)

also follows the Zipf’s law. Noticeably, 1,289 out of 10,668 queries

have no operations w.r.t. previous query. This happens when a

query is identical to previous one (947 queries) but also when

there are only visualisation or optimisation changes (e.g. chang-

ing the order of projected attributes or joined tables) and when

changes concern advanced options not captured by our features

(e.g. changing a regular join by an outer join, or changing the

ascending/descending sense of ordering). Mean query has 4 op-

erations and the longest one has 510 operations. The latter cor-

respond to a query of the form "SELECT * FROM T" where T

contains a large number of columns. Figure 1b shows the box-

plot of the distribution. We notice that many outliers correspond

to large first queries (i.e. containing many fragments, specially

projections) which lead to long query vectors when compared to

the empty query 𝑞0.

Most frequent operations are adding and deleting projections

(+P and -P), adding tables (+T) and adding selections (+S). Less

frequent operations concern group by (+G and -G) and order by

(+O and -O). Figure 1c shows the complete distribution.

Figures 1d and 1e complement the distribution of operations by

highlighting the combinations of operations that are frequently

performed together. Precisely, Figure 1d shows the top 10 most

frequent query vectors, evidencing that null vectors (∅) are the
most frequent, followed by a change in selections (+S-S) and a

change in projections (+P-P). Some frequent vectors are surpris-

ing, as changing one table without changing anything else (+T-T).

This behavior corresponds to users updating and uploading a

dataset and then evaluating the same query in the new dataset.

In addition, Figure 1e shows the top 10 most frequent aggregated

query vectors, and consequently illustrating the most frequent

types of operations disregarding vector magnitude and sign. Most

frequent aggregated vectors concern changes in projections, se-

lections and tables (PST) and subsets of these operations (PT, P

and S). Interestingly, null vectors (∅) come in fifth position. These

top 10 aggregated vectors cover 9,205 queries (82.3% of the total

number of queries).

Figure 1f goes a step forward showing themain flows
2
between

aggregated query vectors, by means of a Chord diagram. A flow

⟨𝐴, 𝐵⟩ indicates queries with vector A followed by queries with

vector B. It is represented by an arrow (the origin being closer

to the external circle), whose magnitude indicates its frequency.

For example, the flow from 𝑃𝑆𝑇 to 𝑆 (in purple) represent 𝑃𝑆𝑇

vectors followed by 𝑆 vectors. We can observe that many auto-

flows (e.g. for 𝑆 , 𝑃 , 𝑃𝑆𝑇 ). Interestingly, many null vectors (∅) are
followed by other null vectors or by simple changes (𝑃 and 𝑆).

2
Main flows are the ones such that the number of transitions is greater than 5% of

the biggest flow.
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Figure 1: Dataset profiling: (𝑎) Boxplot of exploration lengths, (𝑏) Boxplot of number of operations in queries (ℓ1 norm),
(𝑐) Frequency distributions of the operations, (𝑑) Top 10 query vectors, (𝑒) Top 10 aggregated query vectors, and (𝑓 ) Flows
between aggregated vectors

5 CLUSTERING OF EXPLORATIONS
This section presents our proposal for clustering explorations,

defining the experimental protocol and implementation setting.

We also present a large analysis of the obtained clusters, explain-

ing the analysis behaviors they represent.

5.1 Experimental protocol
Based on the empirical results of [22], we use the combination of

CED [23], UMAP [20] and DBSCAN [9], that best performed on

sequences of semantic elements. Indeed, as will be shown later

in this section, DBSCAN is well suited to the topology resulting

from CED and UMAP when applied on the SQLshare workload.

5.1.1 Implementation and settings. We used the CED imple-

mentation and setting described in [24], which is recalled in Sub-

section 3.3. Concerning UMAP, we use the umap-learn python

library 0.4.3, where𝑚𝑖𝑛_𝑑𝑖𝑠𝑡 is set to 0.01, 𝑛_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 to 200 (i.e.

around 10% of the dataset) and pseudo random number generator

seed is 42. Finally, according to the UMAP projection, we use the

DBSCAN clustering algorithm from the sklearn python library

0.22.2, applied on the previous UMAP embedding, with 𝑒𝑝𝑠 = 1

and𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 10.

All experiments are available and can be reproduced by run-

ning our Python notebook
3
in Google Colab or Jupyter environ-

ments. In particular, all code generating the graphs, the dataset

3
https://colab.research.google.com/drive/1Yt7Q7AFghkcxdea2UicccMCmkaX7dRMD?

usp=sharing
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Figure 2: Correlation matrix between all query features

profiling, the clustering analysis and further experiments are

available in the notebook.

5.1.2 Protocol description. To further justify our choice of

methods, we performed some preliminary tests on workloads

of explorations having a ground truth. Specifically, we used the

workloads of OLAP explorations described in [24], and obtained

comparable results for the artificial dataset and improved results

for the explorations of real users (Ipums dataset). These results

are available in the notebook; we omit them here for lack of space.

Remark that as features are lowly correlated (correlation matrix

is shown in Figure 2), we decided to keep all of them. A PCA

analysis confirmed this choice.

https://colab.research.google.com/drive/1Yt7Q7AFghkcxdea2UicccMCmkaX7dRMD?usp=sharing
https://colab.research.google.com/drive/1Yt7Q7AFghkcxdea2UicccMCmkaX7dRMD?usp=sharing
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Figure 3: Whole clustering: (𝑎) UMAP Reduction and DBSCAN partition (cluster sizes in legend), (𝑏) Boxplots of explo-
ration lengths, (𝑐) Boxplot of number of operations in queries (ℓ1 norm) (𝑑) Stack plot of the distribution of the operations
in each cluster (colors are the ones used in Figure 1c)

Finally, given the large number of one-shot explorations, as

shown in Figure 1a), we decided to test two clustering configura-

tions: (i) whole clustering (on the whole dataset), and (ii) restricted
clustering (excluding one-shot explorations). Indeed, the unique

query of such explorations, when compared to the empty query

(𝑞0), are 0-valued for features 𝐹2, 𝐹4, 𝐹6, 𝐹8, 𝐹10 and 𝐹12 (which

count the deleted query fragments), introducing a bias. The re-

stricted clustering aims to further analyse longer explorations,

revealing richer patterns.

Later in the section, we describe the results of both clustering

configurations.

5.2 Results of the whole clustering
The clustering of the whole dataset resulted in 7 clusters. Figure

3a plots the UMAP reduction of the dataset to a 2D Euclidean

space. Clusters had varying sizes. Indeed, there are 3 large clusters

(𝐶1 to 𝐶3), which explorations exhibit frequent behavior, and 4

small clusters (𝐶4 to 𝐶7) concerning less frequent behavior.

As expected, the length of explorations had a big impact in

clustering results. As shown in Figure 3b, clusters 𝐶1 and 𝐶2

contain only explorations having at least 2 queries while the

remaining clusters contain a majority of one-shot explorations.

Indeed, clusters 𝐶4 to 𝐶6 contain some explorations of length

2, and cluster 𝐶3 contains some longer ones. Cluster 𝐶7 only

contains one-shot explorations. On average, cluster 𝐶1 contains

longer explorations than 𝐶2, including the longest ones.

The overall distribution of operations for clusters 𝐶1 and 𝐶2

is very similar (see Figure 3d), however, clusters differentiates in

the number of operations among consecutive queries (captured

by the ℓ1 norm of query vectors, shown in Figure 3c) and in their

flows. Although explorations in cluster 𝐶1 are longer than those

in cluster𝐶2, they have less operations (median=2). Furthermore,

the most frequent aggregated query vectors, listed in Table 3,

confirm this observation. In particular, aggregated vectors in

𝐶1 include most of the null vectors, but also many vectors rep-

resenting only one type of operation (esp. 𝑆 and 𝑃 ). However,

many frequent vectors in cluster 𝐶2 concern many operations.

We further analyse these two clusters in next subsection.

Cluster 𝐶3 is the largest one and contains a majority of one-

shot explorations. Queries in its explorations contain many opera-

tions (median=6), in majority projections. There are two frequent

aggregated vectors: 𝑃𝑇 and 𝑃𝑆𝑇 .

Clusters 𝐶4 to 𝐶7 are smaller, contain mostly one-shot explo-

rations, but evidencing very different behavior. Queries in cluster

𝐶4 involve many operations (median=6), concerning many se-

lections and tables. The most frequent aggregated vector is 𝑃𝑆𝑇 .

Queries in cluster 𝐶5 also involve many operations (median=6),

concerning many projections and aggregations, some grouping



Clust id 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝐶7
R
a
n
k

1 ∅ (1288) P (736) PT (775) PST (62) PAT (29) PT (69) PTO (10)

2 S (1070) PST (627) PST (319) PSAT (9) PATG (28) T (6) PSATO (2)

3 P (787) S (467) P (48) PSTO (5) PATGO (15) PST (5) PSTO (2)

4 PST (645) PT (441) PSTO (13) PSATG (4) PSATGO (7) PAT (2) PSO (1)

5 PT (296) PS (225) PTO (6) PSATGO (3) PSTG (5) PSTO (2)

6 PA (210) PA (137) PATO (3) PS (3) PSATG (5)

7 T (187) T (126) PTG (3) S (1) PA (2)

8 O (187) O (94) ∅ (1) PG (2)

9 PS (176) PSTO (81) PSO (1) PSTGO (1)

10 ST (119) PAT (75)

Cover representation 88% 72% 100% 100% 100% 100% 100%

Table 3: Top 10 frequent aggregated query vectors with frequency (in brackets)
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ration lengths, (𝑐) Boxplot of number of operations in queries (ℓ1 norm) (𝑑) Stack plot of the distribution of the operations
in each cluster (colors are the ones used in Figure 1c)

but few selections. The most frequent aggregated vectors are

𝑃𝐴𝑇 and 𝑃𝐴𝑇𝐺 . There are two types of queries in cluster 𝐶6, as

evidenced in Figure 3c. Most queries involve only 2 operations

(+P+T), the others concern multiple operations (multiple tables

and many projections). The most frequent aggregated vector

is 𝑃𝑇 . Cluster 𝐶7 is the smaller one (only 15 explorations). Its

queries have fewer operations, concerning many projections and

ordering. The most frequent aggregated vector is 𝑃𝑇𝑂 .

5.3 Results of the restricted clustering
The restricted clustering resulted in 6 clusters, plot in Figure 4a.

There are two well differentiated clusters (𝐷1 and𝐷5) and a dense

zone including a large cluster (𝐷2) and 3 smaller ones (𝐷3, 𝐷4

and 𝐷6). It is here, that DBSCAN best exploits the space topology.

Cluster analysis is shown in Figure 4 and the main flows (for the

bigger clusters) are shown in Figure 5.

Explorations coming from cluster 𝐶1 are distributed between

cluster 𝐷1 and 𝐷5 (excepting 1 exploration that goes to cluster
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Figure 5: Flows in main restricted clusters. Left to right: 𝐷1, 𝐷2, 𝐷3 and 𝐷5

Median Median Common Freq. Workload Pattern

Cluster exp. length nb. op. op. agg. vect. coverage nickname

O
n
e
-
S
h
o
t

𝐶3 1 6 +P +T PT, PST 41% Full PROJECTIONS
𝐶4 1 6 +S +T +P PST 3% FILTER enthusiast
𝐶5 1 7 +P +A +G PAT, PATG 3% AGGREGATOR
𝐶6 1 2 +T +P PT 3% Table JOINER
𝐶7 1 5 +P +O +T PTO < 1% Ordered

L
o
n
g
e
r
e
x
p
.

𝐷1 8 2 +P -P +S ∅, S, P, PST 16% Long & Focused
𝐷2 3 6 +P -P +T P, PST, PS, PT 19% PROJECTION chains
𝐷3 4 3 +P +S -P -S S, PST, P 7% FILTER chains
𝐷4 2 3 +P +T -T T, PST, PT 2% Dataset reloader
𝐷5 2 0 +P +T +S ∅, PT, PST 5% Repeater
𝐷6 3 3 +P +O +T O 2% ORDER maniac

Table 4: Summary of learned behavior: median exploration length, median number of operations per query, common
operations, frequent aggregated vectors and workload coverage

𝐷2). Cluster 𝐷1 contains the longest explorations and the highest

median number of explorations. Its queries concern operations

of varied types, most of them limiting to 1 or 2 operations. Fre-

quent aggregated vectors are ∅, 𝑆 , 𝑃 and 𝑃𝑆𝑇 . Flows illustrates

many repetitions of the same operations but also the alternation

of operations. Cluster 𝐷5 contains shorter explorations. 62 % of

queries are identical to previous ones (empty vector). In the re-

maining ones, projections are predominant, with some selections

and tables. Frequent aggregated vectors are ∅, 𝑃𝑇 and 𝑃𝑆𝑇 . Flows

evidence that first queries in the explorations have typical vectors

(e.g. 𝑃𝑇 , 𝑃𝑆𝑇 ) and next queries are identical (∅).
Explorations coming from cluster 𝐶2 are distributed among

clusters 𝐷2, 𝐷3, 𝐷4 and 𝐷6, in the dense zone. In addition, the 40

explorations coming from the other clusters (𝐶3 to 𝐶6) mainly

goes to 𝐷2. The four clusters contain, in average, shorter explo-

rations than cluster 𝐷1, with more operations per query. Queries

in cluster 𝐷2 concern operations of varied types, most of them

being projections. Frequent aggregated vectors are 𝑃 , 𝑃𝑆𝑇 , 𝑃𝑇

and 𝑃𝑆 . Flows evidence that explorations concern chains of the

same operations (visible in the autoflows). There are more se-

lections in queries of cluster 𝐷3, frequent aggregated vectors

being 𝑆 , 𝑃𝑆𝑇 and 𝑃 . Flows show that first queries (mainly with

vectors 𝑃𝑇 , 𝑃𝑆 and 𝑃𝑆𝑇 are followed by chains of selections, and

some marginal projections. Queries in cluster 𝐷4 concern many

changes in tables, and more aggregations that previous clusters.

Frequent aggregated vectors are 𝑇 , 𝑃𝑇 and 𝑃𝑆𝑇 . Finally, queries

in cluster 𝐷6 concern most of the order by operations, but all

types of operations are present. The most frequent aggregated

vector is 𝑂 .

5.4 Learned behavior
The analysis of both clustering configurations allowed the dis-

covery of several patterns, representing common or less-frequent

behavior. The most prominent aspects of each pattern are sum-

marized in Table 4. This section briefly highlights our findings.

Firstly, 49% of explorations are one-shot. They differentiate in

the predominant operations in the unique query. We discovered

5 patterns. The most common one (𝐶3) consist in evaluating a

simple query, projecting many attributes, possibly to verify that

the dataset was correctly uploaded or just looking at the data.

Less frequent patterns, also concerning the evaluation of a sim-

ple query, differentiate in the used SQL operations, namely, many

selections (𝐶4), aggregation and grouping (𝐶5), join of multiple

tables (𝐶6), and ordering (𝐶7). The latter is an outlier behavior,

only concerning 15 explorations. These patterns suggest a more

specific analysis of data (w.r.t. the common behavior in 𝐶3), tak-

ing advantage of more SQL operations. This may reflect users’

preferences on some SQL clauses, but may also reflect users’

expertise.

The remaining 51% of explorations contain between 2 and 98

queries, median being 4 queries. We discovered 6 patterns:

A common pattern (𝐷1) reveals long explorations, with few

operations per query, sometimes repeating queries, which trans-

late a focused data analysis. Many types of operations are used,

but mostly once per query, suggesting a conscious use of SQL.

Another common pattern (𝐷2) reveals short explorations, with

more operations per query. Projections are omnipresent, but fre-

quently combinedwith other operations.What is interesting here,



is the chaining of the same types of operations along the explo-

ration. It can be exploited for providing personalized suggestions

to users.

Two interesting but less frequent patterns (𝐷3 and𝐷5) concern

a classical first query, followed by chains of selections (𝐷3) or

repeated queries (𝐷5). In both cases, explorations are shorter

than in 𝐷1 but reveal some kind of analysis. While 𝐷3 suggest

a meticulous study of the dataset, 𝐷5 includes many novices

users trying to understand how SQL works. A similarly but more

complex pattern (𝐷6) involve more richer first queries, followed

by changes in the ordering of projected expressions. In addition

to a good use of SQL, this behavior may correspond to users

looking for the best way of reporting data.

The last pattern (𝐷4), also less frequent, exhibits a particular

behavior. It concerns many changes in the datasets (frequently,

the unique operation in the query is a change in the FROM clause).

This corresponds to the upload of a new dataset and the execution

of the same query on the new dataset, and suggests data analysts

dealing with quality issues in their datasets.

6 CONCLUSION AND FUTUREWORKS
This paper presented an original solution to learn analysis be-

havior in SQL workloads. The understanding of users’ analysis

patterns has great implications for query recommendation, mon-

itoring, optimization and, more generally, providing better IDE

support. The proposal includes an abstraction of queries and

explorations in the space of SQL operations, a set of similarity

functions tailored for SQL queries and explorations, and an inno-

vative clustering process taking advantage of UMAP reduction

for analysing a complex space.

The approach was tested on a real workload, SQLShare, al-

lowing the extraction of 11 analysis patterns including 3 typical

behaviors: one-shot simple explorations, short exploratory ex-

plorations, and longer more focused ones, but also less-frequent

behavior evidencing the punctual use or the chaining of spe-

cific SQL operations. We believe that the identification of such

behavior should be at the kernel of more intelligent IDE tools.

In this paper we used a large palette of indicators for profiling

the workload and analyzing the obtained clusters (some addi-

tional ones are described in our notebook). In next future, we

would like to test additional indicators, specifically concerning

how focused are the explorations (i.e. distinguishing flows at the

beginning and end of explorations), and how complex are queries,

both in terms of expressiveness and usage of advanced clauses

and functions (here, we also need to extract additional features).

In addition, we would like to classify users according to their

analysis behaviors. SQLShare workload, with its 57 users and

their 3,336 datasets, is a rich source for further experiments. Of

course, there are many one-shot users (already reported in [13]),

but our preliminary analyses reveal very interesting behavior.

Finally, wewould like to test our proposal in further workloads,

specially those including queries generated by bots, as SDSS.

Authors of [32] acknowledge the difficulty of extracting human

sessions from all those collected: "We failed to find clear ways to
segment user populations. [...] Interactive human users were 51%
of the sessions, 41% of the Web traffic and 10% of the SQL traffic.
We cannot be sure of those numbers because we did not find a very
reliable way of classifying bots vs mortals." Developping tools

helping in the recognition and analysis of hand-written queries

is a nice challenge.
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