
An In-depth Investigation of Large-scale RDF Relational
Schema Optimizations Using Spark-SQL
Mohamed Ragab

Data Systems Group, University of Tartu
mohamed.ragab@ut.ee

Riccardo Tommasini
Data Systems Group, University of Tartu

riccardo.tommasini@ut.ee

Feras M. Awaysheh
Data Systems Group, University of Tartu

feras.awaysheh@ut.ee

Juan Carlos Ramos
Data Systems Group, University of Tartu

jramos@ut.ee

ABSTRACT
This paper discusses one of the most significant challenges of
large-scale RDF data processing over Apache Spark, the relational
schema optimization. The choice of RDF partitioning techniques
and storage formats using SparkSQL significantly impacts query
performance. The impact of the relational schemas and the un-
derlying data storage formats is indisputable; they significantly
affect the query performance. Nevertheless, the trade-offs in dif-
ferent configurations have not been a subject of intensive study
in the literature. This paper presents an in-depth investigation for
practitioners to understand such trade-offs and their best prac-
tices. It also reports on the pitfalls behind the implementation
SPARQL optimizations over SparkSQL. Our experiments provide
insights into these schemas’ relative strengths by comparing
three different partitioning techniques and four other storage
formats. Our results draw a better understanding of the current
State-Of-The-Art (S.O.T.A) and pave the way for a wide range
of best practices and systematically tuning the performance of
distributed systems to handle vast RDF data.

1 INTRODUCTION
Currently, we are witnessing an enormous amount of widely
available RDF datasets [19]. Centralized RDF engines, e.g., RDF-
3X [13] and gStore [26], provide native ways for processing/-
querying RDF datasets with the full expressive capabilities of
SPARQL. Yet, they can not handle large-scale RDF datasets effec-
tively [2, 9]. The need for processing large RDF datasets calls for
innovative solutions to store, analyze, and query these massive
RDF datasets [2]. This call leads the community to leverage Big
Data (BD) processing frameworks like Apache Spark [25] to
process large RDF datasets [3].

BD platforms excel in the analytical processing of relational
data. The literature includes several attempts that leverage such
capabilities to analyze RDF data [2, 17]. In practice, utilizing
BD engines for RDF relational processing requires storing RDF
data using a relational schema and translating SPARQL queries
into equivalent SQL ones. On the same note, BD platforms are
designed to scale horizontally [7]. However, the choice of the
right schema can significantly impact the performance of query
processing [18]. Moreover, choosing the right partitioning tech-
nique also returns with variant query runtime performance [4].
In this regard and from a BD perspective, we cannot ignore the
variety of data formats [11]. Given the complexity of the solu-
tion space, i.e., relational schema, partitioning technique, storage
format, current works focus on one dimension at a time. How-
ever, the relevance of a comprehensive analysis of the trade-offs

© Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

among these dimensions is of paramount importance [3] yet is
still missing.

In this paper, we try to fill this research gap by experimen-
tally evaluating SPARQL on top of SparkSQL. In particular, our
analysis focuses on existing RDF relational schemas and their
state-of-the-art improvements. To this end, we present a sys-
tematic and comparative evaluation of the query performance
considering (i) 𝑡ℎ𝑟𝑒𝑒 RDF partitioning techniques (most suit-
able for relational nature of data in Spark-SQL), i.e., Horizontal,
Subject-based, and Predicate-based partitioning and (ii) 𝑓 𝑜𝑢𝑟 dif-
ferent well-established storage formats, i.e., ORC, CSV, Parquet,
and Avro [15, 16]. In this way, our work differs from previous
ones [21, 22] that only focus on the complexity of the workloads
and the size of the data.

The contribution of this paper is threefold. (i) First, it uses
SparkSQL to validate the performance of RDF schema advance-
ments (i.e. ExtVP andWPT) compared to their baseline opponents
(i.e PT, and VP). (ii) Second, it empirically analyzes the effect of
partitioning techniques on the ExtVP and WPT schema runtime
performance. (iii) Third, it tests the effects of multiple distributed
storage row and columnar-oriented file formats on HDFS. Finally,
it outlines the best practices and recommendations that help
in achieving the best RDF query performance. Overall, the pa-
per findings guide the realization of next-generation large-scale
RDF solutions over Apache Spark by optimizing the relational
schemas.

The remainder of the paper is organized as follows: section 2
presents an overview of the required background information
and key concepts necessary to understand our study. Section 3
discusses the experimental methodology. Section 4 presents the
benchmarking scenario and the experimental setup. Section 5
presents the paper results, while we provide a comprehensive
discussion in section 6. Section 7 presents the related work, posi-
tioning this paper in the context of other survey on RDF process-
ing using BD frameworks. Finally, section 8 concludes the paper
and presents future works.

2 BACKGROUND
In this section, we present the information that is necessary to
understand the content of this paper. We assume that the reader
is familiar with the RDF data model and the SPARQL query
language.

2.1 Apache Spark & SparkSQL
Apache Spark is currently the de-facto BD engine [25]. It is one
of the most active and widely-used large-scale data processing
systems in both industry and academia [5]. It mainly adopts
in-memory distributed computing of large scale data analytics.

SparkSQL is a relational package built on top of Apache Spark
[5] with support for the SQL interfacewhile providing capabilities
for structured and semi-structured data.

2.2 RDF Relational Schema
The most intuitive approach to follow for representing RDF into
a relational structure is the Single Statement Table Schema (ST),
which requires storing RDF datasets in a single triples table of
three columns that represent components of the RDF triple, i.e.,
Subject, Predicate, and Object. This solution is the simplest, and
it is commonly adopted by several existing open-source RDF
triplestores, e.g., Apache Jena, RDF4J, and Virtuoso. However, it
inevitably increases the number of required self-joins for long
chains SPARQL query evaluation when they run on top of rela-
tional SQL systems.

Vertically Partitioned Tables Schema (VP) is an RDF stor-
age schema proposed to mitigate the performance issues of the ST
schema. It aims to speed up the queries over RDF triple stores [1].
This schema is simple to design; the RDF triples table is decom-
posed into a table of two columns (Subject,Object) for each unique
property in the RDF dataset.

ExtendedVertical Partitioning schema (ExtVP) is a query-
driven optimization that aims at minimizing the input size of
the data during query evaluation [22], inspired by the semi-Join
reductions. In particular, ExtVP minimizes data skewness and
eliminates dangling triples (i.e. triples that do not have a joining
partner or do not contribute to any join in the SPARQL query)
from the input tables. ExtVP speeds up query answering by pre-
computing the possible join relations between the VP tables and
materializing the results of these semi-joins as tables in the stor-
age backend, e.g. HDFS. Particularly, for every two VP relations
ExtVP relies on pre-computing semi-join reductions of Subject-
Subject (SS), Subject-Object (SO), and Object-Subject (OS) join
patterns. The output tables are reduced in size and will be used
in joins instead of the original VP tables. However, one of the
limitations of the ExtVP schema is the additional storage over-
head of the materialized ExtVP tables in comparison to the VP
schema tables (cf. Table 1).

Property (n-ary) Tables Schema (PT) is a storage schema
proposed to clustermultiple RDF properties as n-ary table columns
for the same subject to group entities that are similar in structure.
The biggest advantage of property tables compared to a single
triples table schema (ST) is that they can reduce the number of
subject-subject self-joins that result from star-shaped patterns in a
SPARQL query. Whereas, one of the limitations of the PT schema
is that it works quite well with the highly structured RDF data.
However, its performance degrades for the poorly structured
ones [23]. Furthermore, typical RDF comes with diverse struc-
tures, which make it virtually hard to define an optimal layout
of this schema [22]. Moreover, a poorly-selected property table
layout can significantly slow down the query performance [2].
Due to its sparse-tables representation nature, PT schema also
suffers from high storage overheads when a large number of
predicates is present in the RDF data model [1].

Wide Property Table Schema (WPT) represents the whole
RDF dataset into a single unified table [21]. Such table uses all
RDF properties in the dataset as columns. It aims at extending the
PT schema for optimizing star-shaped SPARQL queries, which
are highly common in the SPARQL query workloads. Therefore,
star-shaped SPARQL queries will require no joins to be answered.
Moreover, this schema does not require any kind of clustering

algorithm that is likely to produce sub-optimal schemas for an
arbitrary RDF dataset. Unfortunately, WPT does not overcome
all the limitations of the PT schema. Indeed, this representation
can also be very sparse for poorly structured data, and it may
face a large storage overhead, especially with many multi-valued
properties existing in the RDF dataset.

2.3 RDF Data Partitioning
For RDF data processing, many partitioning techniques exist [2,
4]. In the following, we present the partitioning techniques that
are suitable for our experiments on SparkSQL.

Horizontal-Based Partitioning (HP) requires dividing the
RDF dataset evenly (as much as possible) on the number of ma-
chines in the cluster. In particular, we use this technique to parti-
tion the relational RDF tables of the different schemas horizon-
tally into even 𝑛 chunks(i.e partitions) over the cluster machines.

Subject-Based Partitioning(SBP) requires the distribution
of triples into partitions according to the hash value computed
for the RDF subjects. As a result, all the triples that have the
same subject are assumed to reside on the same partition. In our
scenario, we applied spark partitioning using the subject as the
partitioning key with our different relational schema tables (i.e
DataFrames).

Predicate-Based Partitioning (PBP) is similar to the SBP,
it distributes triples to the various partitions based on the hash
value computed for the predicate. Similarly, all the triples that
have the same predicate are assumed to reside on the same parti-
tion. We also applied the Spark partitioning using the predicate
as the partitioning key with our different relational schemas
Dataframes.

Baseline partitioning (BP): In our experiments, we also used
the baseline partitioning technique that basically depends on the
native default partitioning of HDFS of the tables files over the
cluster nodes. This is the technique used in the state-of-the-art
works of the schema advancements [21, 22].

3 EVALUATION METHODOLOGY
In this section, we discuss the experimental methodology that
we used for the reproducibility of the state-of-the-art findings [6,
21, 22] that imply some changes in the experimental artifacts, we
organize our experiments as follows.

First, we assess if we can reproduce the state-of-the-art re-
sults of those schema optimizations over the baseline relational
schemas performance. Thus, we performed our experiments in
a setup as similar as possible to what the original authors have
done [21, 22]. In this regard, we use the baseline HDFS partition-
ing technique. We also use Parquet as our baseline storage file
format (grey shaded boxes cf. Figure 1).

Second, we introduce disturbing factors to our experiments,
such as the different partitioning techniques, and different file
formats alongside different SPARQL query shapes.

Regarding the data partitioning, we introduce the Horizontal
Partitioning technique and Subject-based partitioning for the
WPT and PT schema experiments.On the other hand, Horizon-
tal, Subject and Predicate-based partitioning techniques were
used for the VP and ExtVP schema experiments. We expect that
these partitioning techniques will negatively impact the perfor-
mance of SparkSQL when evaluating SPARQL queries due tothe
distribution of the relational table across nodes. This will force
more shuffling in the presence of joins. In particular, Horizon-
tal partitioning should have a worse impact than Subject-based

Table 1: SP2Bench-100M RDF relational schemata table data sizes with different file formats

SP2Bench RDF (n3) PT WPT VP ExtVP

CSV 11GB ∼9.2MB-1.9GB
-Total: 6.8GB 9.4GB 8KB-1.9GB

-Total: 8.3GB
- OS (4.9GB) - SS (39GB)
- SO (806MB) -Total:∼45GB

Avro 11GB 980KB-416MB
-Total: 1.6GB 1.8GB 8KB-272MB

-Total: 1.7GB
- OS (359MB) - SS (8.8GB)
- SO (331MB) -Total:∼9.5GB

ORC 11GB 620KB-362MB
-Total: 1.4GB 1.4GB 8KB-249MB

-Total: 1.5GB
- OS (243MB) - SS (7.8GB)
- SO (301MB) -Total:∼8.4GB

Parquet 11GB 620KB-382MB
-Total: 1.5GB 1.7GB 8KB-264MB

-Total: 1.6GB
- OS (319MB) - SS (8.4GB)
- SO (318MB) -Total:∼9GB

partitioning on PT and WPT schemas, and Predicated-based on
(Ext)VP ones. It worth mentioning that the HP technique does
not take the query shape into account and possibly place these
rows in different nodes.

Regarding the storage of file formats besides the baseline Par-
quet, we consider an additional columnar one, i.e., ORC, and two
row-oriented ones, i.e., CSV and Avro. We expect columnar for-
mats to perform better for the queries with a subset of column
projections, since they allow an efficient scan of tables by reading
only a portion of columns [10]. In action, SP2Bench has a small
number of column projections across all its benchmark queries.

Finally, aiming to draft our observations, primary findings,
and propose best practices, we discuss and analyze our results.
Additionally, we highlight the trade-offs of combining all these
dimensions in the discussion section.

Moreover, we aim to observe these optimizations’ impact on
the large SPARQL query performance on the SparkSQL engine.
Mostly, we want to verify and answer the following questions:

(1) How far do RDF partitioning techniques and storage for-
mats impact the query performance?

(2) How can we systematically analyze different relational
schemas? How can these schemas effectively improved to
achieve the highest performance?

(3) What are the best practices that guide the large RDF com-
munity efforts in adopting performance-oriented solu-
tions?

4 BENCHMARK & EXPERIMENTAL SETUP
This section outlines the paper experiment setup and the used
benchmark with its queries. The experimental setups (presented
in Figure 1) summarizes the configuration combinations (Rela-
tional schema, Partitioning, Storage). The triangle with X repre-
sents that we have performed our experiments for 4 different
relational schemas, partitioning each schema across 4 various
relational techniques, i.e one baseline HDFS, and other 3 RDF-
specific techniques. Last but not least, those schemas are stored
across 4 different storage formats. In detail:
Benchmark&Dataset: In our evaluation, we used the SP2Bench
(SPARQL Performance Benchmark) [24]. SP2Bench has a reason-
able low score of data structuredness, making it closer to the
structure of real-world RDF datasets [20]. So, it is valid to state
that, to the best of our understanding, SP2Bench meets a wide
spectrum of queries and answers well the main claims we are
investigating.
Data Storage: We generated a synthetic RDF dataset with 100𝑀
triples size in Notation3 format. This scale size is enough for
checking the validity of the literature findings regarding the RDF
relational schemas optimizations, and maintaining the repro-
ducibility of them in a more complex solution space.

Parquet

ORC

AVRO

CSV

Storage
Formats

Baseline
HDFS

Horizontal
Based

Subject
Based

Predicate
Based

Partitioning
Technique

Vertical
Tables

Ext. Vertical
Tables

Property
Tables

Wide Property
Tables

Relational
Schemata

Figure 1: Experiments architecture and evaluation envi-
ronment

#Joins #Filters #Projections Query Shape
Q1 3 0 1 S
Q2 8 0 10 S
Q3 1 1 1 S
Q4 7 1 2 SF
Q5 5 1 2 SF
Q6 8 3 2 SF
Q7 12 2 1 SF
Q8 10 2 1 SF
Q9 3 0 1 S (U)
Q10 0 0 2 TP (U)
Q11 0 0 1 TP

Table 2: Benchmark Queries Characteristics: Shape, i.e.,
[S]tar, [S]now[F]lake, or a single [T]riple[P]attern; (U) for
unbounded Predicate Variable, Number of Joins, filters,
and projections.

The generated n3 RDF dataset is converted into CSV relational
schemas using Jena TDB 1, a disk-based access repository for
storing RDF datasets. We further used the Jena ARQ 2 for query-
ing these TDB datasets and generating the output schemas tables
in the CSV file format. Finally, these raw textual CSV documents
are loaded to the HDFS. Moreover, we have used the Spark frame-
work to write the relational schemas data tables from the CSV
format into the other HDFS file formats (Avro, Parquet, and ORC).
Table 1 shows the size of the generated native RDF dataset (i.e
11GB), as well as store sizes of each relational schema in the men-
tioned different file formats on top of HDFS. It is clearly shown,
how the different relational schemas affect the input data sizes.
1https://github.com/apache/jena/tree/master/jena-tdb
2https://github.com/apache/jena/tree/master/jena-arq

https://github.com/apache/jena/tree/master/jena-tdb
https://github.com/apache/jena/tree/master/jena-arq

In action, the PT schema has the smallest table sizes in total, fol-
lowed by the VP schema, then the WPT table schema. Whereas,
the largest storage overheads come with the ExtVP schema. We
can also notice how the storage formats affect the sizes of the
schemas significantly. In particular, columnar-oriented formats
have the minimum table sizes across all the schemas. Indeed, ORC
is shown to have the minimum table sizes, followed by Parquet.
While, the Avro row-oriented formats have quite larger schema
sizes, and CSV has the largest table sizes.
Queries: SP2Bench queries have different complexities and a
high diversity of features [20]. These queries implement meaning-
ful requests on top of RDF data. In our experiments, we reused the
SQL version of the queries associated with the SP2Bench bench-
mark 3 for the mentioned RDF relational schemas. However, for
the new relational schema advancements (e.g. ExtVP, WPT) that
are missing on the benchmark website, we have manually trans-
lated these queries into SQL, and we provide all these translated
queries in our project repository 4. We have evaluated all of these
11 queries of type SELECT, except 𝑄9, and 𝑄11 which are not
applicable (’NA’) for the PT and the WPT relational schemas.
𝑄7 is also not applicable in the VP and ExtVP schemas. Notably,
for generating the ExtVP tables, the default selectivity threshold
of 1 has been configured [22]. Table 2 shows our benchmark
queries complexities, in terms of the number of joins, filters, and
projections, alongside the SPARQL query shape.
Environment Setup: Our experiments were executed on a bare-
metal cluster of 4 machines with CentOS-Linux V7 OS, running
on 32 cores per node processor, and 128 GB of memory per node,
alongside with a high speed 2 TB SSD drive for each node. We
used Spark V2.4 to fully support SparkSQL capabilities. In partic-
ular, our Spark cluster consists of one master node and 3 worker
machines, while Yarn is used as the resource manager, which in
total uses 330 GB and 84 virtual processing cores.
RDF Data Partitioning: We used Spark partitioners for parti-
tioning the registered relational schemas tables/SparkDataFrames.
This is required to persist those DataFrames on top of the HDFS
default file blocks partitioning level. We use the resulting Data
Frames as the input for the query engine. In our experiments, we
have the baseline HDFS partitioning (grey partitioning box cf. 1).
While other RDF partitioning techniques also have been tested,
namely HP, SBP, and PBP approaches. These techniques depend
on partitioning the tables’ data horizontally across machines
(i.e HP), or on the Spark key partitioning of the RDF subject or
predicate (i.e SBP, PBP respectively).
Performance Evaluation measure (Latency): We used the
Spark.time function by passing the spark.sql(...) query execution
function as a parameter to measure the query latency. We run the
experiments for all queries 5 times (excluding the first cold start
run time, to avoid the warm-up bias, and computed an average
of the other 4 run times).

5 EXPERIMENT RESULTS
In this section, we discuss our experiment results. Also, we com-
pare the optimized relational schemas (i.e., WPT, and ExtVP)
against their baseline schemas, i.e., PT, and VP, respectively, ac-
cording to our methodology (cf. Section 3).

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q10 Q11

PT 2 9 2 8 7 6 9 5 2
WPT 0 0 0 3 3 3 10 3 0

Table 3: SP2Bench queries: Number of Joins of PT vsWPT.

WPT vs. PT Avro CSV ORC Parquet
Baseline 2/9 2/9 8/9 9/9
Horizontal 2/9 3/9 6/9 6/9
Subject 2/9 2/9 6/9 6/9

Table 4: Number of queries for which WPT beats PT for
data formats and partitioning techniques.

5.1 WPT VS. PT Schema Results
Table 3 shows the SP2Bench queries’ number of joins when trans-
lated into SQL concerning the PT and WPT schemas. Except for
𝑄8 (that requires many self-joins of the WPT table), the number
of joins always decreases, adopting the WPT schema. Moreover,
we expect that the WPT schema query performance (i.e., in terms
of latency) will outperform other relational schemas [6]. In this
regard, the Parquet data format efficiently handles the sparsity
caused by the WPT table schema —as Null values are efficiently
ignored in this file format [21].

Meanwhile, Table 4 shows the overall benchmark results of
the WPT performance over PT schema across all file formats
(horizontally in the table), and across the different partitioning
techniques (vertically). Values in this table specify the number of
queries in which the WPT schema performs better than the base-
line PT schema. The green color indicates that WPT performing
the best, while the yellow color indicates that its performance is
above 50% over PT, and the red means that performance is less
than 50%.

Our experiment results confirm that the WPT schema per-
forms better than the baseline PT schema in all the queries (i.e., 9
queries out of 9 queries in the benchmark) with Parquet file for-
mat, alongside using the baseline HDFS partitioning technique.
Indeed, these results confirm the findings in [6, 21] assessing the
reproducibility regarding the WPT schema optimization.

To investigate how the performance difference between the
WPT and PT schemas changes, we introduce two new dimensions,
i.e., various file formats and different partitioning techniques. In
this regard, Table 5 shows the effect of data partitioning (left of
the table) and storage formats (right of the table) considering the
other new factors across all the experiments. To this extent, we
have calculated the percentages as follows, for the partitioning
factor’s impact, we pivoted on each partitioning technique and
counted the percentage of how much the WPT schema perfor-
mance in SparkSQL is better than the PT schema one across all
the queries while considering all the changes of the storage file
formats (moving across them). We calculated the partitioning ef-
fect similarly but pivoting on the storage file format and moving
across the partitioning techniques in all of queries.

Table 5 also demonstrates that in such a complex space of
different relational schema, data partitioning, and storage file
formats, the schema-based query optimization is not straightfor-
ward. As we can see, WPT outperforms PT schema only for 58%
in the queries using only the baseline default HDFS partitioning
technique regarding the storage formats, and only 78% for the

3http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B/queries.php
4https://datasystemsgrouput.github.io/SPARKSQLRDFBenchmarking/

http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B/queries.php
https://datasystemsgrouput.github.io/SPARKSQLRDFBenchmarking/

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

avro csv orc Parquet

R
at

io
 o

f W
P

T
 o

ve
r

P
T

Baseline
Horizontal

Subject
Average

(a) Q2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

avro csv orc Parquet

R
at

io
 o

f W
P

T
 o

ve
r

P
T

Baseline
Horizontal

Subject
Average

(b) Q4

Figure 2: The performance of WPT over PT schema in 𝑄2 and 𝑄4 (values below 1 means WPT is better than PT)

 0

 0.5

 1

 1.5

 2

 2.5

 3

avro csv orc Parquet

R
at

io
 o

f W
P

T
 o

ve
r

P
T

Baseline
Horizontal

Subject
Average

Figure 3: The performance of WPT over PT schema in Q8.
values (below 1 means WPT is better than PT)

Parquet file format. The determination of this result shows the
trade-off of considering alternative storage file formats and parti-
tioning techniques alongside the experiments’ query evaluation.

Regarding the storage, we can see that ORC, another columnar
file format gives closer performance to our baseline columnar
Parquet file format with 74%. However, the baseline Parquet is
yet better, as Parquet is unlike ORC, can efficiently handle the
WPT table’s sparsity. Whereas, we can see that row-oriented
formats have a significant negative effect on the performance
of WPT. WPT schema performance is better than PT with only
22% and 25% in all Avro and CSV queries, respectively. In action,
SP2Bench queries only have one query (i.e.,𝑄2) with more than 2
column projections. This justifies why column-oriented formats
give better results for the WPT than the row-based ones. In
general, we can state that file formats affected the generalization
of the state-of-the-art results for the WPT schema.

At last, we enroll in three specific queries, namely,𝑄2,𝑄4, and
𝑄8 , which well exemplify our findings. We selected these queries
as good representatives of our findings. There is a tremendous
performance enhancement in WPT over PT in 𝑄2 and 𝑄4. The
reason behind this refers to the number of SparkSQL joins of
WPT is significantly less than the joins in PT schema (cf. Table 3).
Particularly, in 𝑄2 number of joins in PT (SQL-version) is 9 com-
pared to no-joins in WPT schema. While in 𝑄4 with PT schema,
we have 8 SQL joins in comparison to 3 self-joins of theWPT table.
Interestingly, we have more joins in WPT than the baseline PT
schema in 𝑄8, i.e., 10 self-joins, and 8 joins, respectively. Figure
2 (a), (b) and Figure 3 depict the performance of SparkSQL for
𝑄2, 𝑄4, and 𝑄8 respectively under a various combination of file
formats and partitioning techniques. In particular, these figures
combine the ratios of WPT being better than PT in those men-
tioned queries. Ratios less than 1 indicate better performance of

WPT/PT Partitioning effect Storage effect
Baseline_Part 58.33% Parquet 77.78%
Horizontal 47.22% ORC 74.07%
Subject-based 44.44% CSV 25.93%
Predicate-based NA AVRO 22.22%

Table 5: The effect of other partitioning techniques, and
other storage formats on the reproducibility of the WPT
S.O.T.A findings

WPT over PT in that query and across the different configuration
settings.

Not surprisingly, we can notice that 𝑄8 is the only query that
witnesses worse performance for the WPT compared to the PT
schema. Figure 3 shows that most of the ratios of ’WPT over PT’
is greater than 1 in the baseline-partitioned data experiments
(i.e. only partitioned with HDFS), and other file formats instead
of Parquet. Notably, all the results (i.e., total query runtimes)
and query histograms can be found on our mentioned GitHub
repository.

5.2 ExtVP VS. VP Schema Results
According to [22], ExtVP outperforms or at least has a similar
performance to the VP schema. The reason is that queries are sim-
ilar, and the number of SQL joins in the VP and ExtVP schemas
are the same. This clarification is reflected in Table 6. Indeed, the
performance improvement depends mainly on the percentage of
reductions in the input table sizes that the ExtVP optimization
might introduce out of the join correlations for each query [22].
Table 6 also presents the percentage of ExtVP reductions of the
processed tables’ rows for each query over the original input
tables processed rows with the baseline VP tables. The semi-join
reductions provided by the ExtVP help speeding-up the perfor-
mance of SparkSQL by reducing the size of the shuffled data.

VP ExtVP Input tables data Size Red.
Q1 2 2 58%
Q2 9 9 77%
Q3 1 1 59%
Q4 7 7 96%
Q5 5 5 60%
Q6 9 9 31%
Q8 9 & 1 Union 9 & 1 Union 5%
Q9 2 & 1 Union 2 & 1 Union 0%
Q10 1 Union 1 Union 0%
Q11 0 0 0%

Table 6: Number of joins and percentage of input tables
sizes [Red]uctions after optimization ExtVP VS. VP.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

avro csv orc Parquet

R
at

io
 o

f E
xt

V
P

 o
ve

r
V

P

Baseline
Horizontal
Predicate

Subject
Average

(a) Q4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

avro csv orc Parquet

R
at

io
 o

f E
xt

V
P

 o
ve

r
V

P

Baseline
Horizontal
Predicate

Subject
Average

(b) Q9

Figure 4: The performance of ExtVP over VP schema in Q9. (values below 1 indicates that ExtVP is better than VP)

In more details, ExtVP optimizes specific queries according
to the correlations between triple patterns in those queries [22],
namely, in Subject-to-Subject(SS),Object-to-Subject(OS), and Subject-
to-Object(SO) [22]. Thus, we expect some queries to give similar
results to the VP schema queries (i.e., No reductions occurred in
the VP tables by the ExtVP schema optimization). Notably, in our
experiments, 𝑄9,𝑄10, and 𝑄11 do not present any input data re-
ductions. Thus, we state that it is expected that their performance
to be very close to baseline VP performance.

The same approach that has been adopted in WPT to PT
schemas performance comparison is also used for evaluating
the performance of ExtVP against the VP.

First, we check if our experiments’ results confirm the state-
of-the-art regarding the ExtVP schema optimization over the
baseline VP schema performance.

Table 7 (on the right) shows the total number of queries in
which the ExtVP performance is better than VP schema perfor-
mance across all the benchmark queries. For our baseline HDFS
partitioning technique, and with the Parquet file format, we can
see that some queries do not benefit from the optimizations of
the ExtVP. Indeed, 3 out of 10 queries fail to utilize the optimized
ExtVP technique. The reason behind such behavior is that those
queries have unbounded predicates that can not be optimized
by the ExtVP schema [22] (see 𝑄9 and 𝑄10 in Table 2), or they
have no effective join reductions (see 𝑄9,𝑄10,𝑄11 in Table 6).
The performance of these queries is a subject of discussion in
detail in the next sections.

Second, similarly to what we have done for the WPT schema
optimization, we now investigate how generalizable the state-
of-the-art results are when we introduce different file formats
partitioning techniques over the data for both the ExtVP and VP
schemas.

Similarly, Table 8 shows how far the data partitioning (left of
the table) and data formats (right of the table) impact the results
of ExtVP in comparison to VP schema performance. Notably, this
table’s percentage values are also calculated similarly to how
we have calculated the WPT against the PT. We pivoted on the
analysis dimension of choice, i.e., file format 𝑋 or partitioning
technique 𝑌 , and we calculated how many times SparkSQL per-
forms better using ExtVP than using the baseline VP approach.

Regarding the partitioning techniques’ effect on ExtVP, our
expectations are confirmed. In particular, we can observe that
the partitioning techniques degraded the performance of ExtVP
significantly. Only, 35%, and 30% of the experiments adopting
Horizontal, and Subject-based partitioning respectively show a
performance improvement in using ExtVP over VP. Adopting

ExtVP VS. VP Avro CSV ORC Parquet
Baseline_Part 6/10 6/10 5/10 7/10
Horizontal_Part 3/10 3/10 3/10 3/10
Predicate_Part 2/10 3/10 6/10 6/10
Subject_Part 2/10 3/10 3/10 3/10

Table 7: Comparison of ExtVP schemawith theVP schema
in different storage formats, and in different partitioning
techniques.

ExtVP/VP Partitioning effect Storage effect
Baseline_Part 67.5% Parquet 55%
Horizontal 35% ORC 45%
Predicate-bsed 55% AVRO 42.5%
Subject-based 30% CSV 42.5%

Table 8: The effect of other partitioning techniques, and
other storage formats on the reproducibility of the ExtVP
S.O.T.A findings

Predicate-based partitioning slightly reduces this negative effect
(i.e., 55% of the queries show that performance improvement).

From Table 8, we can also see that the ExtVP schema is only
outperforming the VP schema, with 67% of the queries using
the baseline HDFS partitioning scenario. Thus, we can see the
trade-off of considering various storage file formats. We can
see also that the baseline Parquet file format is the one that has
less impact on the overall performance for ExtVP. Indeed, in
55% of the cases where Parquet is used, ExtVP outperforms the
VP performance. Additionally, the ORC columnar file format
provides high performance of ExtVP over VP schema with an
overall 45%. However, there is a clear difference from the Parquet
file format with 10%.

On the other hand, the row-oriented formats degrade the per-
formance of ExtVP. For only 42.5% of the experiments that adopt
either Avro or CSV, ExtVP performance beats the performance of
the VP schema. Such behavior is related to the number of column
projections in the SP2Bench queries, which are the minimum
in this benchmark scenario. Thus, columnar file formats can fit
such query workloads better than the row-oriented ones.

Last but not least, herein the most notable query examples
are introduced, confirming our previous findings but with more
innumerable details. First, 𝑄4 is revealed to be the query with
the most benefit with the ExtVP optimization. The reason be-
hind this is that 𝑄4 includes a high number of joins (i.e., 7 joins),
and has the maximum number of input tables’ rows reductions
while using the ExtVP schema optimization with 96% of reduced
processed rows (cf. Table 6). This query is directly followed by
𝑄2 with 77%. Although 𝑄2 has a higher number of table joins

 0

 50

 100

 150

 200

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q10 Q11

T
im

e
(s

ec
on

ds
)

WPTH PTH

(a) CSV - Horizontal Partitioning

 0

 50

 100

 150

 200

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q10 Q11

T
im

e
(s

ec
on

ds
)

WPTS PTS

(b) CSV - Subject-based Partitioning

 0

 50

 100

 150

 200

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q10 Q11

T
im

e
(s

ec
on

ds
)

WPT PT

(c) Avro - Horizontal Partitioning

 0

 50

 100

 150

 200

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q10 Q11

T
im

e
(s

ec
on

ds
)

WPT PT

(d) Avro - Subject-based Partitioning

 0

 50

 100

 150

 200

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q10 Q11

T
im

e
(s

ec
on

ds
)

WPT PT

(e) ORC - Horizontal Partitioning

 0

 50

 100

 150

 200

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q10 Q11

T
im

e
(s

ec
on

ds
)

WPT PT

(f) ORC - Subject-based Partitioning

 0

 50

 100

 150

 200

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q10 Q11

T
im

e
(s

ec
on

ds
)

WPT PT

(g) Parquet - Horizontal Partitioning

 0

 50

 100

 150

 200

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q10 Q11

T
im

e
(s

ec
on

ds
)

WPT PT

(h) Parquet - Subject-based Partitioning

Figure 5: WPT Vs. PT schemata performance using different partitioning techniques and file formats

than 𝑄4, the reductions in input table sizes in 𝑄4 are more sig-
nificant. On the other side,𝑄9,𝑄10, and𝑄11 do not benefit from
the ExtVP optimization, i.e., ExtVP does not provide any input
table size reductions. In particular, 𝑄9 and 𝑄10 have unbounded
predicate variables in the original SPARQL queries. ExtVP cannot
directly handle this type of queries[22]. While 𝑄11 has only a
single triple pattern, and thus it has no joins in optimizing the
ExtVP optimization approach. Figures 4 (a) and (b) show the per-
formance of SparkSQL for𝑄4 and𝑄9, respectively, under various
combination of formats and partitioning techniques in the ExtVP
experiments. Figure 4 (a) shows that 𝑄4 is always below the line
of all the other queries’ average runtimes. Whereas, ExtVP does
not show a remarkable difference over the VP schema in 𝑄9, i.e.,
they show pretty close performance to each other.

In the next section, we discuss in further details the experiment
findings against the current S.O.T.A regarding the superiority of
ExtVP and PT.

6 DISCUSSION
The paper helps to characterize and classify the RDF schemas
and their optimizations within the SparkSQL realm. It helps data
architects and practitioners interested in large scale RDF bet-
ter understanding the relational RDF schema’s potential using
different partitioning techniques and storage formats. This un-
derstanding will lead to a better selection of the most suitable
and performance-optimized solution that adequately suits their
case. Doing so will also accommodate better design and develop-
ment of new SPARQL systems, leading to reliable RDF services
with high Spark performance. Taking our experiment findings

into consideration, herein, we discuss our results and give some
insights on processing RDF best practices at a large scale.

Next, we place the literature assumptions on the relational
schema optimizations’ superiority against our experimental find-
ings. We follow this by recommendations to the large RDF prac-
titioners.

6.1 Assumption: WPT always outperforms
PT

According to [6, 21], we expect that the performance of the WPT
schema outperforms the PT schema, especially with the "star-
shaped" queries. Star-shaped queries can be answered when the
WPT table is queried with no-joins included. This assumption is
because all the properties relevant to the same subject are present
in the same row of the WPT table.

The state-of-the-art findings of the WPT schema are fully
reproduced with the default HDFS partitioning and with using
the baseline Parquet file format. That is, the performance of
Spark using WPT schema for representing RDF dataset is always
outperforming the baseline PT schema.

Nevertheless, our results showwhen we deviate from the origi-
nal setup [21] introducing new experimental factors, the solution
space increases in complexity. Consequently, the trade-offs be-
tween relational schema, partitioning techniques, and storage for-
mats make the WPT optimization reproducibility not straightfor-
ward. Using other partitioning techniques alongside the baseline
Parquet format affected the reproducibility of the WPT schema

 0

 100

 200

 300

 400

 500

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q11

T
im

e
(s

ec
on

ds
)

HO

ExtVP VP

(a) Parquet-Horizontal Partitioning

 0

 100

 200

 300

 400

 500

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q11

T
im

e
(s

ec
on

ds
)

Subj

ExtVP VP

(b) Parquet-Subject-based Partitioning

 0

 100

 200

 300

 400

 500

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q11

T
im

e
(s

ec
on

ds
)

Pred

ExtVP VP

(c) Parquet-Predicate-based Partitioning

 0

 100

 200

 300

 400

 500

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q11

T
im

e
(s

ec
on

ds
)

HO

ExtVP VP

(d) ORC-Horizontal Partitioning

 0

 100

 200

 300

 400

 500

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q11

T
im

e
(s

ec
on

ds
)

Subj

ExtVP VP

(e) ORC-Subject-based Partitioning

 0

 100

 200

 300

 400

 500

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q11

T
im

e
(s

ec
on

ds
)

Pred

ExtVP VP

(f) ORC-Predicate-based Partitioning

 0

 100

 200

 300

 400

 500

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q11

T
im

e
(s

ec
on

ds
)

HO

ExtVP VP

(g) Avro-Horizontal Partitioning

 0

 100

 200

 300

 400

 500

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q11

T
im

e
(s

ec
on

ds
)

Subj

ExtVP VP

(h) Avro-Subject-based Partitioning

 0

 100

 200

 300

 400

 500

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q11

T
im

e
(s

ec
on

ds
)

Pred

ExtVP VP

(i) Avro-Predicate-based Partitioning

 0

 100

 200

 300

 400

 500

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q11

T
im

e
(s

ec
on

ds
)

HO

ExtVP VP

(j) CSV-Horizontal Partitioning

 0

 100

 200

 300

 400

 500

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q11

T
im

e
(s

ec
on

ds
)

Subj

ExtVP VP

(k) CSV-Subject-based Partitioning

 0

 100

 200

 300

 400

 500

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q11

T
im

e
(s

ec
on

ds
)

Pred

ExtVP VP

(l) CSV-Predicate-based Partitioning

Figure 6: ExtVP Vs. VP schemata performance using different partitioning techniques and file formats

optimizations. Only 78% of the queries results conform with the
fact that WPT is better than the PT schema (Table 5).

Figure 5 aims to analyze the schemas performance when the
solution adopts different partitioning techniques and file formats.
Figures 5 (a-h) show clearly the effect of partitioning techniques
on the reproducibility of the WPT optimizations across all the dif-
ferent file formats. For instance, notably the horizontal partition-
ing (Figures 5 (a,c,e,g)) affected the performance of WPT, making
its performance in SparkSQL worse than the baseline PT schema
in most of the queries (i.e., 𝑄1,𝑄3,𝑄5,𝑄6,𝑄8,𝑄11). Similarly, we
can observe the negative effect of the subject-based technique
on WPT schema (Figures 5 (b,d,f,h)) in the same queries.

The impact of file formats aside Parquet is even worse. Even
using the baseline (HDFS) partitioning technique affects the re-
producibility of the WPT schema optimizations. Overall, only
58% of the query results conforming with the fact that WPT is
outperforming PT schema (Table 5). The experiments show that
columnar file formats, e.g., ORC, and Parquet, are the best for

representing such wide tables (WPT and PT). Columnar file for-
mats are the best for sparse queries (i.e., queries with few column
projections or columns to access) out of the wide tables. They
perform better than the row-oriented file formats, e.g., CSV and
Avro, which would be only better with queries that require full
rows reading.

Figure 5 shows the performance degradation considering dif-
ferent file formats. For instance, moving from Parquet and ORC
in Figures 5 (e-h) to other row-oriented file formats such as Avro
and CSV in Figures 5 (a-d), we can notice the performance degra-
dation of the queries with the WPT schema optimizations.

6.2 Assumption: ExtVP always outperforms
VP

According to [22], we expect that ExtVP provides better or at
least similar performance gains, as the queries are similar, and the
number of SQL joins in the VP schema is equal to the ExtVP joins.
Nevertheless, one should keep in mind that ExtVP improvements
are mainly due to the original SPARQL query nature. It also

Table 9:Mapping the partitioning technique to the storage
format best practices in WPT

Avro CSV ORC Parquet
Baseline-HDFS X X ✓* ✓**
Horizontal X X ✓ ✓
Subject-based X X ✓ ✓
Where ✓is good practice, X is bad practice,and ˜ has the same
performance compared to PT.
* WPT had very competitive performance
** WPT had the best performance

depends on the possible reductions in the table input data size and
excluding the dangling triples (rows that do not contribute to any
joins) [22]. Typically, ExtVP queries are similar to the VP ones;
the only difference realizes in the queried tables/DataFrames (i.e.,
their size reduced by ExtVP or their size are the same VP). Thus,
the relational engine’s performance, e.g., Spark with the ExtVP,
should be equivalent or better to its performance with the VP
schema.

Based on our experiments, the findings of the ExtVP schema
are not fully reproduced, even considering the default HDFS par-
titioning and the baseline Parquet file format. Some queries do
not benefit from the ExtVP optimizations (𝑄9, 𝑄10, 𝑄11), no-
table input size reductions occurred in those queries), cf. Table 6.
Beyond those queries, we can confirm that the state-of-the-art
results (ExtVP performs better than VP in most cases). However,
our results show that the schema-based query optimization is
not straightforward in such a complex solution space.

Regarding the partitioning techniques, using an alternative to
the baselines technique (HDFS) affects the reproducibility of the
ExtVP optimizations even if the storage format is Parquet. Only
55% of the queries results show that ExtVP is superior to the VP
schema (cf. Table 8). Moreover, Figure 6 shows the effect of other
RDF partitioning techniques on the reproducibility findings of
the ExtVP optimization. For instance, deviating from the baseline
partitioning technique to other RDF-based techniques with the
same baseline Parquet, i.e., Figures 6(a-c) degrades the results of
ExtVP and makes it perform worse than the baseline VP schema
in several queries (𝑄1, 𝑄4, 𝑄5, 𝑄6, 𝑄8) with the Horizontal and
Subject-based partitioning. The predicate-based partitioning in
Figure 6(c) has a better performance with this schema, which has
performance close to VP’s in the previously-mentioned queries.

Similarly, using storage formats different from Parquet affects
the ExtVP optimizations’ reproducibility, even with the baseline
(HDFS) partitioning technique. Indeed, we have only 67.5% of
the queries results of ExtVP outperforming VP (cf. Table 8). Simi-
larly, Figure 6 shows the effect of other file formats other than
the baseline Parquet, i.e Figures 6 (d-l) for ORC, Avro, and CSV
respectively. We can notice the queries’ performance degradation
with the ExtVP schema optimizations moving vertically to these
other formats.

Finally, from our experiments, we observe that columnar file
formats are better than the Row-oriented ones. However, the per-
formance difference is not significant with such similar schemas.
The table structure is the same table of two columns Predi-
cate (Subject-Object) in both vertical schemas. Moreover, both
schemas have not wide tables in comparison to the WPT and PT
schemas. That is, these schemas will not benefit a lot from the
columnar file formats. The performance gain of columnar over
the row-oriented file formats is because SP2Bench queries have a

Table 10: Mapping the partitioning technique to the stor-
age format best practices in ExtVP

Avro CSV ORC Parquet
Baseline-HDFS ✓ ✓ ˜ ✓*
Horizontal X X X X
Subject-based X X X X
Predicate-based X X ✓ ✓
Where ✓is good practice, X is bad practice, and ˜ has the same
performance compared to VP.
* ExtVP had a very competitive performance

few numbers of column projections. Thus, it would work better
with columnar rather than row-based file formats.

6.3 Recommendations
Overall, Tables 9 and 10 provides an abstracted map of good and
bad storage format and partitioning techniques.

The results in Figure 5 and Table 9, show that partitioning
the WPT table has, in the majority, a negative effect on the WPT
optimization, making it perform even worse than its baseline
approach, i.e, the PT schema. The effect of the storage formats
is more significant in the WPT optimization (cf. Tables 5, 9).
Therefore, this WPT schema’s storage format selection decision
should be dealt with as a first-class citizen in such experiments.

The horizontal and subject-based partitioning techniques are
not recommended with ExtVP optimization. However, Predicate-
based still gives better results than those two other RDF par-
titioning techniques (cf. Tables 8 and 10). Also, columnar file
formats are still recommended with the ExtVP schema optimiza-
tion. However, it was noticed that the effect of the partitioning
is more significant to this optimization (cf. Figure 6, Tables 8,
and 10). Thus, the partitioning selection decision of this ExtVP
schema should be highly considered in these experiments.

Also, our analysis yields the following recommendations
(1) WithWPT, it is recommended to use the columnar storage

formats rather than row-oriented ones (cf. Table 9).
(2) With the WPT schema, Parquet is yet the best columnar

file format to select, it efficiently handles its sparsity.
(3) With WPT, it is recommended to use the native HDFS

partitioning, rather than selecting an RDF-oriented parti-
tioning technique.

(4) With ExtVP, the baseline HDFS partitioning is more recom-
mended than specific RDF ones. However, larger datasets
would require partitioning anyway.

(5) With ExtVP, the columnar file formats is a recommended
optimization.

7 RELATEDWORK
In this section, we present the relatedwork. In particular, we focus
on comparative studies that investigate the use of BD frameworks
for distributed RDF processing. To the best of our knowledge,
the literature includes several studies that compare partitioning
techniques, relational schemas, and storage formats [2, 6, 8, 14].
However, none of these approaches focus on replicating and
comparing existing optimization techniques.

Abdelaziz et al. [2] discussed several relational schemas for
materializing RDF datasets. Their main goal was to assess differ-
ent native and non-native RDF processing systems. However, it
does not discuss the impact of different relational schemas on a

specific system’s performance, such as SparkSQL; nor it discusses
partitioning techniques and data formats.

Arrascue et al. [6] lead an investigation on the performance
of the WPT schema against alternative relational schemas, i.e.,
triple tables, VP, and domain-dependent tables. Additionally, they
consider subject-based partitioning but limit the data formats
to Parquet. The work’s main finding is the flexibility of WPT
for generic query shapes in contrast with other approaches and
even considering partitioning. However, their exploration of the
solution space is limited in terms of partitioning techniques and
data formats.

Cossu et al. [8] focused on a hybrid storage approach that
combines the benefits of PT and VP schemas to boost the query
performance without the need for extensive loading time. Their
solution, PROST, was able to outperform state of the art systems
like S2RDF for several query shapes. Nevertheless, their explo-
ration of partitioning techniques and data formats is limited.
Additionally, they focused their work on PT and VP schemas,
not considering WPT as an alternative schema that may further
improve the performance.

On another side, Pham et al. results in [14] indicates that more
than 95% of RDF dataset triples have tabular structure. They
combine structural non-quotient and statistical methods to auto-
matically discover and detect an emergent relational schema (in
the form of property tables) in RDF datasets. A similar approach
has been proposed in [12] to mitigate the limitations of the WPT
and PT RDF schemata by merging the related hierarchical char-
acteristic sets and provide a novel RDF relational schema. The
aim of so doing is to provide a better SPARQL query evaluation.

Finally, Akhter et al. [4], investigated the performance of dif-
ferent partitioning techniques for RDF data, proposing a ranking
function that helps practitioners to choose the most appropriate
technique.

8 CONCLUSIONS & FUTUREWORK
The reproducibility of well-known relational RDF processing
optimizations is critical to foster best practices that guide the
practitioners’ efforts. In this paper, we presented a comprehensive
empirical evaluation using three RDF partitioning techniques
and four storage formats over the distributed SparkSQL engine
to cope with this limitation. Our analysis demonstrates decisively
variant trade-offs using different relational schemas, data parti-
tioning, and storage file formats against these state-of-the-art
optimizations. Our experiments show significant degradation
in Spark performance when partitioning by subject in the WPT
and partitioning horizontally due to the vast, sparse, and large
partitions of its schema table. On the same note, the storage for-
mat also affects the WPT performance, where ORC and Parquet
are the most suitable representation of such configuration. Our
results on ExtVP illustrate that schema-based query optimization
is not straightforward using different configurations.

Future work includes extending this study by analyzing the
impact of data scalability on SparQL performance. We intend to
utilize other RDF benchmarks such asWatDivwith different types
of query shapes and complexities. Our plans include investigating
this area further to design a benchmark that combines query
workloads with precise partitioning and storage instructions.

REFERENCES
[1] Daniel J Abadi, Adam Marcus, Samuel R Madden, and Kate Hollenbach. 2007.

Scalable semantic web data management using vertical partitioning. In VLDB.

[2] Ibrahim Abdelaziz, Razen Harbi, Zuhair Khayyat, and Panos Kalnis. 2017. A
survey and experimental comparison of distributed SPARQL engines for very
large RDF data. Proceedings of the VLDB Endowment 10, 13 (2017), 2049–2060.

[3] Giannis Agathangelos, Georgia Troullinou, Haridimos Kondylakis, Kostas
Stefanidis, and Dimitris Plexousakis. 2018. RDF Query Answering Using
Apache Spark: Review and Assessment. In 34th IEEE International Conference
on Data Engineering Workshops, ICDE Workshops 2018, Paris, France, April
16-20, 2018. IEEE Computer Society, 54–59.

[4] Adnan Akhter, Axel-Cyrille Ngomo Ngonga, and Muhammad Saleem. 2018.
An empirical evaluation of RDF graph partitioning techniques. In European
Knowledge Acquisition Workshop. Springer, 3–18.

[5] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and
Matei Zaharia. 2015. Spark SQL: Relational Data Processing in Spark. In
SIGMOD Conference. ACM, 1383–1394.

[6] Victor Anthony Arrascue Ayala, Polina Koleva, Anas Alzogbi, Matteo Cossu,
Michael Färber, Patrick Philipp, Guilherme Schievelbein, Io Taxidou, andGeorg
Lausen. 2019. Relational schemata for distributed SPARQL query processing.
In Proceedings of the International Workshop on Semantic Big Data. 1–6.

[7] Feras M Awaysheh, Mamoun Alazab, Maanak Gupta, Tomás F Pena, and
José C Cabaleiro. 2020. Next-generation big data federation access control: A
reference model. Future Generation Computer Systems (2020).

[8] Matteo Cossu, Michael Färber, and Georg Lausen. 2018. PRoST: Distributed
Execution of SPARQL Queries Using Mixed Partitioning Strategies. In Pro-
ceedings of the 21st International Conference on Extending Database Technology,
EDBT 2018, Vienna, Austria, March 26-29, 2018, Michael H. Böhlen, Reinhard
Pichler, Norman May, Erhard Rahm, Shan-Hung Wu, and Katja Hose (Eds.).
OpenProceedings.org, 469–472. https://doi.org/10.5441/002/edbt.2018.49

[9] J. Huang, D. Abadi, and K. Ren. 2011. Scalable SPARQL querying of large RDF
graphs. Proceedings of the VLDB Endowment 4 (2011), 1123 – 1134.

[10] Todor Ivanov and Matteo Pergolesi. 2019. The impact of columnar file for-
mats on SQL-on-hadoop engine performance: A study on ORC and Parquet.
Concurrency and Computation: Practice and Experience (2019), e5523.

[11] Todor Ivanov and Matteo Pergolesi. 2020. The impact of columnar file formats
on SQL-on-hadoop engine performance: A study on ORC and Parquet. Concurr.
Comput. Pract. Exp. 32, 5 (2020). https://doi.org/10.1002/cpe.5523

[12] Marios Meimaris, George Papastefanatos, and Panos Vassiliadis. 2020. Hier-
archical Property Set Merging for SPARQL Query Optimization.. In DOLAP.
36–45.

[13] Thomas Neumann andGerhardWeikum. 2010. The RDF-3X engine for scalable
management of RDF data. The VLDB Journal 19, 1 (2010), 91–113.

[14] Minh-Duc Pham, Linnea Passing, Orri Erling, and Peter A. Boncz. 2015. De-
riving an Emergent Relational Schema from RDF Data. In Proceedings of the
24th International Conference on World Wide Web, WWW 2015, Florence, Italy,
May 18-22, 2015, Aldo Gangemi, Stefano Leonardi, and Alessandro Panconesi
(Eds.). ACM, 864–874. https://doi.org/10.1145/2736277.2741121

[15] Mohamed Ragab, Riccardo Tommasini, Sadiq Eyvazov, and Sherif Sakr. 2020.
Towards making sense of Spark-SQL performance for processing vast dis-
tributed RDF datasets. In Proceedings of The InternationalWorkshop on Semantic
Big Data. 1–6.

[16] Mohamed Ragab, Riccardo Tommasini, and Sherif Sakr. 2019. Benchmark-
ing Spark-SQL under Alliterative RDF Relational Storage Backends. In
QuWeDa@ISWC.

[17] Sherif Sakr. 2009. GraphREL: A Decomposition-Based and Selectivity-Aware
Relational Framework for Processing Sub-graph Queries. In DASFAA.

[18] Sherif Sakr and Ghazi Al-Naymat. 2010. Relational processing of RDF queries:
a survey. ACM SIGMOD Record 38, 4 (2010), 23–28.

[19] Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, Khaled Ammar,
Renzo Angles, Walid Aref, Marcelo Arenas, Maciej Besta, Peter A Boncz, et al.
2020. The Future is Big Graphs! A Community View on Graph Processing
Systems. arXiv preprint arXiv:2012.06171 (2020).

[20] Muhammad Saleem, Gábor Szárnyas, Felix Conrads, Syed Ahmad Chan
Bukhari, Qaiser Mehmood, and Axel-Cyrille Ngonga Ngomo. 2019. How
Representative Is a SPARQL Benchmark? An Analysis of RDF Triplestore
Benchmarks?. In The World Wide Web Conference. ACM, 1623–1633.

[21] Alexander Schätzle, Martin Przyjaciel-Zablocki, Antony Neu, and Georg
Lausen. 2014. Sempala: Interactive SPARQL query processing on hadoop.
In International Semantic Web Conference. Springer, 164–179.

[22] Alexander Schätzle, Martin Przyjaciel-Zablocki, Simon Skilevic, and Georg
Lausen. 2016. S2RDF: RDF querying with SPARQL on spark. Proceedings of
the VLDB Endowment 9, 10 (2016), 804–815.

[23] Michael Schmidt, Thomas Hornung, Norbert Küchlin, Georg Lausen, and
Christoph Pinkel. 2008. An Experimental Comparison of RDF Data Manage-
ment Approaches in a SPARQL Benchmark Scenario. In International Semantic
Web Conference (Lecture Notes in Computer Science), Vol. 5318. Springer, 82–97.

[24] Michael Schmidt, Thomas Hornung, Georg Lausen, and Christoph Pinkel.
2009. SPˆ2Bench: A SPARQL Performance Benchmark. In Proceedings of the
25th International Conference on Data Engineering, ICDE 2009, March 29 2009 -
April 2 2009, Shanghai, China. 222–233. https://doi.org/10.1109/ICDE.2009.28

[25] Matei Zaharia, Reynold S. Xin, and Patrick Wendell et.al. 2016. Apache Spark:
a unified engine for big data processing. Commun. ACM 59, 11 (2016), 56–65.

[26] Lei Zou, Jinghui Mo, Lei Chen, M Tamer Özsu, and Dongyan Zhao. 2011.
gStore: answering SPARQL queries via subgraph matching. Proceedings of the
VLDB Endowment 4, 8 (2011), 482–493.

https://doi.org/10.5441/002/edbt.2018.49
https://doi.org/10.1002/cpe.5523
https://doi.org/10.1145/2736277.2741121
https://doi.org/10.1109/ICDE.2009.28

	Abstract
	1 Introduction
	2 Background
	2.1 Apache Spark & SparkSQL
	2.2 RDF Relational Schema
	2.3 RDF Data Partitioning

	3 Evaluation Methodology
	4 Benchmark & Experimental Setup
	5 Experiment Results
	5.1 WPT VS. PT Schema Results
	5.2 ExtVP VS. VP Schema Results

	6 Discussion
	6.1 Assumption: WPT always outperforms PT
	6.2 Assumption: ExtVP always outperforms VP
	6.3 Recommendations

	7 Related Work
	8 Conclusions & Future Work
	References

