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ABSTRACT
In-situ processing has received a great deal of attention in recent
years. In in-situ scenarios, big raw data files which do not fit
in main memory, must be efficiently handled using commodity
hardware, without the overhead of a preprocessing phase or the
loading of data into a database. In this work, we present an adap-
tive indexing scheme that enables efficient visual exploration and
analytics over big raw data files. Beyond visual exploration and
statistics, the scheme enables categorical-based analytics using
group-by and filter operations. The proposed scheme combines
a tile-based structure that offers efficient exploratory operations
over the 2D space, with a tree-based structure that organizes a
tile’s objects based on their categorical values, enabling efficient
visual analytics and the support of advanced visualization meth-
ods. The index resides in main memory and is built progressively
as the user explores parts of the raw file, whereas its structure and
level of granularity are adjusted to the user’s exploration areas and
type of analysis. We conduct experiments using real and synthetic
datasets, and demonstrate that the proposed approach, is in most
cases more than 40× faster compared to the existing solutions,
and performs around 3 orders of magnitude less I/O operations.

KEYWORDS
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1 INTRODUCTION
Commonly, in data exploration scenarios, users wish to visually
interact and analyze large data files that do not fit in main memory,
e.g., data produced by scientific workflows, IoT devices or crowd-
sourcing. These users usually have limited skills in data manage-
ment and processing as well as limited resources or commodity
hardware for use, in contrast to, e.g., a distributed environment.
Ideally, the tasks in such scenarios, require a very small raw data-
to-analysis time and memory resources, as well as efficient visual
exploration and analytic operations, which are performed via in-
teractive visualizations, such as maps, scatter plots, histograms,
or other analytical and statistical methods, e.g., OLAP analysis,
correlation, clustering, and regression.

Consider the following real-word example, which refers to a
common task in telecommunication industry. The data scientists
working in telco companies analyze network data in order to get
insights regarding the network quality of the company. Such data
are stored in comma-separated data files and contain signal mea-
surements crowdsourced from IoT mobile devices, e.g., connected
cars, mobile phones.1 Using this data, scientists visually explore,
analyze and produce benchmarks regarding the network quality.

Figure 1(a) presents a sample of a raw file containing five
entries/objects (𝑜1∼𝑜5), where each of them represents a signal
measurement. Basically, each entry contains data regarding the:
1For example, https://www.tutela.com.
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geographic location (Lat, Long), signal strength (Signal) and
network bandwidth (Width), as well the categorical characteristics:
brand, network provider, and network technology (Net).2

Figure 1(c) outlines our working scenario. Assume that a data
scientist wishes to visually explore the network data using a 2D
visualization technique, e.g., scatter plot, map; and analyze it using
visual analytics and statistics. The user first selects the input file
and a map as the underlying visualization layout. The file is parsed
and an initial "crude" version of the index is constructed A . Then,
the user interacts and performs visual and analytic operations on
the map B .

For example, the user 𝑟𝑒𝑛𝑑𝑒𝑟𝑠 on the map the signal measure-
ments located in a specific geographic area, views 𝑑𝑒𝑡𝑎𝑖𝑙𝑠 (e.g.,
provider) for the points visualized, or 𝑓 𝑖𝑙𝑡𝑒𝑟𝑠 out the ones that
refer to AT&T C . Next, the user may 𝑚𝑜𝑣𝑒 (e.g., pan left) the
visualized region in order to explore a nearby area; or 𝑧𝑜𝑜𝑚-𝑖𝑛/𝑜𝑢𝑡
to explore a part of the region or a larger area, respectively. For the
visualized points, the user wishes to compute statistics between nu-
meric attributes, e.g., the Pearson correlation coefficient between
the signal strength and the bandwidth; or visualize its values using
a scatter plot. Finally, the user proceeds with the analysis of the
data based on one or more categorical attributes; e.g., generate:
(1) a heatmap to present the average signal strength per provider
and network technology, or (2) a bar chart to present the average
signal strength for each provider, or (3) parallel coordinates to
present the number of measures grouped by provider, brand, and
network technology D .

Eventually, each user interaction is mapped to a query evalu-
ated over the index E and triggers the readjustment of the index
structure and the update of its contents F .

In the last few years, the in-situ paradigm has been adopted in
the context of data exploration scenarios, referring to data access
methods that enable the analysis over large sets of raw data, i.e.,
data files in raw formats like CSV or JSON. In-situ techniques at-
tempt to avoid the overhead of fully loading and indexing the data
in a DBMS and improve performance by progressively building
an index as the user explores data.

Recent works in this area have proposed techniques for progres-
sive loading and indexing of the data, for generic in-situ querying
(mainly range queries) [6, 20, 25, 26, 33, 34, 39], and for 2D
visual operations over numeric attributes [11, 12]. However, in
the context of in-situ processing, no attention has been given, to
exploratory aggregate queries, on data with categorical attributes
and specifically, group-by queries that filter and aggregate results
based on taxonomies and controlled vocabularies, which comprise
the domains of the categorical attributes.

As demonstrated in the motivating example, the Group-by oper-
ation is essential in order to generate the most-known visualization
types, in which categorical-based aggregated results are visualized.
Such visualization types include: bar charts, heatmaps, parallel
coordinates, (binned) scatter plots, radar chart, pies, etc. The great

2For simplicity, the numbers shown do not correspond to real values; also, Samsg
stands for Samsung and Veriz for Verizon.
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Figure 1: Working Scenario Overview

importance of categorical-based visualization types in data anal-
ysis, is also verified by [31] showing that bar charts are by far
the most commonly used visualization type. Beyond the group-by
operation, the Filter operation over categorical attributes, enables
the support of effective exploration mechanisms, such as faceted
search.

In this work, we propose an innovative indexing scheme and
adaptive techniques in the context of in-situ visual exploration,
which supports efficient categorical-based group-by and filter oper-
ations, combined with 2D visual interactions, such as exploration
of data points on maps. To the best of our knowledge, there is no
work studying categorical-based operations in in-situ scenarios.
The proposed scheme employs a tile-based structure which offers
efficient exploration over the 2D plane, with a tree-based structure
that organizes tile’s objects based on its categorical values. The
index resides in main memory and is built progressively as the
user explores parts of the raw file, whereas its structure and level
of granularity are adjusted to the user’s exploration areas and type
of analysis. In our experiments we illustrate that the proposed
method in most cases is about 40× faster and performs up to 3
orders of magnitude less I/O operations, compared to existing
solutions.

Contributions. In this paper, we provide the following contribu-
tions:

− We formulate exploratory and analytical operations over
categorical attributes (i.e., group-by, filter, and aggregate),
that are mapped to query operators and evaluated over the
underlying indexing scheme.

− We design a main-memory lightweight tree structure that
organizes objects and computes statistics based on categor-
ical attributes.

− We introduce a hybrid index that combines tile and tree
structures. The index organizes the objects based on two
dimensions, as well as based on the categorical attributes’
values of the objects.

− We design interaction-based adaptation techniques that
progressively adjust the index structure based on the user
interaction.

− We evaluate the performance of our method in terms of
execution time and I/O operations, using real and synthetic
datasets. We show that the proposed approach outperforms
competitors both in execution time and I/O operations.

Compared to our previous work in the context of in-situ visual
exploration [12], this work enables the support of categorical
attributes, which are not previously considered. In this context,
we define three categorical-based operations (Sect. 2), a tree-
based structure (Sect. 3) which is integrated with the tile-based
structure proposed in [12] (Sect. 4); and initialization (Sect. 4.3),
query processing (Sect. 5.1), and adaptation methods (Sect. 5.2)
for the introduced index and operations. The methods have been

encapsulated into the RawVis system [29] offering efficient in-situ
visual analytics.

Outline. The paper is organized as follows. In Section 2, we
present our exploration model. In Section 3, we describe the tree
structure, and in Section 4, the proposed indexing scheme. Then,
Section 5 presents the query evaluation and the adaptation tech-
niques. Section 6 presents the experimental evaluation, and Sec-
tion 7 the related work. Finally, Section 8 concludes the paper.

2 EXPLORATION MODEL
In this section, we present the exploration model, which defines
a set of exploratory and analytic operations and their translation
to data-access operations. In this work, we extend the model pre-
sented in [12] by defining three new operations over categorical
attributes. Particularly, we define the group-by, filter, and aggre-
gate operations.

Raw Data File & Objects. We assume a raw data file F contain-
ing a set of 𝑑-dimensional objects O. Each dimension corresponds
to an attribute 𝐴 ∈ A, where 𝐴 may be spatial, numeric, categor-
ical, or textual. Each object 𝑜𝑖 is defined as a list of 𝑑 attribute
values 𝑜𝑖 = (𝑎𝑖,1, 𝑎𝑖,2, ..., 𝑎𝑖,𝑑 ), and it is associated with an offset
𝑓𝑖 (a hex value) pointing to the “position” of its first attribute
from the beginning of the file F . Also, given an object 𝑜𝑖 and an
attribute 𝐴, as 𝑎𝑖,𝐴 we denote the 𝐴 value of the object 𝑜𝑖 .

Let A𝐶 ⊆ A denote the categorical attributes of the objects.
Each categorical attribute𝐴𝐶 is represented as a finite set of values
𝐴𝐶 = {𝑣1, 𝑣2, ...𝑣𝑛}, which defines the domain of the attribute, i.e.,
𝑑𝑜𝑚(𝐴𝐶 ).
User Interactions. The exploration model denotes a series of
user interactions which are formulated as a set of operations (e.g.,
render, zoom).

Given a raw data file, the user arbitrarily selects two numeric
attributes 𝐴𝑥 , 𝐴𝑦 ∈ A, that are mapped to the X and Y axis of
a 2D visualization layout (e.g., scatter plot, map). The 𝐴𝑥 and
𝐴𝑦 attributes are denoted as axis attributes, while the rest as non-
axis.3

The user selects to visualize a rectangular area Φ = (𝐼𝑥 , 𝐼𝑦),
called visualized area, which is defined by the two intervals
𝐼𝑥 = [𝑥1, 𝑥2] and 𝐼𝑦 = [𝑦1, 𝑦2] over the axis attributes 𝐴𝑥 and 𝐴𝑦 ,
respectively; i.e., Φ corresponds to the 2D area 𝐼𝑥 × 𝐼𝑦 . The visual-
ized area, contains a set of visible objects OΦ ⊆ O, for which the
values of their axis attributes fall within the ranges of that area.4

In this setting the following operations/interactions are defined:
(1) render: visualizes the objects contained in the visualized area.
(2) move: changes the boundaries of the visualized area, i.e., a

3We assume that the user is familiar with the schema of the data file; otherwise, as a
first step, she may have a preview of it, in terms of loading a small sample.
4In order to express the first query, we assume that the user knows the min/max
values of the axis attributes. Otherwise, these values are determined by parsing the
file once.



pan operation (3) zoom in/out: zooms the boundaries of the visu-
alized area keeping the center point inside Φ fixed. (4) filter: ex-
cludes objects visualized in Φ, based on conditions over the non-
axis attributes. (5) detail: presents information (e.g., attribute
values) related to the non-axis attributes. (6) group: finds group
of objects based on one or more categorical attributes; i.e., similar
to the group-by operation defined in SQL. (7) analyze: computes
aggregate or statistical functions over all objects or groups of
objects in the visualized area.

These operations may be combined in a sequence, e.g., render
a region, filter the presented objects, group the objects based on
an attribute and finally compute an average value for the groups.

Exploratory Query. Considering the aforementioned user oper-
ations, we proceed with defining them as data-access operators,
which operate on the underlying data file. Data-access operators
are essentially the building blocks of a single query applied to the
data, which is referred to as exploratory query.

Given a set of objects O and the axis attributes 𝐴𝑥 and 𝐴𝑦 , an
exploratory query 𝑄 over O is defined by the tuple ⟨S,F,D,G,N⟩,
where:

Selection clause S: defines a 2D range query (i.e., window query)
specified by two intervals 𝐼𝑥 and 𝐼𝑦 over the axis attributes 𝐴𝑥

and 𝐴𝑦 , respectively. The Selection clause is denoted as S =

(𝐼𝑥 , 𝐼𝑦) with its intervals to be referred as S.𝐼𝑥 and S.𝐼𝑦 . This
clause, selects the objects OS ⊆ O for which both of their axis
attributes have values within the respective intervals; i.e., their
axis attributes’ values are included in the 2D area (i.e., plane)
specified by the intervals S.𝐼𝑥 and S.𝐼𝑦 . The Selection clause is
mandatory in a query 𝑄 , while the remaining clauses are optional.

Filter clause F: defines a set of conjunction conditions which are
applied on the non-axis attributes. The Filter clause is defined as
F = {𝐹1, 𝐹2, ...𝐹𝑘 }, where a condition 𝐹𝑖 is a predicate involving
an atomic unary or binary operation over object attributes and
constants. The Filter clause is applied over the selected objects
OS, returning the objects O𝑄 that satisfy the F conditions.

Details clause D: defines a set of non-axis attributes
D = {𝐴1, 𝐴2, ...𝐴𝑘 }, for which the values of the objects 𝑂𝑄 (that
satisfy the filter), will be returned by the query.

Group-by clause G: defines a set of categorical attributes G =

{𝐴1, 𝐴2, ...𝐴𝑘 } with 𝐴𝑖 ∈ C, which are used in a group-by op-
eration. Given an set of objects 𝑂 and a set of attributes C, the
group-by operation partitions 𝑂 into a set of distinct groups, de-
noted as GCO , based on the different combinations of the values of
the C attributes in the 𝑂 objects. Thus, here, the Group-by clause
G performs a group-by operation based on its attributes, over the
objects satisfying the filter O𝑄 , resulting in the groups GG

O𝑄 .

Analysis clause L: defines two sets of algebraic aggregate func-
tions (e.g., count, sum, mean), where each of them is applied
over a set of numeric attributes, returning a single numeric value.
Particularly, the Analysis clause defines two sets of functions: (1)
𝐿𝑄 that are computed over the objects O𝑄 returned by the query;
and (2) 𝐿G that are computed over each group of objects resulted
by the group-by operations. Thus, the analysis clause is defined
as: L = (𝐿𝑄 , 𝐿G).
Note that the support of algebraic aggregate functions in our
model, enables the computation of a large number of complex
statistics (e.g., Pearson correlation, covariance).5

Intuitively, the Selection and Filter clauses apply restrictions to
the entire space of objects, resulting in a set of qualifying objects
O𝑄 , which is visually presented. For each object in O𝑄 , the values
of the attributes included in the Details clause will be returned.

5 More than 90% and 75% of the statistics supported by SciPy [4] and Wolfram [5],
respectively, are defined as algebraic aggregate functions [41].

Then, the Group-by clause evaluates group-by operations over the
O𝑄 objects. Finally, the set of aggregate functions of the Analysis
clause are computed over the objects of O𝑄 , and the objects’
groups generated by the Group-by clause.

The semantics of query execution involves the evaluation of the
different clauses of the query in the following order: (1) Selection;
(2) Filter; (3) Details; (4) Group-by; (5) Analysis.

Query Result. The result R of an exploratory query 𝑄 over O is
defined as R = (V𝑥,𝑦,D,V𝐿𝑄 ,VG), where:
(1) V𝑥,𝑦,D is a set of tuples corresponding to the objects O𝑄
returned by the query. For each object, its tuple contains: (𝑎) the
values of the axis attributes 𝐴𝑥 and 𝐴𝑦 ; and (𝑏) the values of the
attributes D defined in the Details clause. Formally,
V𝑥,𝑦,D = {⟨𝑜𝑖 : 𝛼𝑖,𝑥 , 𝛼𝑖,𝑦, 𝛼𝑖,𝐴1 , ...𝛼𝑖,𝐴𝑘

⟩,∀𝑜𝑖 ∈ O𝑄 }, where
{𝐴1, ...𝐴𝑘 } = D.
(2) V𝐿𝑄 is a list of the numeric values resulted from computing
the aggregate functions 𝐿𝑄 over the objects O𝑄 returned by the
query. Formally,V𝐿𝑄 = {ℓ1 (O𝑄 ), ℓ2 (O𝑄 ), ...ℓ𝑘 (O𝑄 )}, ∀ℓ𝑖 ∈ 𝐿𝑄 .
(3) VG contains the results of the group-by clause. Particularly,
VG is a set of tuples, where each tuple corresponds to a group
𝑔𝑖 of the group-by resulted groups GG

O𝑄 . The tuple of a group 𝑔𝑖

contains: (𝑎) the values of the attributes G defined in the group-by
clause; and (𝑏) the results of the aggregate functions 𝐿G (com-
puted over 𝑔𝑖 ). Formally,
VG = {⟨𝑔𝑖 : 𝑎𝑖,𝐴1 , ...𝑎𝑖,𝐴𝑘

, ℓ1 (𝑔𝑖 ), ...ℓ𝑧 (𝑔𝑖 )⟩,∀𝑔𝑖 ∈ GG
O𝑄 }, where

{𝐴1, ...𝐴𝑘 } = G and {ℓ1, ...ℓ𝑧 } = 𝐿G.

3 CATEGORICAL-BASED TREE INDEX
In this section, we present a tree structure that organizes objects
based on its categorical attribute values, named CET (Categorical
Exploration Tree).6 CET is designed as a lightweight, memory-
oriented, trie-like tree structure. In a nutshell, each tree level
corresponds to a different categorical attribute, and edges to at-
tribute values. Based on the tree hierarchy, each node is associated
with a set of objects, that are determined based on the node path.
These objects are stored in the leaf nodes.

Considering the number of attribute value combinations which
are required for categorical indexing, a significant amount of
memory is required. Hence, the design of a memory-efficient cate-
gorical structure is a major challenge, especially in our scenario,
where we consider limited available resources. To this end, in
CET, each object is stored (once) in the leaves, and allocates only
three numeric values (i.e., two axis attributes and a file offset).
Further, statistics are also only stored in the leaves, since the hi-
erarchical structure of CET allows the efficient computation of
statistics over different levels, by performing efficient, in-memory
aggregate operations. Note that in our implementation categorical
attribute values are mapped to distinct numeric value.

A second challenge is to reduce the cost of I/O operations
which are crucial in such I/O-sensitive settings. Exploiting the
way CET stores the objects during the initialization phase, we are
able to access the raw file in a sequential manner. The sequential
file scan increases the number of I/Os over continuous disk blocks
and improves the utilization of the look-ahead disk cache (more
details in Sect. 5.1).

3.1 The CET Tree
In this section, we present the basic concepts of the CET tree.
Given a set of objects O and a list of categorical attributes C =

{𝐴𝐶0 , 𝐴𝐶1 , ...𝐴𝐶𝑘
}, a CET tree ℎ organizes the objects ℎ.O based

on the values of the categorical attributes ℎ.C.
The height of ℎ is |C|, so it has |C| + 1 levels (from 0 to |C|),

with the leaf nodes storing the objects.

6CET is also referred to as tree.
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Figure 2: CET Tree Overview

The CET follows a “level-based” organization, where each
level corresponds to a different attribute. Based on the given order
of the attributes C, the nodes at level 𝑖 have edges that correspond
to a different value of the attribute 𝐴𝐶𝑖

∈ C, i.e., 𝑑𝑜𝑚(𝐴𝐶𝑖
).

Each node 𝑛, is associated with a sequence of attribute values
𝑛.𝑆 = ⟨𝑣0, 𝑣1 ..., 𝑣𝑘 ⟩, that is defined by the path from the root to
node 𝑛. The sequence contains |C| values, where the value 𝑣𝑖
corresponds to a value of the attribute at level 𝑖. Specifically, for
a node 𝑛 at the level 𝑖, the first 𝑖𝑡ℎ values in 𝑛.𝑆 are the attributes
values found in the path from the root to 𝑛, while the rest |C| − 𝑖
values are assigned with the value any, denoted as ∗.

Based on the sequence of values 𝑛.𝑆 , a node is associated with
a set of objects 𝑛.O ∈ O, where its attribute values equal to the
sequence’s values. As a result, the tree defines an aggregation
structure, where in each node, the associated objects are the union
of the objects associated with its child nodes.

Object Entries. Leaf nodes contain references to the data objects,
i.e., object entries. For each object 𝑜𝑖 ∈ 𝑛.O, an object entry 𝑒𝑖 is
defined as ⟨𝑎𝑖,𝑥 , 𝑎𝑖,𝑦, 𝑓𝑖 ⟩, with 𝑎𝑖,𝑥 , 𝑎𝑖,𝑦 being the values of the axis
attributes and 𝑓𝑖 the offset (a hex value) of 𝑜𝑖 in the raw file. As
𝑛.E we denote the set of object entries stored in the leaf node 𝑛. In
any case, an object entry has a constant size that is not affected by
the object’s characteristics (e.g, number of attributes), and is equal
to three numeric values: object’s 𝐴𝑥 and 𝐴𝑦 (e.g., two double),
and object’s offset from the beginning of file (e.g., a long). The
file offset 𝑓𝑖 defines a “direct and precise” connection between an
object and the raw file.

Synopsis Metadata. Apart from object entries, each leaf node
𝑛 is associated with a set of synopsis metadata 𝑛.M, which are
(numeric) values calculated by algebraic aggregate functions over
one or more attributes of 𝑎𝑙𝑙 𝑛.E objects such as sum, mean, sum
of squares of deltas, etc. Using the leaves’ metadata, we are able
to compute the metadata of any internal nodes 𝑛, by aggregating
the metadata of the descendant nodes of 𝑛, in a bottom-up fashion.

Example 1. [CET Tree] Figure 2a presents the CET index con-
structed for the categorical attributes C = {𝐴𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟 , 𝐴𝐵𝑟𝑎𝑛𝑑 }.
The dotted lines denote parts of the tree that are not going to be
constructed for this dataset.

Considering the level-based organization, the level 0 corre-
sponds to the Provider attribute (the first attribute in C), and level
1 to Brand. The nodes in each level have as edges the values of
the level’s corresponding attribute; e.g., edges of node 𝑎 are the
Provider values: Provider = {Ver, AT&T}.

Additionally, the node 𝑐 has the associated sequence values
𝑐.𝑆 = ⟨AT&T, ★⟩, where AT&T corresponds to the path of 𝑐, and
the value any is produced by the absence of the Brand attribute (in
the path). Further, 𝑐 is associated with the objects 𝑐.O = {𝑜3, 𝑜4}
that “match” with the 𝑐.𝑆 values, i.e., have as Provider the value
AT&T and the value any for Brand.

Regarding the leaf nodes, the leaf 𝑑 stores the object entries 𝑑.E
and the metadata 𝑑.M for the objects 𝑑.O = {𝑜1, 𝑜2} that matches

its values 𝑑.S = ⟨Veriz, Samsg⟩ (Fig. 2b). Here, metadata stores
statistics regarding the Signal and the Width numeric attributes. ■

3.2 Tree Operations
In this section, we define the basic operations over the CET tree
and we study its space complexity.

Insert Object & Construct Operation. The insertion opera-
tion inserts an object 𝑜 into a CET tree ℎ. It takes as input,
a tree ℎ, the object 𝑜, and a list of categorical attributes C =

{𝐴𝐶0 , 𝐴𝐶1 , ...𝐴𝐶𝑘
} based on which the tree organizes its objects.

The the tree construction operation implemented via an 𝑖𝑛𝑠𝑒𝑟𝑡 for
each object defined in these operations.

In brief, an object 𝑜 is inserted to the corresponding leaf 𝑙 . In
order to find 𝑙 , we need to traverse the tree starting from the root;
during the traversal, nodes and edges which do not exist in the
tree, are constructed. The path that indicates 𝑙 is defined by the
values of 𝑜 in C attributes.

Get Leaves/Objects Based on Filter Conditions. Here we present
the get leaves/objects operation under filter conditions. The op-
eration returns the leaf nodes L of a tree ℎ, that are matched based
on the categorical conditions defined in the Filter clause F of a
query. The operation, based on the conditions, constructs a path
expression 𝑝 starting from the root to the leaf nodes. Then, for
each path produced by the path expression, it traverses the tree in a
top-down fashion. The union of the leaves L reached by the paths
is returned. The get objects based on filter condition operation is
implemented by returning the object’s entries of the leaves L.

Space Complexity. Considering the CET insertion process, a
node 𝑛 is included in the tree, only if its sequence of values 𝑛.𝑆
is associated with one of its objects. In other words, nodes that
represent combinations of attribute values that do no appear in
the data objects are not inserted in the tree structure. As a result,
the number of nodes depends not only on the attributes and its
domain, but also on the (distinct) values of the attributes in the
data objects.

We can easily verify that the maximum number of nodes in a
CET tree occurs when all possible combinations of values for its
attributes appear in the objects it contains.

Given the tree attributes ℎ.C = {𝐴𝐶0 , 𝐴𝐶1 , ...𝐴𝐶𝑘
}, the maxi-

mum number of nodesℎ.𝑁 in the worst case is:ℎ.𝑁 = |dom(𝐴𝐶0 ) |+
|dom(𝐴𝐶0 ) | · |dom(𝐴𝐶1 ) | + ... + |dom(𝐴𝐶0 ) | · |dom(𝐴𝐶1 ) | · ... ·
|dom(𝐴𝐶𝑘

) | =
𝑘−1∑
𝑖=0

𝑖∏
𝑗=0
|𝑑𝑜𝑚(𝐴𝐶 𝑗

) |. Also, each object entry is con-

tained in only one leaf, we have that the space of all tree objects
is 𝑂 ( |ℎ.O|). Hence, the space complexity of a CET tree ℎ is:

O(
𝑘−1∑
𝑖=0

𝑖∏
𝑗=0
|𝑑𝑜𝑚(𝐴𝐶 𝑗

) | + |ℎ.O|).

4 THE VETI INDEX
In this section, we present the proposed indexing scheme, that
combines tile structures with trees.
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Figure 3: VETI Index Overview

4.1 Tile-based Structure
Our work is built on top of the VALINOR index [12], referred
also as tile-structure. VALINOR is employed as the underlying
indexing technique for the support of exploration operations over
a 2D representation of raw data.

VALINOR is a tile-based multilevel index, which is stored in
memory and organizes the data objects of a raw file into hierar-
chies of non-overlapping rectangle tiles. Each tile is constructed
over a range of values for the 𝐴𝑥 and 𝐴𝑦 axis attributes.The in-
dex is initialized with a number of tiles and progressively adjusts
itself to the user interactions, by splitting these tiles into more
fine-grained ones, thus forming a hierarchy of tiles. The basic
concepts of the index are:

Tile & Tile Hierarchies. A tile 𝑡 is a part of the Euclidean space
defined by two left-closed, right-open intervals intervals 𝑡 .𝐼𝑥 and
𝑡 .𝐼𝑦 , and T is the set of tiles defined in the tile-structure.

In this work, we assume hierarchies of tiles (i.e., forest), al-
though a hierarchy with a single root tile can also be defined. In
each level of the hierarchy, there are no overlaps between the tiles
of the same level, i.e., disjoint tiles.

A non-leaf tile 𝑡 can have an arbitrary number of child tiles,
whereas leaf tiles are the tiles without children and can appear at
different levels in the hierarchy. Further, a non-leaf tile covers an
area that encloses the area represented by any of its children. That
is, given a non-leaf tile 𝑡 defined by the intervals 𝑡 .𝐼𝑥 = [𝑥1, 𝑥2)
and 𝑡 .𝐼𝑦 = [𝑦1, 𝑦2); for each child tile 𝑡 ′ of 𝑡 , with 𝑡 ′.𝐼𝑥 = [𝑥 ′1, 𝑥

′
2)

and 𝑡 ′.𝐼𝑦 = [𝑦′1, 𝑦
′
2), it holds that 𝑥1 ≤ 𝑥 ′1, 𝑥2 ≥ 𝑥 ′2, 𝑦1 ≤ 𝑦′1 and

𝑦2 ≥ 𝑦′2.
Each tile 𝑡 encloses a set of objects 𝑡 .O, where the axis values

𝑎𝑖,𝑥 and 𝑎𝑖,𝑦 of each object 𝑜𝑖 ∈ 𝑡 .O fall within the intervals of the
tile 𝑡 , 𝑡 .𝐼𝑥 and 𝑡 .𝐼𝑦 , respectively.

4.2 VETI: Combining Tiles and Trees
The VETI index (Visual Exploration Tile-Tree Index) combines
the VALINOR tile-based index with the CET tree, with each leaf
tile being associated with a CET tree.

Given a raw data file F , two axis attributes 𝐴𝑥 and 𝐴𝑦 , and
a set C of categorical attributes of the objects stored in F ; the
VETI index I organizes the objects stored in F into hierarchies of
non-overlapping tiles based on its 𝐴𝑥 , 𝐴𝑦 values.

Let IT be the tiles of I. Each leaf tile 𝑡 ∈ IT is associated with
a CET tree ℎ, denoted as 𝑡 .ℎ. In analogy, a tree ℎ is associated
with a leaf tile 𝑡 . A tile’s enclosed objects 𝑡 .O are stored in the
leaf nodes of the associated tree 𝑡 .ℎ, as objects entries. In case the
objects of a tile are not indexed based on the categorical attributes,
the tree ℎ corresponds to a node (root) that stores all the object
entries.

The VETI index I is defined by a tuple ⟨IP,AP⟩, IP is the initial-
ization policy defining the methods that determine the character-
istics of VETI; AP is the adaptation policy defining the methods
for reconstructing the tiles and trees based on user interaction.

As basic operations of the VETI we consider: initialization
(Sect. 4.3), query evaluation (Sect. 5.1), and adaptation (Sect. 5.2).

Example 2. [VETI Index] Figure 3 presents the VETI index that
results by the running example data (Fig. 1). VETI divides the

2D space into 4 × 3 equally sized disjoint tiles, and the tile 𝑡𝑘 is
further divided into 2× 2 subtitles of arbitrary sizes, forming a tile
hierarchy.

The figure also presents the contents of the 𝑡𝑧 tile, highlighted
with grey color in the index, that contains the the objects 𝑜3 and
𝑜4. For the tile 𝑡𝑧 , the index stores its intervals 𝑡𝑧 .𝐼𝐿𝑎𝑡 and 𝑡𝑧 .𝐼𝐿𝑜𝑛𝑔,
its child tiles 𝑡𝑧 .C, and a pointer to its tree 𝑡𝑧 .ℎ. Finally, the tree
that corresponds to the tile 𝑡 𝑗 and the content of the leaf node 𝑘
are shown in the figure (the objects entries and metadata details
are omitted in this figure). ■

4.3 VETI Initialization Overview
In our scenario, we do not consider any loading or preprocess-
ing. The index is constructed following the first user interaction.
During the initialization phase the following tasks are realized.
First, the characteristics of the index are determined; then, the file
is parsed and the objects populate the index; finally the query is
evaluated.

Algorithm 1 outlines the initialization phase. The algorithm
takes as input, the raw file F , the axis and categorical attributes
𝐴𝑥 , 𝐴𝑦 and AC and the first exploratory query 𝑄0; and returns
the initialized index I and the results R0 of the 𝑄0.

Initially, we have to determine the characteristics of the tile
structure. The determTiles method (line 1) defined by the initial-
ization policy IP, determines the tile structure (i.e., number, size
and intervals of the tiles). Next, based on the defined tiles’ charac-
teristics, a flat tile structure IT is constructed, i.e., the intervals of
each tile are stored.

In the next part (loop in line 3), the algorithm scans the file F .
For each object 𝑜𝑖 , the algorithm reads the attribute values of axis
attributes 𝑎𝑖,𝑥 , 𝑎𝑖,𝑦 , the values for its categorical attributes, and
the attribute values which are required to evaluate the Analysis
clause of 𝑄0 (line 4). Next, the tile 𝑡𝑖 that encloses 𝑜𝑖 is found
(line 6), and the insertToTree method (Sect.3.2), inserts 𝑜𝑖 into the
CET tree 𝑡𝑖 .ℎ (line 7) of 𝑡𝑖 . During the insertion, the object entry
is constructed, the tree metadata are updated, and new parts (i.e.,
nodes, edges) of the tree may be constructed.

Determine Tile Structure. The determTiles method (line 1) de-
fined by the tile initialization policy IP, determines the tile struc-
ture (i.e., number, size and intervals of the tiles). These charac-
teristics can be defined via numerous approaches (e.g., given by
the user or determined by the visualization setting, resolution).
Here, we use a locality-based probabilistic initialization approach
[12], that is based on the first user query. The main idea of this
method is based on the locality-based characteristics of explo-
ration scenarios, in which queries are highly likely to reside in
areas near the previous ones [8, 24, 42]. Hence, tiles near the
first user query have higher probability to overlap with a future
query, compared to tiles farther away. In order to improve the
query evaluation performance, the index structure has to reduce
the number of I/O operations during query processing. Recall that,
in VETI, aggregate metadata are stored in the tree of each tile.
This way, queries can exploit the tree metadata of the tiles that
overlap, and avoid I/O operations. The use of metadata depends
on whether an overlapping tile is fully or partially-contained in
the query’s window (in 2D space). Apparently, the metadata of a



Algorithm 1. Initialization (F, 𝐴𝑥 , 𝐴𝑦 , C, 𝑄0)
Input: F: raw data file; 𝐴𝑥 , 𝐴𝑦 : axis attributes; C: categorical attributes;

𝑄0: first query;
Parameters: IP: initialization policy;
Output: I: initialized index; R0: result of query 𝑄0

1 IT ← IP.determTiles(𝐴𝑥 , 𝐴𝑦 ,𝑄0) //find the number, size & intervals of the tiles

2 IT ← constructTiles(I) //construct index tiles IT

3 foreach 𝑜𝑖 ∈ F do //read objects from file, insert them to trees & evaluate 𝑄0
4 read from F the values of axis and categorical C, and the attributes required to

evaluate the 𝑄0 Analysis clause
5 use the 𝑜𝑖 attributes to evaluate 𝑄0
6 𝑡𝑖 ← find the tile 𝑡𝑖 ∈ IT that encloses 𝑜𝑖 based on its axis attributes values
7 insertToTree(𝑡𝑖 .ℎ, C, 𝑜𝑖 ) //insert 𝑜𝑖 to tree 𝑡𝑖 .ℎ

8 return I, R0

fully-contained tile could be used, without the need to access the
file, while in partially-contained cases, the file has to be accessed
in order to compute the metadata referred to the query’s contained
part. More details about query evaluation over VETI are presented
in Section 5.1.

Our initialization method defines a tile structure that is more
fine-grained (i.e., having a large number of smaller tiles) in the
area around the initial query, whereas the size of tiles becomes
larger as their distance from the initial query gets bigger. Increas-
ing the number (i.e., decreasing the size) of tiles near the first
query, increases the possibility that subsequent user queries in this
neighborhood overlap with fully-contained tiles, which in turn
reduces the I/O cost (for more details see [12]).

Remark. There are cases where the user’s exploration is performed
in more than one sessions. In such scenarios, the user can perform
the exploration, store and reload intermediate states of the index
in subsequent user sessions. Thus, the user avoids the cost of re-
initialization, as well as the fine tuning (e.g., adaptation) of the
index to the previously performed user’s operations.

5 QUERY PROCESSING & INDEX
ADAPTATION

This section describes the evaluation of the queries and the index
adaptation.

5.1 Query Processing
An overview of the query evaluation is presented in Algorithm 2.
The algorithm takes as input, the initialized index I, an exploratory
query 𝑄 and the raw file F .

Find and Adapt Query Related Tiles & Trees. Once the index
has been initialized, to evaluate a query𝑄 , we need to find the tiles
TS that overlap with the 2D area defined in the query’s Selection
clause S (line 2). Specifically, function getOverlappingLeafTiles
first determines the overlapping tiles at the highest level, and then
traverses the tile hierarchy to find the set of overlapping leaf tiles
TS.

Next, based on the adaptation policy AP, the adapt procedure
(Proc. 1), performs the tile splitting and reorganizes the objects
in the trees of the tiles T𝑎 created by the splitting process (more
details in Sect. 5.2).

Then, considering any conditions over categorical attributes that
are defined in the Filter clause, getLeavesBasedOnFilter (Sect. 3.2)
retrieves the leaf nodes L of the affected trees (line 5). In other
words, L are the leaves of the trees that belong to tiles overlapping
the query, after the categorical conditions have been applied in
these trees.

Determine the Objects that Require File Access. Procedure
getLeavesRequiringFileAccess (O𝑄 , 𝑄) (line 6) determines the
objects for which we have to access the raw file in order to answer
the query.

Algorithm 2. Query Evaluation (I, 𝑄 , F )
Input: I: index (initialized); 𝑄 ⟨S, F,D,G, L⟩: query; F: raw data file
Variables: TS: leaf tiles that overlap with the Selection clause (i.e., 2D area);

T𝑎 : tiles resulted by adaptation; L: tree leaf nodes selected by the Query;

Parameters: AP: adaptation policy;
Output: R: result of query 𝑄

1 L ← ∅
2 TS ← getOverlappingLeafTiles (IT ,S)
3 foreach 𝑡𝑠 ∈ TS do
4 T𝑎 ← AP.adaptTileAndTree (𝑡𝑠 ,𝑄) //see Sect. 5.2

5 ∀𝑡𝑎 ∈ T𝑎 : L ← L ⋃
getLeavesBasedOnFilter (𝑡𝑎 .ℎ, F)

6 W(⟨𝑙,V⟩) ← getLeavesRequiringFileAccess (L,𝑄) //Set of tuples, whereV are

the (objects’) attributes of the leaf 𝑙 where their values have to be retrieved from the file

7 ifW ≠ ∅ then //values are missing — read from file

8 read from file the values of attributes V for each leaf 𝑙 ∈ W
9 updateLeafMetadata ( 𝑙 ) ∀𝑙 ∈ W

10 R ← evaluate 𝑄 using the objects and the metadata of leaves L
11 return R

To this end, we need to consider the spatial relation between
the 2D area specified in the Selection clause and the tiles it over-
laps. Specifically, a tile that overlaps a 2D window query can be
partially-contained or fully-contained in it. For a fully-contained
tile, we need not examine its objects in order to find the ones
that are included in the window. Also, metadata that refers to the
objects of a tile can be utilized to avoid accessing the raw file.

For each leaf node inL, procedure getLeavesRequiringFileAccess
first checks if the tile it belongs to is partially or fully-contained
in the Selection clause of the query. For a node that belongs to
a partially-contained tile we need to retrieve from the file the
attributes included in the Analysis clause for every one of its ob-
jects that is contained in the window query. In contrast, if a node
belongs to a fully-contained tile, we know that all of its objects
are contained in the Selection clause of the query. File access is
required if a Details clause is requested in the query, or no meta-
data exist for that node to be used to evaluate the Analysis Clause.
Also, in case the tile has not been initialized with a CET tree and
the query includes a Filter or Group-by clause on some of the
categorical attributes, we need to access the raw file to read these
attributes for all the objects of that tile.

Next, we access the file for the objects contained in leaves L𝑚
and retrieve in memory the missing attributes C𝑚 (line 8). Note
that if a leaf node belongs to a partially-contained tile, we only
access the file for its objects that are included in the window query.
To improve the performance of reading the missing attributes
from file, we exploit the way the object entries are stored in the
leaves in order to access the file in a sequential manner. During
the initialization of the index, we append the object entries into
the leaf nodes of the CET trees as the file is parsed. As a result,
object entries in every leaf node are stored sorted based on their
file offset. When accessing the file, we read the objects from the
leaves following a 𝑘-way merge based on objects file offset. This
sequential file reading results in faster I/O operation by utilizing
the look-ahead disk cache.

Then, based on the values read from the raw file, function
updateLeafMetadata computes and updates the metadata of the
corresponding leaf nodes, considering the aggregate functions that
are used in the Analysis clauses of the query.

Evaluate Query. Finally, we evaluate query 𝑄 using the objects
OL and metadata of the leaf nodes L (line 10). The evaluation
of the Filter clause of the query starts implicitly when determin-
ing the set of leaf nodes using function getLeavesBasedOnFilter
based on the filter conditions over the categorical attributes. Here,
we use the attribute values V retrieved from the file to check



Procedure 1: adaptTileAndTree(𝑡,𝑄)
Input: 𝑡 : leaf tile to adapt; 𝑄 : query
Parameters: AP: adaptation policy
Output: T𝑎 : tiles resulted from 𝑡 after adaptation

1 if AP.splitRequired (𝑡,𝑄) then
2 T𝑎 ← AP.splitTile (𝑡 )
3 AP.generateTreesInSplittedTiles (𝑡 .ℎ, T𝑎 , 𝑄)
4 else
5 T𝑎 ← 𝑡

6 return T𝑎

every object in OL against the filter conditions that do not in-
volve the categorical attributes. Finally, for the evaluation of the
Group-by and Analysis clauses, we utilize existing metadata for
nodes belonging to fully-contained tiles with trees indexing every
categorical attribute included in the Filter and Group-by clauses.
For all other cases, we evaluate the functions requested in the
Analysis clause using the values retrieved from the file.

5.2 Incremental Adaptation
VETI employs an incremental index adaptation technique that
attempts to adapt the index structure to the query workflow of the
user exploration. The adaptation in VETI may incrementally split
a tile that overlaps the Selection clause, into smaller subtiles. This
tile splitting increases the likelihood that a future query will fully
overlap a tile in the area that the user exploration focuses, and will
improve query performance by reducing accesses to the file.

Procedure adapt (Proc. 1) is responsible for the incremental
adaptation. It takes as input a tile 𝑡 and a query 𝑄 and returns a set
of subtiles T𝑎 if the tile 𝑡 needs to be split.

To split, or not to split? During query processing, we examine
each tile that overlaps the window query if it needs to be split.
To determine if a tile requires (further) splitting, splitRequired
function (line 1) estimates the number of I/O operations needed to
evaluate query 𝑄 in a tile 𝑡 and compares it to a numeric threshold
for the maximum number of I/Os. If the expected I/O cost for a
tile exceeds that threshold, a split is performed. To estimate the
number of necessary operations, we take into consideration not
just the Selection clause but also the Filter clause. Specifically,
even if the objects belonging to a tile may exceed the threshold
set, query 𝑄 may filter on a categorical attribute and using the
tile’s CET tree the number of objects we need to examine may be
much less than the threshold. Details about the splitting model are
presented in [12].

Tile Splitting. The split is performed in function splitTile (line 2)
which returns a new set of tiles T𝑎 . Each one of the child tiles that
result contains a tree with the same set of categorical attributes
as their parent tile. The objects contained in the leaf nodes of
the parent tile’s tree are reorganized in the leaf nodes of the new
trees according to their values for the axis attributes, as well as
the categorical attributes. In our implementation for VETI, we
employ a quad-tree like splitting approach in which a tile is split
into 4 equal subtiles. However, more sophisticated methods can
be used to split a tile, e.g. query based splitting methods [12].

6 EXPERIMENTAL ANALYSIS
6.1 Experimental Setup

Datasets. We have used a real dataset, the NYC Yellow Taxi Trip
Records (TAXI), which is a CSV file, containing information re-
garding yellow taxi rides in NYC7. From this dataset, we selected
a subset that includes taxi trip records in 2014 (165M objects,
26 GB) with each record object referring to a specific taxi ride
described by 18 attributes (e.g., pick-up and drop-off dates and

7Available at: https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

locations, trip distances, fares, and tip amount). From the TAXI
dataset, we selected the pickup location longitude and latitude as
the axis attributes of the exploration, while the tip amount was
selected as the attribute in the Analysis clause, for which aggre-
gates were evaluated. The TAXI dataset includes 5 categorical
attributes (e.g. payment type, passenger count, and rate type) with
cardinality varying between 2 and 9. Each query is defined over
an area of 500m × 500m size (i.e., window size), simulating a
map-based exploration at the neighborhood zoom level, with the
first query 𝑄0 posed in central Manhattan. Each query contains a
Group-by clause on the passenger count attribute, while the Filter
clause includes 1 to 2 filter conditions randomly specified over
the remaining categorical attributes.

Regarding the synthetic datasets (SYNTH10/50), we have gen-
erated two files of 100M data objects, having 10 and 50 attributes
(11 and 51 GB, respectively). The synthetic datasets contain nu-
meric attributes in the range (0, 1000), as well as 6 categorical
attributes. The default cardinality for the categorical attributes is
10, while we also generated three variations of the SYNTH10
dataset where the cardinality of every categorical attribute was
20 and 50 respectively. All attributes in the synthetic datasets
follow a uniform distribution. In our experiments, we selected
two of the numeric attributes as the axis attributes of a 2D ex-
ploration scenario, and another one was selected as the attribute
for which aggregates were evaluated. For the query sequences we
generated for the synthetic dataset, we used a window size with
approximately 100K objects.

Evaluation Scenarios. We study the following visual exploration
scenario: (1) First, the user selects the two axis attributes and
requests to explore a region of the data from the raw file, specify-
ing also an attribute for which the aggregate functions (avg, sum,
min, max and standard deviation) will be evaluated, as well as
selecting a set of categorical attributes that are of interest for the
exploration. For this action, referred to as “From-Raw Data-to-
1stResults”, we measure the execution time for creating the index
and answering the first query, the results of which are evaluated
directly on the raw file, during index initialization. (2) Next, the
user continues exploring neighboring areas, while also filtering
the data and analyzing it based on values for a Group-by attribute.
For this, we generated sequences of 100 overlapping queries, with
each window query shifted in relation to its previous one by 1-20%
towards a random direction. This scenario attempts to formulate
a common user?s behavior in 2D visual exploration, where the
user explores nearby regions using pan operations [8, 24, 42]. For
example, assume the common “region-of-interest” or “following-a
path” scenarios in map visual exploration.

Further, each query contains a Group-by clause over a single
categorical attribute for the Group-by clause, while we randomly
alternated the Filter clause to include 1 or 2 equality conditions
over the remaining categorical attributes of the dataset. To reflect
our exploration-oriented assumption that attributes included in the
initial query 𝑄0 are more likely to be included in the next queries,
we generated the query sequences so that these attributes appeared
more frequently in the Filter clause of the queries.

VETI Parameters. The VETI’s tile structure was initialized with
100 × 100 equal-width tiles, while an extra 20% of the number
|T0 | of initial tiles was also distributed around the first query 𝑄0
using the locality-based initialization method [12]. The numeric
threshold for the adaptation of VETI was set to 200.

Index Initialization Budget. In our experiments, we assume a
categorical-based index initialization budget, which is an upper
bound of the memory required for constructing the CET trees of
the tiles. This budget includes only the memory allocated by the
tree structures, and does not include the memory required to store
the object entries. The tree memory cost is mainly determined by
the number of tree nodes, which is in turn defined by the attributes
and their domains. In our estimation for the tree cost, we assume

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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that all distinct values of an attribute appear in the objects of a
tile and, as a result, in the tree to be constructed. Based on the
initialization budget and the estimated cost of the CET tree, we
sort tiles based on their distance from 𝑄0 and assign trees to them
until the initialization budget is exhausted. For the remaining tiles,
we do not construct tree structures during initialization. The CET
tree of such a tile will be constructed on demand, should a future
query overlap it. In our experiments, the index initialization budget
was set to 2GB.

Competitors. We compare our method with: (1) VALINOR [12]
which contains only the tile-based indexing structure without the
CET tree structure for supporting efficient evaluation of queries
with categorical attributes; (2) A popular DBMS (MySQL 8.0.22),
in which the entire dataset is loaded and indexed in advance; three
indexing settings are considered: (𝑎) no indexing (SQL-0I); (𝑏)
one composite B-tree on the two axis attributes (SQL-1I); and
(𝑐) two single B-trees, one for each of the two axis attributes
(SQL-2I). MySQL also supports SQL querying over external files
(see CSV Storage Engine in Sect. 7); however, due to low perfor-
mance [6], we do not consider it as a competitor in our evaluation.
(3) PostgresRaw (PRAW)8, build on top of Postgres 9.0.0 [6],
which is a generic platform for in-situ querying over raw data
(Sect. 7).

Metrics. In our experiments, we measure the: (1) execution time
for each query; (2) accumulative execution time for the entire
exploration scenario; and (3) the number of I/O operations.

Implementation. We have implemented VETI on JVM 1.8 and
the experiments were performed on an 3.60GHz Intel Core i7 with
64GB of RAM. We applied memory constraints (12GB max Java
heap size); however, PRAW required more than 32GB and 50GB
for the synthetic and the TAXI dataset, respectively.

6.2 Results

Initialization Time. In this experiment, we measure the time
required to answer the first query 𝑄0. This time also includes
the time required for initializing each one of the methods we
examine. Besides executing 𝑄0, MySQL needs to load and index
the data, while PRAW needs to parse the raw file and construct
the positional map. When evaluating 𝑄0, VALINOR generates the
tile index structure and populates it with the object entries, while
VETI needs to also construct the categorical-based tree indexes.

Figure 4 presents the results for every dataset used. MySQL ex-
hibits the worst performance for evaluating the first query. MySQL
needs to parse all attributes of the raw file and store all data on
disk. Also, for the SQL-1I and SQL-2I cases, the corresponding
indexes must be built, which explains the increased initialization
time in relation to SQL-0I where no index is generated.

Both VALINOR and VETI exhibit better initialization perfor-
mance compared to PRAW for the SYNTH50 and TAXI datasets,
while for the SYNTH10 dataset VETI requires a slightly higher
initialization time.

VETI is slightly slower during the initialization compared to
VALINOR. This is expected as VETI needs to also determine the

8https://github.com/HBPMedical/PostgresRAW

tile-tree assignments, parse the categorical attributes for all objects
and create the corresponding tree structures. Despite this slight
difference in initialization time, VETI performs much faster than
VALINOR when answering queries that include the categorical
attributes.

Modify the Cardinality of Categorical Attributes. For this ex-
periment, we study the effect of the cardinality of the categorical
attributes in the performance of VETI. We ran this experiment
against 3 versions of the SYNTH10 dataset where the cardinality
of the categorical attributes for each one was set to 10, 20 and 50
respectively. The cumulative time needed to execute the complete
query sequence of the exploration scenario is shown in Figure 5.
It is the time needed to execute the complete workload by VETI,
including 𝑄0 which is depicted separately from all subsequent
queries as it represents the initialization time of the index. Observe
that the initialization time increases slightly with increasing cardi-
nality. This increase can be attributed to the higher construction
cost of the wider CET trees when the cardinality of the categorical
attributes increases. On the contrary, the total execution time of
queries 𝑄1 ∼ 𝑄99 decreases with higher cardinality (2.8, 1.4, 0.8
for cardinality 10, 20 and 50 respectively). This decrease in exe-
cution time is directly related to the number of I/O operations we
need to perform during the workload. The objects of the synthetic
dataset have values uniformly distributed over each attribute’s
domain. As a result, in the case of a higher cardinality for the
categorical attributes, the same number of filter conditions are
satisfied by a smaller number of objects, requiring fewer overall
I/O operations.

Performance during the Exploration Scenario. In the next ex-
periment, we compare the query evaluation performance of VETI
against the competitors. The execution time for queries 𝑄1 ∼ 𝑄99
is shown in Figure 6. Note that 𝑄0 is omitted in this figure, as it
includes the initialization time which was examined separately in
Figure 4. In the results, we omit the plots for MySQL as it exhibits
a much higher execution time.

Compared to the other methods, VETI exhibits significantly
lower execution time in almost all cases. Regarding PRAW, we ob-
serve that it performs much worse than both VALINOR and VETI
for all datasets examined. The positional map used in PRAW, at-
tempts to reduce the parsing and tokenizing costs of future queries,
by maintaining the position of specific attributes for every object
in the raw file. However, PRAW still needs to examine all objects
in the dataset in order to select the ones contained in a 2D window
query. Also, in contrast to VETI, PRAW does not keep any meta-
data in order to efficiently compute the aggregate queries. Observe
that some of the early queries in the sequence exhibit execution
time significantly higher than the rest, and comparable to the time
required to answer 𝑄0. Since the queries we issue have 1 or 2
randomly specified filter conditions on the categorical attributes,
these queries need to tokenize and parse attributes that were not
included in 𝑄0, and populate the positional map with these. This
explains their higher execution time. Once the positional map has
been populated with all the attributes including in the queries,
PRAW exhibits a relatively constant execution time.

Compared to VALINOR, as we can observe, VETI exhibits
a much faster execution time for every query in the workload.

https://github.com/HBPMedical/PostgresRAW
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Figure 6: Execution Time for Entire Exploration Scenario (𝑄0 ∼ 𝑄99)

Even though both indexes attempt to adapt to the workload and
maintain metadata to speed up query execution time by reducing
I/Os, VALINOR does not include any indexing capabilities for
categorical attributes. This results in not being able to utilize tile-
based aggregate metadata to evaluate queries that include a Group-
by clause or a Filter clause that refers to a categorical attribute. In
contrast, VETI organizes object entries and metadata in tile-tree
structures based also on the values for the categorical attributes.
For this reason, when a query includes a categorical attribute,
VETI traverses the tree structures of every overlapping tile and
filters the objects it needs to retrieve from the raw file. Also, if
any leaf tree nodes of a fully-contained tile contain aggregate
metadata, it can be utilized to avoid accessing the raw file.

The execution time for VETI as well as for VALINOR is mainly
determined by the number of rows that need to be retrieved from
the raw file. This can be seen in Figure 7, where the I/O plots
exhibit approximately the same behavior as the corresponding
execution time plots in Figure 6. Compared to VALINOR, VETI
requires fewer I/O operations for every query in the sequence.
VALINOR has to access the raw file for every object contained in
the 2D window query since it has to retrieve their values for the
categorical attributes specified in the Filter and Group-by clause.

7 RELATED WORK

In-situ Processing. Data loading and indexing usually take a large
part of the overall time-to-analysis for both traditional RDBMs and
Big Data systems [20]. In-situ query processing aims at avoiding
data loading in a DBMS by accessing and operating directly over
raw data files. NoDB [6] is a philosophy for constructing a no-
dbms querying architecture, and PostgresRAW is one of the first
efforts for in-situ query processing. PostgresRAW incrementally
builds on-the-fly auxiliary indexing structures called “positional
maps” which store the file positions of data attributes, as well as it
stores previously accessed data into cache. As opposed to VETI,
the positional map in PostgresRAW, can only be exploited to
reduce parsing and tokenization costs during query evaluation and
can not be used to reduce the number of objects examined in two-
dimensional range queries with filter conditions on categorical
attributes.

DiNoDB [39] is a distributed version of PostgresRAW. In the
same direction, RAW [26] extends the positional maps in order to
both index and query files in formats other than CSV. In the same
context, Proteus [25] supports various data models and formats.
Recently, Slalom [33, 34] exploits the positional maps and inte-
grates partitioning techniques that take into account user access
patterns.

RawVis [11, 12] defines a tile-based index in the context of
in-situ visual exploration, supporting 2D visual operations over
numeric attributes. Compared to VETI, RawVis does not support
operations and indexing over categorical attributes. As a result,
it cannot exploit well-know visualization techniques, such as bar
charts, heatmaps, pies and parallel coordinates. Particularly, VETI
extends a tile-based structure similar to RawVis, with trees that
enrich tiles with information about categorical attributes.

Additionally, several well-known DBMS support SQL querying
over CSV files. Particularly, MySQL provides the CSV Storage
Engine [1], Oracle offers the External Tables [2], and PostgreSQL
has the Foreign Data [3]. However, these tools do not focus on user
interaction, parsing the entire file for every query, and resulting
in significantly low query performance for interactive scenarios
[6]. The aforementioned works study the generic in-situ query-
ing problem without focusing on the specific needs for raw data
visualization and exploration. In addition, due to low query per-
formance cannot be used in exploration scenarios. Instead, our
work considers the in-situ processing of a specific query class,
that enables user operations and visual analytics. The goal of our
solution is to optimize these operations, so that visual interaction
with raw data is performed efficiently on very large input files
using commodity hardware.

Visual-Oriented Indexes. In the context of visual exploration,
several indexes have been introduced. VisTrees [15] and HETree
[13] are tree-based main-memory indexes that address visual ex-
ploration use cases; i.e., they offer exploration-oriented features
such as incremental index construction and adaptation. Compared
to our work, both indexes focus on one-dimensional visualization
techniques (e.g., histograms), do not support categorical attributes
and group-by analytics, and do not consider disk storage; i.e., data
stored in-memory.

Nanocubes [27], Hashedcubes [14], SmartCube [28], Gaussian
Cubes [40], and TopKubes [30] are main-memory data structures
defined over spatial, categorical and temporal data. The afore-
mentioned works are based on main-memory variations of a data
cube in order to reduce the time needed to generate visualiza-
tions. Nanocubes [27] attempts to reduce the memory of the data
cube by sharing nodes in a single tree structure. Hashedcubes [14]
follows a different approach where, instead of materializing all
possible aggregations, it uses a partial ordering of the dimensions
and the notion of pivot arrays to calculate on-the-fly the aggrega-
tions missing. Smartcube [28] is a variation of Nanocubes, where
instead of pre-computing all cuboids from the start, it chooses
some important ones based on the user queries, in order to reduce
memory usage. Also, it may adaptively change stored cuboids
when querying patterns change. In comparison with our work,
the indexes in the aforementioned works are generated during a
preprocessing phase, and thus do not address the need of reducing
the initialization time, i.e., they cannot be used in in-situ scenarios.
Moreover, a major difference compared to our approach, is that
these works assume that all the aggregations are materialized and
stored in memory, which in the case of very fine-grained spatial
indexing or many categorical dimensions, can require prohibi-
tive amounts of memory. In contrast, our approach adapts the
granularity of the spatial index based on user interaction.

Further, graphVizdb [9, 10] is a graph-based visualization tool,
which employs a 2D spatial index (e.g., R-tree) and maps user
interactions into window 2D queries. To support the operation of
the tool, a partition-based graph drawing approach is proposed.
Compared to our work, graphVizdb requires a loading phase where
data is first stored and indexed in a relational database system. In
addition, it targets only graph-based visualization.
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Figure 7: Number of I/O Operations for the Entire Exploration Scenario (𝑄0 ∼ 𝑄99)

In a different context, tile-based structures are used in visual
exploration scenarios. Semantic Windows [24] considers the prob-
lem of finding rectangular regions (i.e., tiles) with specific aggre-
gate properties in exploration scenarios. ForeCache [8] considers
a client-server architecture in which the user visually explores
data from a DBMS. The approach proposes a middle layer which
prefetches tiles of data based on user interaction. Our work con-
siders different problems compared to the aforementioned ap-
proaches.

We should note that there are a large number of spatial indexes
such as the R-tree, kd-tree, quadtree [16] which could be used in
the context of data exploration. However, most of these structures
consider several criteria (e.g., tree balance, fill guarantees) in
order to improve query processing, which results in a significant
amount of time required for their construction [12]. As a result,
they are not suitable for the in-situ setting, which requires small
initialization overhead.

Adaptive Indexing. Similarly to VETI, the basic idea of ap-
proaches like database cracking and adaptive indexing [7, 17–
19, 21–23, 32, 37, 38], is to incrementally build and adapt indexes
during query processing, following the characteristics of the work-
load. However, in these works the data has to be previously loaded
in the system, i.e., a preprocessing phase is required. As a re-
sult, these approaches are not suitable for in-situ query scenarios,
where the cost of the preprocessing phase has to be minimized.
In addition, the existing cracking and adaptive indexing methods
have been developed in the context of column-stores [7, 17–19, 21–
23, 37], or MapReduce systems [38]. On the other hand, VETI
has been developed to handle raw data stored in text files with
commodity hardware. Finally, [35, 36] study the problem of incre-
mental indexing for 3D spatial data.

8 CONCLUSIONS
In this paper, we have presented an indexing scheme and adaptive
processing methods for in-situ visual exploration and analysis that
allow the user to combine visual exploration of data from a raw
file on a 2D canvas with sophisticated analysis over its categorical
attributes. This scheme combines tile structures with trees and
is progressively adapted based on user interaction. Finally, the
presented method was evaluated experimentally.

Acknowledgment. This work is funded by the project VisualFacts (#1614
- 1st Call of the Hellenic Foundation for Research and Innovation Research
Projects for the support of post-doctoral researchers).

REFERENCES
[1] MySQL: The CSV Storage Engine. https://dev.mysql.com/doc/refman/8.0/en/

csv-storage-engine.html.
[2] Oracle: External Table Enhancements in Oracle Database 12c Release 1. https:

//oracle-base.com/articles/12c/external-table-enhancements-12cr1.
[3] PostgreSQL: Foreign Data. https://www.postgresql.org/docs/current/

ddl-foreign-data.html.
[4] SciPy: Open Source Scientific Tools for Python. http://www.scipy.org.
[5] Wolfram : Descriptive Statistics. https://reference.wolfram.com/language/

tutorial/DescriptiveStatistics.html.
[6] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and A. Ailamaki. Nodb:

Efficient Query Execution on Raw Data Files. In SIGMOD, 2012.
[7] K. Alexiou, D. Kossmann, and P. Larson. Adaptive Range Filters for Cold

Data: Avoiding Trips to Siberia. PVLDB, 6(14), 2013.
[8] L. Battle, R. Chang, and M. Stonebraker. Dynamic Prefetching of Data Tiles

for Interactive Visualization. In SIGMOD, 2016.
[9] N. Bikakis, J. Liagouris, M. Krommyda, G. Papastefanatos, and T. Sellis.

Towards Scalable Visual Exploration of Very Large Rdf Graphs. In ESWC,

2015.
[10] N. Bikakis, J. Liagouris, M. Krommyda, G. Papastefanatos, and T. Sellis.

Graphvizdb: A Scalable Platform for Interactive Large Graph Visualization. In
ICDE, 2016.

[11] N. Bikakis, S. Maroulis, G. Papastefanatos, and P. Vassiliadis. RawVis: Visual
Exploration over Raw Data. In ADBIS, 2018.

[12] N. Bikakis, S. Maroulis, G. Papastefanatos, and P. Vassiliadis. In-situ Visual
Exploration over Big Raw Data. Information Systems, 95, 2021.

[13] N. Bikakis, G. Papastefanatos, M. Skourla, and T. Sellis. A Hierarchical Ag-
gregation Framework for Efficient Multilevel Visual Exploration and Analysis.
SWJ, 2017.

[14] C. A. de Lara Pahins, S. A. Stephens, C. Scheidegger, and J. L. D. Comba.
Hashedcubes: Simple, Low Memory, Real-time Visual Exploration of Big Data.
IEEE TVCG, 23(1), 2017.

[15] M. El-Hindi, Z. Zhao, C. Binnig, and T. Kraska. Vistrees: Fast Indexes for
Interactive Data Exploration. In HILD, 2016.

[16] V. Gaede and O. Günther. Multidimensional Access Methods. ACM Comput.
Surv., 30(2), 1998.

[17] G. Graefe and H. A. Kuno. Self-selecting, self-tuning, incrementally optimized
indexes. In EDBT, 2010.

[18] F. Halim, S. Idreos, P. Karras, and R. H. C. Yap. Stochastic Database Cracking:
Towards Robust Adaptive Indexing in Main-Memory Column-Stores. PVLDB,
5(6), 2012.

[19] P. Holanda, S. Manegold, H. Mühleisen, and M. Raasveldt. Progressive Indexes:
Indexing for Interactive Data Analysis. PVLDB, 12(13), 2019.

[20] S. Idreos, I. Alagiannis, R. Johnson, and A. Ailamaki. Here Are My Data Files.
Here Are My Queries. Where Are My Results? In CIDR, 2011.

[21] S. Idreos, M. L. Kersten, and S. Manegold. Database Cracking. In CIDR, 2007.
[22] S. Idreos, M. L. Kersten, and S. Manegold. Self-organizing tuple reconstruction

in column-stores. In SIGMOD, 2009.
[23] S. Idreos, S. Manegold, H. A. Kuno, and G. Graefe. Merging What’s Cracked,

Cracking What’s Merged: Adaptive Indexing in Main-Memory Column-Stores.
PVLDB, 4(9), 2011.

[24] A. Kalinin, U. Çetintemel, and S. B. Zdonik. Interactive Data Exploration
Using Semantic Windows. In SIGMOD, 2014.

[25] M. Karpathiotakis, I. Alagiannis, and A. Ailamaki. Fast Queries Over Hetero-
geneous Data Through Engine Customization. PVLDB, 9(12), 2016.

[26] M. Karpathiotakis, M. Branco, I. Alagiannis, and A. Ailamaki. Adaptive Query
Processing on Raw Data. PVLDB, 7(12), 2014.

[27] L. D. Lins, J. T. Klosowski, and C. E. Scheidegger. Nanocubes for Real-Time
Exploration of Spatiotemporal Datasets. IEEE TVCG, 19:2456–2465, 2013.

[28] C. Liu, C. Wu, H. Shao, and X. Yuan. Smartcube: An adaptive data management
architecture for the real-time visualization of spatiotemporal datasets. IEEE
TVCG, 26(1), 2020.

[29] S. Maroulis, N. Bikakis, G. Papastefanatos, and P. Vassiliadis. RawVis: A
System for Efficient In-situ Visual Analytics. SIGMOD, 2021.

[30] F. Miranda, L. Lins, J. T. Klosowski, and C. T. Silva. TopKube: A Rank-Aware
Data Cube for Real-Time Exploration of Spatiotemporal Data. IEEE TVCG,
2017.

[31] K. Morton, M. Balazinska, D. Grossman, and J. D. Mackinlay. Support the Data
Enthusiast: Challenges for Next-generation Data-analysis Systems. PVLDB,
7(6), 2014.

[32] V. Nathan, J. Ding, M. Alizadeh, and T. Kraska. Learning multi-dimensional
indexes. In SIGMOD, 2020.

[33] M. Olma, M. Karpathiotakis, I. Alagiannis, M. Athanassoulis, and A. Ailamaki.
Slalom: Coasting through Raw Data Via Adaptive Partitioning and Indexing.
PVLDB, 2017.

[34] M. Olma, M. Karpathiotakis, I. Alagiannis, M. Athanassoulis, and A. Ailamaki.
Adaptive partitioning and indexing for in situ query processing. VLDBJ, 2019.

[35] M. Pavlovic, D. Sidlauskas, T. Heinis, and A. Ailamaki. QUASII: query-aware
spatial incremental index. In EDBT, 2018.

[36] M. Pavlovic, E. Tzirita Zacharatou, D. Sidlauskas, T. Heinis, and A. Ailamaki.
Space odyssey: efficient exploration of scientific data. In ExploreDB, 2016.

[37] E. Petraki, S. Idreos, and S. Manegold. Holistic Indexing in Main-memory
Column-stores. In SIGMOD, 2015.

[38] S. Richter, J. Quiané-Ruiz, S. Schuh, and J. Dittrich. Towards zero-overhead
static and adaptive indexing in Hadoop. VLDBJ, 23(3), 2014.

[39] Y. Tian, I. Alagiannis, E. Liarou, A. Ailamaki, P. Michiardi, and M. Vukolic.
Dinodb: An Interactive-speed Query Engine for Ad-hoc Queries on Temporary
Data. IEEE Transactions on Big Data, 2017.

[40] Z. Wang, N. Ferreira, Y. Wei, A. S. Bhaskar, and C. Scheidegger. Gaussian
cubes: Real-time modeling for visual exploration of large multidimensional
datasets. IEEE TVCG, 23(1), 2017.

[41] A. Wasay, X. Wei, N. Dayan, and S. Idreos. Data Canopy: Accelerating
Exploratory Statistical Analysis. In SIGMOD, 2017.

[42] S. Yesilmurat and V. Isler. Retrospective adaptive prefetching for interactive
Web GIS applications. GeoInformatica, 16(3), 2012.

https://dev.mysql.com/doc/refman/8.0/en/csv-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/csv-storage-engine.html
https://oracle-base.com/articles/12c/external-table-enhancements-12cr1
https://oracle-base.com/articles/12c/external-table-enhancements-12cr1
https://www.postgresql.org/docs/current/ddl-foreign-data.html
https://www.postgresql.org/docs/current/ddl-foreign-data.html
http://www.scipy.org
https://reference.wolfram.com/language/tutorial/DescriptiveStatistics.html
https://reference.wolfram.com/language/tutorial/DescriptiveStatistics.html

	Abstract
	1 Introduction
	2 Exploration Model
	3 Categorical-Based Tree Index
	3.1 The CET Tree
	3.2 Tree Operations

	4 The VETI Index
	4.1 Tile-based Structure
	4.2 VETI: Combining Tiles and Trees
	4.3 VETI Initialization Overview

	5 Query Processing & Index Adaptation
	5.1 Query Processing
	5.2 Incremental Adaptation

	6 Experimental Analysis
	6.1 Experimental Setup
	6.2 Results

	7 Related Work
	8 Conclusions
	References

