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ABSTRACT
Post-hoc explanation aims at defining a simple local surrogate
model to shed light on a prediction produced by a complex, gen-
erally black-box, model. In the general context of classification,
it has been shown that local surrogatesmay not be able to always
capture a local explanation, i.e. for a specific instance prediction,
but rather traduce more of a general behavior of the black-box.
This problem is even more complex in a recommendation sce-
nario where classes and decision boundaries are not explicitly
defined and where data are very sparse by nature. We show in
this paper that it is possible to tackle these problems with an effi-
cient sampling around the recommendation instance to explain,
to finally learn a proper local surrogate model. Our experiments
show that our method is as accurate or better than the methods
of the literature while retrieving more meaningful explainable
features locally.
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1 INTRODUCTION
Explainable AI (XAI) [26, 34] aims at understanding the ratio-
nale about the factors driving the decision process in complex
machine learning models and how their prediction can be al-
tered by changing their input [8]. In this context, post-hoc or
model-agnostic explanations have gained some attention in the
past years, as they are produced by explanationmethods that are
agnostic of the internals of the model to explain, and thus need
not balance accuracy of the model to explain with the quality of
the explanation [26].

The definition of surrogatemodels is awell-accepted approach
in XAI [14], that builds upon the successful LIME algorithm. Fig-
ure 1 illustrates the main steps of LIME to define simpler, inter-
pretable models trained to locally mimic the behavior of more
complex, possibly black-box, models [13]. Defining such surro-
gate models involves: (1) the definition of a binary interpretable
feature space in which the explainable model is defined, (2) a
(ideally bijective) function to pair each instance in the original
space to its binary counterpart in the interpretable space and
vice-versa (Fig 1(a)(c)), (3) a binary perturbation mechanism to
generate a training set for the explainable model around the bi-
nary interpretable image of the original explanation instance
(Fig 1(b)), (4) the labelling of these training instances by the
black-box model when projected back to the original feature
space (Fig 1(d)) and finally (5) the learning of a simple model,
generally a linear regression model, whose weights attached to
the binary features form the expected explanation (Fig 1(e)(f)).

In this paper, we consider the specific case of recommender
systems [18], that are notoriously complex prediction systems
and for which computing explanation raises new challenges [43].
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Figure 1: Main steps of LIME to build a simple surrogate
model and an explanation to a black-box model predic-
tion.

In this context, we propose to extend recommender systems ex-
planations by reproducing and adapting LIME principles. This
task is challenging for two main reasons.

First, because transposing LIME principles to the recommen-
der systems paradigm is not straightforward, as the traditional
instances / features data is replaced by a sparse and possibly very
large user-item matrix of ratings. In this new context, one needs
to redefine what is an instance to explain as the features and
class label are not clearly identified, what are the interpretable
features, what is a perturbation, and then, when perturbations
are generated in the interpretable space, how to project them
back to the original space to predict their ratings with the black-
box so as to build a training set? Indeed, determining an out-of-
sample prediction for new user-items configurations can be a
complex task depending on the nature of the recommendation
mechanism.

Second, LIME relies heavily on an estimation of locality a-
round an explanation instance to ensure the quality of its pre-
diction. However, surrogate models as proposed by LIME are
not robust, in the sense that they sometimes fail to estimate cor-
rectly the explanation model around a specific instance, there-
fore producing a too general explanation model that accounts
for a broader range of input instances [4].

We argue in this paper, that these problems are related to: (1)
the binary perturbation mechanism that does not ensure that
perturbed instances falls in the vicinity of the original instance
when projected back to the original space, and (2) the definition
of locality as a decreasing neighborhood function to balance the
aforementioned effect of binary perturbation and that do not
take into account decision boundary. Noticeably, in the case of
recommender systems, this problem is even more critical since
there is no explicit decision boundary per se.

To tackle the aforementioned challenges, we propose a new
local surrogatemodel dedicated to recommender systems, named
LIRE - Local and Interpretable Recommendations Explanations -
that improves over the reference in the literature, the LIME-RS
model [29] that is a direct port of LIME, in terms of quality of



the explanation by better estimating the locality of an instance
to explain, and while still maintaining consistent recommenda-
tion fidelity to the original recommender system.

As such our contributions are: the definition of a new repre-
sentation of a user-item instance to explain, the introduction of
a real valued interpretable feature space instead of a binary in-
terpretable space paired with an out-of-sample prediction mech-
anism to project perturbed instance back to the original space
for the specific case of matrix factorization recommender sys-
tems. Most importantly, we propose a new definition of local-
ity to better tackle the notion of decision boundary in recom-
mender system decision space by coupling a new gradual per-
turbation mechanism, with off-the-shelves clustering algorithm
and dimensionality reduction techniques such as UMAP [25] so
that all users are represented in a low-dimension space where
classicalmetric distance applies effectively. Finally, extensive com-
parative experiments on the MovieLens benchmark show that
our new local surrogate approach is comparable in terms of pre-
diction accuracy if not better than LIME-RS, while proposing
more relevant set of interpretable features as explanations.

This paper is organized as follows: Section 2 presents the prob-
lem formulation and Section 3 details our main contributions.
Section 4 presents our experiments and Section 5 presents a dis-
cussion about the problematic in the field of explainable AI be-
fore Section 6 concludes and opens future works.

2 PROBLEM FORMULATION
In what follows, we consider a (black-box) recommendation
system as a function 𝑓 : 𝑈 × 𝐼 → R+ where 𝑈 is the set of
users, 𝐼 is the set of items and R+ is the definition domain of the
ratings.

2.1 Explanation instances, interpretable
features and explanations

Wecall an explanation instance the 3-tuple ⟨𝑢, 𝑖, 𝑓 (𝑢, 𝑖)⟩where
𝑢 ∈ 𝑈 , 𝑖 ∈ 𝐼 and 𝑓 (𝑢, 𝑖) ∈ R+ denotes a prediction that we want
to explain and produced by the (black-box) recommender system
for the user 𝑢 and item 𝑖 . Importantly, our objective is not to ex-
plain the process by which the black-box recommender system
works, but instead to highlight the main interpretable features
that explain a specific prediction 𝑓 (𝑢, 𝑖).

In [29, 33], interpretable feature relates to feature names
that represent directly understandable and actionable pieces of
domain knowledge. The representation of an (explanation) in-
stance in the interpretable space is thus a set of interpretable
feature names, technically represented by a binary feature name
vector.

In our work, we denote by interpretable features the set 𝐼 of
𝑛 items names 𝐼 = {𝐼1, . . . , 𝐼𝑛}, each associated with a domain of
value 𝑑𝑜𝑚(𝐼1), . . . , 𝑑𝑜𝑚(𝐼𝑛) = R𝑛+. We call a feature vector over 𝐼
a n-tuple 𝑡 of values 𝑡 = ⟨𝑐1, . . . , 𝑐𝑛⟩ where 𝑡 ∈ R𝑛+. Equivalently,
and whenever this is convenient, we view the tuple as a function
𝑡 of signature 𝐼 → ∪𝑘𝑑𝑜𝑚(𝐼𝑘 ), denoting 𝑡 (𝐼𝑘 ) the value 𝑐𝑘 and
𝑡 |𝐼 ′ the restriction of 𝑡 to the subset 𝐼

′ ⊆ 𝐼 . Consequently, 𝑡 (𝐼𝑘 ) =
𝑡 |{𝐼𝑘 } .

Following the previous notation, for an explanation instance
⟨𝑢, 𝑖, 𝑓 (𝑢, 𝑖)⟩, the list of interpretable features is formalized as
the tuple 𝑡𝑢|∪𝑗≠𝑖 {𝐼 𝑗 }

, i.e. the restriction of 𝑡 to the subset of items

𝑗 ≠ 𝑖 ∈ 𝐼 for a specific user 𝑢 ∈ 𝑈 . Noticeably, and contrary to
previous works, this representation of an explanation instance
is not binary but associates a real value to each feature name (in

fact, the score of the item for this user 𝑢). This allows to express
more complex perturbation mechanisms as presented in Section
3 and to better preserve locality as shown in experiments in Sec-
tion 4.

Finally, in our case, and similarly to [29, 33], an explanation
is a set of interpretable feature names, technically represented
by a real-valued feature name vector, where each interpretable
feature name is associated with a real weight representing the
importance of the feature for the explanation instance.

2.2 Explanation model
Traditionally, explaining a recommendation boils down to de-
termining the top-𝑛 [29] or minimal [33] subset of interpretable
features that maximizes the fidelity of the surrogate model to
the original model. As in [33], we restrict our work to the class
of linear explanation models 𝑔(z) = w · z, where z denotes the
vector of values attached to the set of interpretable features.

Consider that tu is the vector of values attached to interpretable
features of user 𝑢 to explain instance ⟨𝑢, 𝑖, 𝑓 (𝑢, 𝑖)⟩, constructed
from 𝑡𝑢|∪𝑗≠𝑖 {𝐼 𝑗 }

. The explanation model 𝑒𝑓 (𝑢, 𝑖) is defined as fol-

lows:

𝑒𝑓 (𝑢, 𝑖) = argminw∈R𝑛L
(
𝑓 (𝑢, 𝑖),w · tu

)
+ Ω(w) (1)

whereL is a loss function that penalizes any difference between
the original prediction 𝑓 (𝑢, 𝑖) and the value predicted by the sur-
rogate model. As in LIME [33], Ω(w) represents the complex-
ity of the linear explanation model. Here, we expect our feature
weighting to be parsimonious, i.e., we want that our approach
discards as many as possible of the interpretable features to ease
the posterior interpretation of the explanation.

As a conclusion, our problem reduces to determining themost
appropriate interpretable features weights vector 𝑤 ∈ R𝑛 . Our
hypothesis in this paper is that it is possible to improve the qual-
ity and the relevance of𝑤 by introducing locality in the sampling
process to generate the training set to learn𝑤 .

3 PROPOSED SOLUTION
As mentioned in the previous sections, our proposal is to intro-
duce locality during the sampling of instances to train our lin-
ear surrogate model following two complementary directions:
(1) by generating gradually perturbed instances around the ex-
planation instance, and (2) by discovering natural grouping of
neighbor users that share similar items scoring behaviors and
for which a robust explanation system should provide close ex-
planations.

This first two objectives raise secondary questions. Notice-
ably, (1) raises the problem of being able to predict a recommen-
dation for never-seen-before users in the rating matrix, as per-
turbed instances may not correspond to pre-existing ones. This
mechanism is called Out-Of-Sample (OOS) prediction hereafter,
and we present a method for this problem in the context of the
popular matrix factorization recommendation approach. (2) ne-
cessitates to be able to cluster points expressed as very large
item scores vectors efficiently without falling into the curse of
dimensionality problem.



3.1 Locality via the perturbed instances
generation

In LIME [33] and LIME-RS [29] surrogate models are trained on
instances of the original space that are antecedent of perturba-
tions generated in the binary interpretable feature space associ-
ated to each explanation instance. Then for each perturbed in-
stance, a prediction is performed to build a training set to learn
the surrogate model. We develop hereafter how we adapt these
two steps in our proposal.

3.1.1 Perturbation of user instance. Given our definition of
explanation instance and its representation as a real valued vec-
tor attached to feature names (see Section 2), we define pertur-
bations as a random modification of the values of tuple 𝑡𝑢|∪𝑗≠𝑖 𝐼 𝑗
based on some Gaussian distribution N(0, 𝜎 𝑗 ). The value of 𝜎 𝑗
for each item 𝑗 ≠ 𝑖 ∈ 𝐼 is computed as the average observed
deviation of all ratings in the training sample.

Then, we model as a Bernoulli process of probability 𝑝𝐵 the
chance to modify each element of 𝑡𝑢|∪𝑗≠𝑖 𝐼 𝑗

. For simplicity sake,

we will note interchangeably 𝑡𝑢|∪𝑗≠𝑖 𝐼 𝑗
as 𝑡𝑢 in the context of an

explanation instance ⟨𝑢, 𝑖, 𝑓 (𝑢, 𝑖)⟩ and in this case, 𝑝𝑢 will denote
a perturbation of 𝑡𝑢 .

3.1.2 Out-Of-Sample prediction. In terms of LIME methodol-
ogy, Out-Of-Sample prediction plays the role of the surjective
function 𝑝−1 between interpretable feature space and original
space as well, as the prediction 𝑓 (𝑝−1 (𝑧′)) attached to this new
instance 𝑧′ (following notations in Equation 10). The role of this
function is, given an interpretable feature description of a per-
turbed user 𝑝𝑢 , to find a representation in the original space for
this perturbation, and most importantly, as this user is totally
new to the recommender system, to predict his/her rating for
the item 𝑖 ∈ 𝐼 .

In our proposal, where we generate never-seen-before user-
items signatures, determining a prediction for these new instances
can be challenging. Indeed, the difficulty to implement suchOOS
procedure depends heavily on the recommender system: in case
of k-nearest neighbor or baseline approach, it is trivial to imple-
ment a recommendation for a new user. The same holds for deep
embedded recommender systems [41] which, by design, can pro-
duce prediction for any new input. In our work as in [29] how-
ever, we consider the special case of Singular Value Decomposi-
tion recommender system [5, 32], a Matrix factorization method
that expresses the user-item matrix:

R = WΣVt (2)

with R a 𝑚 × 𝑛 real valued user-item matrix, and where Σ can
be reduced to a diagonal matrix Σkk of size 𝑟 × 𝑟 (𝑟 < 𝑚 and
𝑟 < 𝑛) containing only the 𝑟 largest singular values of R. In this
context, the ratings for an out-of-sample user 𝑣 are determined
as follows:

R(𝑣, .) = rvΣ𝑉 𝑡 (3)
where rv represents the 1 × 𝑟 vector representing user 𝑣 in user
latent space. In this context, producing an OOS prediction ac-
counts for determining the latent representation rv for OOS user
𝑣 .

To this aim, we formulate the search of latent representation
rv as a least square optimization of the residual sum of square
(RSS) defined as:

𝑅𝑆𝑆 = (𝑝𝑢 − rvΣ𝑉 𝑡 )(𝑝𝑢 − rvΣ𝑉 𝑡 )𝑡 (4)

between estimated ratings computed on rv and the perturbation
vector 𝑝𝑢 that provides, in our case, all ratings but the one for
item 𝑖 ∈ 𝐼 .

Finally, the ground truth rating for item 𝑖 ∈ 𝐼 is obtained by
re-injecting the optimal rv into Equation 3.

3.2 Locality via instance neighborhood
generation

Ideally, our locality definition should also be coherent with exist-
ing decision boundaries. In the context of recommender systems,
such decision boundaries are not explicit. Our contribution con-
cerns the determination of such explicit decision boundaries via
the definition of natural neighborhood for each explanation in-
stance. In our context, determining the neighborhood reduces
to a clustering problem of the tuples 𝑇 = {𝑡𝑢 }𝑢∈𝑈 . We mean by
“natural”, a grouping of tuples𝑇 such that a traditional clustering
quality criterion is met, for exampleminimizing the intra-cluster
variance as in k-means clustering [16, 24] or ensuring that there
exists a transitive density relation between connected neighbors
as in DBSCAN algorithm [10, 35].

However, following our previous definitions of an explana-
tion instance, an input 𝑡𝑢 ∈ 𝑇 representing a user in an inter-
pretable feature space can still have several thousands of fea-
tures as in our case, this relates to the set of items. This makes
clustering useless because of the loss in discrimination attached
to the metric used to perform the clustering, what is known as
curse of dimensionality.

Several solutions exist in the literature to solve this dimen-
sionality problem. The first solution is to perform a feature se-
lection or weighting process on the instances in 𝑇 prior to the
clustering. This research domain has been extensively studied in
the past years as attested by numerous publications [3, 6, 20, 22].
The difficulty lies in the definition of an objective to drive the
feature selection process (as, contrary to supervised classifica-
tion, there is no ground truth). An other solution would be to de-
fine clusters and their respective set of features at the same time
with subspace clustering methods [2, 19, 30]. However, these ap-
proaches are generally complex and will not scale with the size
of datasets in the recommender systems world.

Moreover, as our final objective is not to build a clustering
per se, but to build neighborhoods as clusters from which we es-
timate a local explanation, we do not want to remove beforehand
any information that could explain a local behavior.

For these reasons, we consider in this paper dimensionality re-
duction techniques such as t-SNE [40] or the more recent UMAP
[25]. UMAP builds a relationship graph in high dimensionality
by growing around each instance a radius that denotes the strength
of the relationship with neighbors. Similar to t-SNE this high di-
mensional graph is then reproduced in a lower dimension space.
Interestingly, UMAP provides parameters to balance the impor-
tance of respecting the local relationship versus the global struc-
ture of a data set.

In this paper, we use UMAP in conjunction with a k-means
clustering. Sensitivity of our approach to these choices is not
reported here for the sake of readability and, as illustrated in
experiments in Section 4, will need further discussions that are
left as future work.

3.3 Learning the surrogate model weights
Previous sections details how locality is introduced in the sam-
pling of instances to build a proper training set for our surrogate



model. We now present the different variants of our approach
LIRE depending on how the training set is constructed from per-
turbed points and cluster neighbors. Finally, the last subsection
describes how the linear weights 𝑤 ∈ R𝑛 of our local surrogate
model are learned.

3.3.1 Building the training set for the surrogate model. In our
proposal we consider three different scenarios to define the train-
ing set of the explanation instance 𝑡𝑢 , each one related to a lo-
cality definition.

First, in the LIRE-C approach, we consider randomly picked
users from the same cluster as the user 𝑢 for which the expla-
nation is to be computed. These neighbors represents observed
examples of users in the close vicinity of 𝑢. Their rating for the
item 𝑖 ∈ 𝐼 can be estimated by the black-box directly, that serves
as ground truth. This approach is expected to be faster as there
is no Out-Of-Sample prediction involved. If the cluster is smaller
than the number of training instances, instances are duplicated.

Second, we consider in the LIRE-P approach only perturba-
tions 𝑝𝑢 as presented in the previous Section 3.1.1 following the
LIME principles. This approach is supposedly the most accurate
as it allows to generate numerous training examples in the close
vicinity of an explanation instance and by modifying gradually
the importance of each interpretable feature.

Finally, the last approach LIRE-M considers a mixed situation
where half training instances originates from perturbations and
the other half is generated from the cluster neighbors.

3.3.2 Explanation as a weighted regression with L1 regulariza-
tion. In our context, learning the best explanation amounts to
determining the weights of the most appropriate interpretable
features. We formalize this problem as a simple regression prob-
lem between a training set T𝑡𝑟𝑎𝑖𝑛 of instances expressed on in-
terpretable features composed of either perturbations or cluster
neighbors of user𝑢 and their respective predictionsY𝑡𝑟𝑎𝑖𝑛 either
obtained by direct prediction of the black-box or by our OOS pre-
diction. We further want to achieve the simplest explanation by
only retaining the most interesting features.

To do so, we consider a LASSO regression model [38] intro-
ducing a penalty term ∥w∥1 similar to Ω(w) in Equation 1. In
the end, our explanation can be optimized following:

diff = Y𝑡𝑟𝑎𝑖𝑛 −wT𝑡𝑟𝑎𝑖𝑛 (5)
𝑒𝑓 (𝑢, 𝑖) = argminw∈R𝑛

{
diff · diff𝑡 + 𝜆∥w∥1

}
(6)

where formally 𝜆 denotes the Lagrangian coefficient attached to
the constraint that minimizes the sum of weights w. Noticeably,
in our implementation, we use a LARS [9] algorithm with no
intercept to find the optimal value𝑤 .

4 EXPERIMENTS
This section describes the experiments conducted to assess the
interest of our approach and the way it deals with locality to pro-
vide explanations. To do so, we have set up several experiments
reported hereafter that aims more specifically at answering the
following questions:

(1) what is the impact of the internal sampling in the
performance of our approach? Should we use exclu-
sively perturbed points around the explanation instance,

neighbors from the cluster to which the explanation in-
stance belongs or a mix of the two? As previously men-
tioned, to this aim, all of our experiments compare 3 set-
tings for our LIRE algorithm: (1) LIRE-P stands for LIRE
with exclusively perturbed points as sampling approach,
(2) LIRE-C stands for LIRE with only neighbors from clus-
ter and finally (3) LIRE-M represents the mixed approach
with 50% perturbed points and 50% neighbors points.

(2) how our approach compares with LIME-RS? LIME-
RS [29] is the reference method from the literature that
first adapted the principle of LIME [33] to the context of
recommender systems. LIME-RS considers locality only
through its objective function (see Equation 9) by accord-
ing more importance to training instances closer to the
explanation instance. We show in our experiments that
our new approach obtain comparable if not better results
than LIME-RS which validates our hypothesis of integrat-
ing a more local sampling method to train the surrogate
model.

(3) how to take into account the specific nature of the
recommendation task? A recommendation is a predic-
tion of multiple item scores that aims at ranking items to
present the more meaningful to a user. In this respect, we
propose 3 evaluation scenarios: (1) similarly to classifica-
tion, we pick at random explanation instances (i.e. a user
and an item) and evaluate the accuracy of the surrogate
model to predict the black-box output, but (2) we also eval-
uate our approach in the context of explaining the first
ranked item (called top hereafter) for a specific user as
well as, (3) the latest ranked item (called flop). These two
scenarios are much more aligned with a real usage of a
recommender system as one may want to know why an
item was recommended first and why one item was not
recommended.

(4) how meaningful and relevant is our explanation?
Similar to LIME, our approach outputs a weighted vec-
tor of interpretable features. We cannot only evaluate a
surrogate explanation model based on its accuracy to the
black-box. We also need to determine if the interpretable
features used as an explanation are the one that were ex-
pected. To do so, we propose an experiment called Single
White Box in which we define a linear white box model
relying on 10 items (our features) that have been scored
by the user to whom the explanation is proposed. This
white box is supposedly the recommendation model that
the surrogate tries to replicate. It is thus possible to com-
pute the ratio of interpretable features discovered versus
those expected from thewhite-boxmodel. Then, aswe are
in a recommendation context, we also produce a ranking
of the interpretable features that our approach discovers
and compares it to the ranking of the white-box features
based on their respective weights. We produce Normal-
ized Discounted Cumulative Gain (NDCG) [17] measure
as it is a common way to evaluate the agreement between
two items rankings [28]. In our case, we use NDCG mea-
sure to evaluate howmany of themost important features
our approach mines among the top 3, top 5 and top 10.

(5) how good our approach deals with locality in the
recommendation process? Our previous tests consider
that the black-box model (either matrix factorization or a
linear white-box) has the same general behavior among
all explanation instances.We propose an experiment, called



Double White-Box, where we define 2 white-box models,
each defined on 5 features that are distinct from the 5 fea-
tures from the other model. The key idea is to define ar-
tificially a locality around an explanation instance as an
area whose radius is computed as the distance to its k-
nearest neighbor. When building the training set of our
explanation approach, if training point is inside the local
area, its prediction for the item will be produced by the
first model, and otherwise will be produced by the second
model. As such, we define a distinct behaviour depending
on the locality. The objective is to verify if our local ap-
proach manage to capture this information better than
our reference approach from the literature.

4.1 Datasets, black-boxes, evaluation metrics
and general protocol

Datasets. Two well-known datasets from the movie recom-
mendation service MovieLens have been used. Each describes
5-star rating and free-text tagging activity from MovieLens. We
limit our main tests to the 100𝐾 MovieLens dataset [15] with
610 users and 9.724 items, as answering our research questions
involves multiple runs with different parameters that would be
too time consuming on larger datasets. Then, a first evaluation
on the MovieLens 20M entries dataset is provided as a testimo-
nial that our approach can scale to larger volume of data. This
dataset contains 20.000.263 ratings generated by 138.493 users
for 27.278 movies.

Black-boxes. we consider 2 different types of black-boxes al-
gorithms. Similar to [29] we first implement a simple matrix fac-
torizationmethod. The interest of such approach lies in its ability
to produce meaningful recommendation from a latent space of
users and items even in the context of very sparse data. The dif-
ficulty for post-hoc explanation approaches such as LIME [33],
that relies on perturbed points to train a surrogate model, is
that it is not trivial to produce an Out-Of-Sample (OOS) pre-
diction for these perturbed instances. In our contribution, and
contrary to previous works that avoid this situation by consid-
ering only pre-existing user-items recommendations as training,
we propose a proper method to perform the OOS prediction as
introduced in Section 3.1.2. The second "black-box" is the lin-
ear white-box that we use to determine the quality of our expla-
nation (see research questions (4) and (5)). To this extent, for
a given explanation instance ⟨𝑢, 𝑖, 𝑓 (𝑢, 𝑖)⟩, we pick at random
10 items that were evaluated by user 𝑢 (excluding item 𝑖). The
weights of these 10 items are randomly set between 0 and 1. The
linear combination of weighted items / features produces the ex-
pected linear white-box recommendation model. In the case of
research question (5) where we consider 2 white-box models,
eachmodel uses only 5 out of 10 of the previously selected items /
features, so as to be clearly differentiated. In these comparisons
with white-boxes, all compared methods are asked to produce
an explanation over the 10 most interesting features that they
identify among the set of all 9724 features.

Evaluation metrics. We consider several evaluation metrics to
assess the quality of our post-hoc explanation approach:

• the accuracy to the black-box model is classically com-
puted as a Mean Absolute Error (MAE) between the pre-
diction of the black-box and the prediction of the surro-
gate model in the interpretable space;

• the computation time is estimated in seconds for one
run of an approach. Here we only measure the computa-
tion time of our LIRE approach to observe the impact of
OOS prediction computation versus clustering;

• the relevance of our interpretable model 𝑔 is expressed
as the ratio of features from the white-box model that are
discovered by 𝑔 (i.e. features whose weights exceed 0 in
the model 𝑔). Let F be the set of features of a model, this
ratio can be expressed as follows:

𝑟𝑒𝑙 (𝑓 , 𝑔) = F (𝑓 ) ∩ F (𝑔)
F (𝑓 ) (7)

• the feature ranking quality is more discriminant than
the previous relevance metric since it takes into account
the rank of the relevant features and not only their pres-
ence / absence in the set of retrieved features. Ranks of in-
terpretable features are provided by their weights, either
set randomly in the white-box model, or learned by the
surrogate model. Tomeasure the quality of the agreement
between the expected and the learned ranking, we use
the traditional Normalized Discounted Cumulative Gain
(NDCG) measure at rank 𝜌 (NDCG@𝜌) for values of 𝜌 ∈
{3, 5, 10}.

4.2 Evaluation on matrix factorization
black-box

This section reports our comparative experiments between LIME-
RS and our three approaches LIRE-P (only perturbed training in-
stance), LIRE-C (only cluster training instance), LIRE-M (mixed
training instances) when explaining recommendations instances
from a matrix factorization black-box model.

Protocol. For each method, we report evaluation metrics aver-
aged over 50 explanation instances ⟨𝑢, 𝑖, 𝑓 (𝑢, 𝑖)⟩. In the random
scenario, these instances are generated by picking at random a
user 𝑢 and an item 𝑖 from the Movie Lens 100K dataset and by
predicting the rating for ⟨𝑢, 𝑖⟩ based on the black-box function 𝑓 .
In the top and flop scenarios, only the user𝑢 is picked at random,
then the black-box is used to determine items with the highest
and lowest scores for user𝑢 and their respective scores as ground
truth. Following the parameters of LIME-RS, the training set size
of the surrogate for each explanation instance is set to 1000. In
LIRE-P, 1000 perturbed points are generated with a probability
𝑝𝐵 = 0.1 in the Bernouilli process with a perturbation range
following the estimated overall variance set to 1.04 on the non-
zero ratings. In LIRE-C, 1000 neighbors from the same cluster
are considered. This is a huge constraint in our clustering model
since this size of training set may not allow for a finer cluster-
ing algorithm that captures small tendencies in the dataset. As a
compromise, in case the cluster is too small, we propose to repli-
cate its data, which allows to use a k-means clustering algorithm
set with 75 clusters to preserve small clusters and locality. Clus-
tering is applied on top of a UMAP dimensionality reduction as
implemented in Python umap package with 30 neighbors and a
minimum projection distance of 0.01. The linear regression is
based on LARS implementation and uses default parameters as
presented in its sklearn version. All code is written in Python
and is available as a Git project 1. All tests on MovieLens 100K
were run on a laptop with an Intel Core i7 CPU at 2.50GHz and
8 GB of RAM.

1https://github.com/wil0u/Lire-DOLAP2021

https://github.com/wil0u/Lire-DOLAP2021


Method Random Top Flop

Lire-P 0.47 ± 0.48 0.89 ± 0.90 1.96 ± 1.41
Lire-M 0.45 ± 0.47 1.18 ± 0.99 1.68 ± 1.21
Lire-C 1.18 ± 1.06 1.64 ± 0.90 1.93 ± 1.05

LIME-RS 0.39 ± 0.53 1.59 ± 0.76 1.55 ± 1.09
Table 1: Average and standard deviation of MAE accuracy
in the Random and Top-Flop experimentation scenarios

Out-Of-Sample Prediction. The OOS predictors run for 120 e-
pochs of gradient descent using the optim package of pytorch.
More specifically, within this package we use the Adagrad opti-
miser using its defaults parameters, exception made of the learn-
ing rate set to 0.1.

Comparative accuracy. Table 1 presents the results of our first
comparative study based on MAE accuracy measure between
the black-box and our surrogate models. In order to assess our
results validity, significance t-tests have been conducted. It can
be observed that on the Random scenario, LIME-RS, LIRE-P and
LIRE-Mhave comparable results (p-value of 0.41 > 0.05 between
LIME-RS and LIRE-P for example), and all 3 approaches manage
to estimate correctly the prediction of the black-box. Interest-
ingly, standard deviation values are very high which shows that,
even if for most of the cases the accuracy is very good (MAE
close to 0), there still exists some cases that should be investi-
gated in the future, where the methods fail to estimate correctly.
This is the case with LIRE-C that relies exclusively on cluster
neighbors to train the surrogate model and that is less accurate.
This is certainly due to the inadequacy of discovered clusters
to represent correctly the locality either being to small and too
local or being too large and thus providing a surrogate model
that is too general. We leave as future work an in-depth study of
the most efficient clustering for sampling. Interestingly though,
mixing perturbed instances and clusters do not deteriorate the
results.

In the Top scenario, differences are significant between LIRE-
P and LIME-RS (p-value = 8 ∗ 10−5), and between LIRE-M and
LIME-RS (p-value = 0.02) which shows that our approach ismore
efficient when dealing with the best scored items, i.e. those that
will be preferentially presented to the user. This is mainly due
to the internal behavior of LIME-RS that builds the "locality"
around an instance by mostly exchanging items to be scored.
As a consequence, training instances will most likely consider
lower scored items and in turns will not be able to capture accu-
rately the behavior for the top instances. On the contrary, our
perturbed instances paired with our OOS prediction allows for
a smoother estimation of the model around the top instances.
Interestingly, our approaches do not perform as well as in the
Random scenario, as it is more difficult to build a representative
training set: in the case of LIRE-P, perturbations are limited to
the 0 to 5 range of ratings and in the case of LIRE-C, top scores
may not have many neighbors to compare with, because of the
generally Zipfian distribution of ratings. The same conclusion
applies in the following Flop scenario.

Finally, in the Flop scenario, similar towhat is observed for the
Random scenario, there is no significant difference between the
results (p-value = 0.10 > 0.05 when comparing LIRE-P and LIME-
RS for example). Interestingly, when mixing perturbed points

Methods Computation times (sec.)

LIRE-P 27.00 ± 1.98
LIRE-C 0.57 ± 0.08
LIRE-M 12.85 ± 2.08
LIME-RS* 1.60 ± 0.36

Table 2: Average computation times (in sec.) and their stan-
dard deviations for theRandom scenario for the LIRE vari-
ants. LIME-RS computation time is only provided as a ref-
erence only as its implementation is not optimized from
the original source code.

and cluster neighbors it seems to improve on our sample test
the performances of LIRE (not significantly though).

Computation times. During all the experiments, we have also
monitored the computation times of the different variants of
LIRE as reported in Table 2. Only Random scenario is reported
as the other scenarios are exactly as intensive in terms of com-
putation. Noticeably, LIRE-C based on cluster neighbors is the
fastest approach and LIRE-P is the slowest of the batch. This
was expected since LIRE-C does not require the computation of
the OOS prediction in LIRE-P. The latter is very costly when
considering matrix factorization black-box. Interestingly, LIRE-
M provides a good speed-up over LIRE-P without degrading the
accuracy in Top and Flop scenarios. Future work should inves-
tigate more this results as a LIRE-P with only 500 training in-
stances may have the same performance and the same computa-
tion time as LIRE-M depending on the quality of the clustering
used to define the neighborhood. Noticeably, our clustering may
not be as efficient as expected because in many real world situa-
tions, the size of clusters follows a Zipf law with one very large
cluster and many very small clusters. As a consequence, we set
up our clustering parameters so as to perform a compromise be-
tween the ability to capture small trends in the data as well as
more general tendencies. In the case where a cluster is too small
to contain 1000 points to produce an equivalent training sam-
ple as the other approaches, we use an oversampling technique
that may bias the convergence of the surrogate model, hence the
performance. We leave these research questions as future work.

4.3 Single white box experiment
Table 3 contains for each method the evaluation of its ability to
identify correctly the interpretable features used to generate the
white-box model. Relevance does not consider the relative im-
portance of each interpretable feature while NDCG score takes
into account the ranking of the most important interpretable fea-
tures of the white-box model.

This is a very difficult test as it boils down to identifying 10
features out of 9724. These features may be correlated and so
in this case our surrogate has to determine which one of the
correlated features to pick to explain the general behavior of
the white-box. Finally, the difficulty of the task is also related
to the number of items that were scored by the user for which
the explanation is produced. Indeed, even when limiting the ex-
ploration of interpretable features to the set of scored items, this
resolves to a possibly large search space: on average each user
of the dataset scored around 614 ± 642 items. This shows that
the search space may be very small or very large depending on
the selected user.



First, it is interesting to notice that in this experiment, LIME-
RS is not able to identify any correct interpretable feature from
the set of 9724 candidates. This is due to the internal behaviour
of the approach as we use in this experiment the “item mode”
from the original code that is emphasized in the original paper
[29]. In thismode, the sampling to train the surrogatemodel only
varies, for a specific fixed user, the items that are considered. As
a consequence, because of the nature of the white-box that is
a linear combination of fixed items, the output for all training
instances is the same. As a consequence, LIME-RS has no real
information to decide from all features locally and tries to min-
imize the prediction error but on the basis of uninteresting fea-
tures that are certainly correlated to some extent to the one used
in the white-box (hence the good accuracy score).

Second, the baseline random approach chooses from the set
of scored items for the user. This constraints greatly helps to find
more easily some relevant features (but otherwise this baseline
would have been pointless since it would have had 10 chances
out of 9724 to find a correct feature), but does not favor the dis-
covery of a proper ranking of the important interpretable fea-
tures as illustrated by the very low NDCG scores.

Finally, LIRE in general, and more specifically LIRE-P man-
ages to better embrace the local behavior of the white-box and
identify a ratio of 0.212 features over which its model is con-
structed. This is clearly due to the perturbation mechanism that
will slightly affect the scores of items to explore the neighbor-
hood of an explanation instance gradually and thus can better
evaluate the relative importance and correlation between fea-
tures.

4.4 Double white box experiment
The double white-box experiment aims at showing to which ex-
tent each surrogate model learns locally the black-box model
and to which extent it performs well doing so, based on the pre-
vious quality measure of an explanation (see Section 4.3). For
each explanation instance generated randomly, we define a deci-
sion threshold that is set as the distance to the 𝑘𝑡ℎ nearest neigh-
bors or as the distance to the farthest point in the same cluster,
if there are less than 𝑘 instances in the cluster.

Table 4 presents the results obtained when comparing all the
methods based on an adapted relevance metric: “Relevance In”
indicates the ratio of features from the first model (the one ap-
plied inside the neighborhood delimited by the decision thresh-
old) that are identified by the surrogate model, while “Relevance
Out” designates the ratio of features from the out-of-neighbor-
hood model. A surrogate model that better approximate a local
behavior is likely to have a better “Relevance In” score.

First, it can be seen in Table 4 that LIRE-P approach performs
the best for the “Relevance In” score with 0.328, followed by
LIRE-M and the random baseline. This shows that LIRE-P is the
most effective locally to capture the important features of the in-
neighborhoodwhite-boxmodel. This is due to its gradual pertur-
bation mechanism that stays in the vicinity of the explanation
instance, contrary to the binary perturbation of LIME-RS that
does not guarantee that a perturbed instance stays in a close
neighborhood. Second, concerning LIRE-M and LIRE-P, it can
be observed that adding training instances from the cluster de-
creases the quality of the explanation. Indeed, LIRE-C has very
poor results which tend to show that clusters are generallymuch
larger than the radius defined by the decision threshold and that,

in this case, training instances are often labelled by the out-of-
neighborhood white-box model prediction. Finally, LIME-RS ob-
tains very poor results with 0.036 in “Relevance In”. In fact, this
is due to the setting of the approach for this test, where we have
changed the itemmode of the previous test (that would not have
performed correctly for the same reasons as previously, see Sec-
tion 4.3) to the user-itemmode, present in the original code from
[29] but not detailedmuch in the paper. In this mode, training set
is constructed by picking at random (user, item) pairs and their
associated black-box predictions, which, as the locality is by defi-
nition smaller than the whole explanation instances space, leads
to favor the out-of-neighborhood white-box to label its predic-
tions. However, even in the case of the “Relevance Out” score,
LIME-RS does not perform well because of the binary perturba-
tion that does not ensure locality correctly. NDCG scores con-
firm that LIRE-P also manages to discover more of the main fea-
tures coming from one or the other white-box model and better
respects their ranking with a good score of 0.355 for NDCG@3.

4.5 Test on MovieLens 20M
Table 5 finally reports the comparative results of our 3 meth-
ods on the larger 20M entries dataset proposed by MovieLens.
All tests were conducted on a AMD Ryzen 3700X with 32 GB of
memory, and as such, computation times with previous experi-
ments cannot be compared, but are on the same order of magni-
tude. First, it should be observed that our approach runs on 20M
entries while the code provided for LIME-RS [29] is not able to
run on the full dataset. Second, it can be seen that LIRE-M has
better results compared to the test on MovieLens 100K and has
similar performances in terms of MAE than LIRE-P. Indeed, dif-
ferences are not significant when considering a bilateral t-test
with a p-value equals to 0.18. This is interesting as it may indi-
cate that in this very large dataset scenario, the clustering could
help improving the results of the perturbation mechanism. This
should be investigated more in future work. However, the clus-
ter neighbors only training set is too dependent on the quality
of the clustering algorithm to be efficient on average as shown
with LIRE-C results. Finally, and similarly to our experiments
on MovieLens 100K, LIRE-C is the fastest approach as it does
not involve the OOS prediction mechanism.

5 RELATEDWORK
Explainable recommendations refers to personalized recommen-
dation algorithms that not only provide the user with recom-
mendations, but also make the user aware why such items are
recommended [42]. Gedikli et al. [12] evaluate different explana-
tion types and propose a set of guidelines for designing and se-
lecting suitable explanations for recommender systems. Indeed,
state-of-the-art recommender systems [18] are notoriously com-
plex prediction systems for which computing explanation raises
new challenges [43]. Model-intrinsic explanations correspond to
recommender systems whose decision process is simple enough
to be clear for the users or that embed mechanisms to provide
users with an explanation [1]. However as pointed out in [23],
this kind of explanations suffer from a trade-off between trans-
parency and accuracy of themodel. Indeed, adding internalmech-
anisms to explain a process or a result may slow down this pro-
cess or bias this result as the sole focus of the recommender sys-
tem is no more the accuracy of item scores prediction but to
produce a justification for these scores as well.



Methods Relevance NDCG@3 NDCG@5 NDCG@10
LIME-RS 0 ± 0 0 ± 0 0 ± 0 0 ± 0

Baseline Random 0.048 ± 0.083 0.025 ± 0.105 0.034 ± 0.094 0.045 ± 0.088
Lire-P 0.212 ± 0.206 0.269 ± 0.345 0.284 ± 0.282 0.255 ± 0.250
Lire-M 0.098 ± 0.160 0.093 ± 0.216 0.098 ± 0.199 0.102 ± 0.181
Lire-C 0.030 ± 0.061 0.078 ± 0.185 0.042 ± 0.100 0.048 ± 0.092

Table 3: Single white-box experiments metrics: average relevance and NDCG scores for LIME-RS, the 3 LIRE variants and
a random baseline that builds a surrogate by picking 10 features and their weights at random.

Methods Relevance In Relevance Out NDCG@3 NDCG@5 NDCG@10

LIME-RS 0.036 ± 0.077 0.012 ± 0.040 0.042 ± 0.138 0.343 ± 0.094 0.028 ± 0.069
Baseline Random 0.068 ± 0.111 0.080 ± 0.151 0.057 ± 0.135 0.057 ± 0.112 0.056 ± 0.103

Lire-P 0.328 ± 0.327 0.072 ± 0.119 0.355 ± 0.367 0.291 ± 0.301 0.259 ± 0.250
Lire-M 0.116 ± 0.167 0.040 ± 0.098 0.096 ± 0.227 0.099 ± 0.196 0.087 ± 0.152
Lire-C 0.020 ± 0.060 0.012 ± 0.047 0.018 ± 0.088 0.016 ± 0.060 0.014 ± 0.047

Table 4: Double white-box experiments metrics: average relevance and NDCG scores for LIME-RS, the 3 LIRE variants and
a random baseline that builds a surrogate by picking 10 features and their weights at random. Relevance In (resp. Out)
indicates the ratio of features from the inside-neighborhood (resp. out-of-neighborhood) model. A more local surrogate
model will obtain better results in Relevance In.

Methods MAE Computation times (sec.)

LIRE-P 0.647 ± 0.560 5.796 ± 0.072
LIRE-M 0.516 ± 0.388 4.693 ± 0.047
LIRE-C 1.075 ± 0.914 3.109 ± 0.081

Table 5: Average MAE and computation times (in sec.) and
their standard deviations on the MovieLens 20M entries
dataset for LIRE-P, LIRE-M and LIRE-C.

On the contrary post-hoc or model-agnostic explanations do
not require to access or to adapt the internals of the recommender
system and thus do not decrease their accuracy [26].

Many of those post-hoc approaches have been proposed such
as [31] for Matrix Factorization or similar approaches that relies
on the elicitation of latent factors to perform recommendation
[11, 31, 37, 44]. The inherent difficulty facing these methods is
to determine an efficient way to relate the latent model to ex-
plicit interpretable features that make sense for the user. [37]
integrate regression trees to guide the learning and further ex-
plain latent space while [11] introduce a framework based on
deep multi-view learning to model an explanation as multi-level
features template. Finally, [44] propose an Explicit Factor Model
that builds an alignment between interpretable features and the
latent space while [31] search for association rules expressed on
features. All these explanation approaches however are tightly
related to only one specific recommendation system. More re-
cently, [39] introduces GLIDER, a system that provides an in-
terpretation for any black-box recommender system based on
features interactions rather than features significance as in the
original LIME algorithm. In our work, we are interested inmodel
agnostic local explanations as provided by LIME, in other words,
models that can provide explanations as a set of feature weights,
for any recommender system, given an input instance.

In this respect, the LIME-RS approach [29] provides a model
agnostic explanation system, that can be applied on any black-
box recommender system and that outputs a set of interpretable
features and their relative importance. LIME-RS builds upon the
well-known LIME approach [33] to explain recommendation by
retrieving the top-n binary interpretable features as computed
by LIME.

An explanation produced by LIME for an input instance 𝑥 ∈
X, and a prediction model 𝑓 is as follows [33]

𝜉 (𝑥) = argmin𝑔∈𝐺L (𝑓 , 𝑔, 𝜋𝑥 ) + Ω(𝑔) (8)

whereL is a fidelity function to the original (black-box)model
𝑓 and𝑔 ∈ 𝐺 is one explanationmodel among all possible explain-
able models𝐺 . The most common explanation model is a linear
prediction model and in this case an explanation corresponds to
the weights of the most significant interpretable features whose
combination minimize the deviation to the black-box model. In-
terestingly, 𝜋𝑥 is a localitymeasure around instance 𝑥 ∈ X and is
introduced to balance the perturbations introduced in the train-
ing set. Finally, Ω(𝑔) measures the complexity of explanation
model 𝑔. LIME assumes (i) an interpretable feature space Z to
learn a surrogate model of 𝑓 and (ii) at least a surjective function
from X toZ.

The fidelity function L is expressed as a quadratic error be-
tween the predictions 𝑓 (𝑥 ′), for instances 𝑥 ′ ∈ X and the surro-
gate prediction𝑔(𝑧′) for their interpretable counterparts 𝑧′ ∈ Z:

L (𝑓 , 𝑔, 𝜋𝑥 ) =
∑

𝑥 ′∈X,𝑧′∈Z
𝜋𝑥 (𝑥 ′)

(
𝑓 (𝑥 ′) − 𝑔(𝑧′)

)2 (9)

where the locality measure 𝜋𝑥 = 𝑒𝑥𝑝 (−𝐷 (𝑥, 𝑥 ′)2/𝜎2) cru-
cially weighs the importance of training instances 𝑥 ′ based on
their distance 𝐷 (𝑥, 𝑥 ′) with instance 𝑥 . This locality importance
is better illustrated when reformulating Equation 9 with the sur-
jective function 𝑝 : X → Z, where 𝑝−1 is to be determined
and relates the generated perturbed instances 𝑧′ ∈ Z to their



antecedent 𝑥 ′ ∈ X as follows:

L (𝑓 , 𝑔, 𝜋𝑥 , 𝑝) =
∑
𝑧′∈Z

𝜋𝑥 (𝑝−1 (𝑧′))
(
𝑓 (𝑝−1 (𝑧′)) − 𝑔(𝑧′)

)2
(10)

Equation 10 clearly shows that, as 𝑝−1 does not guarantee that
neighbors inZ are still neighbors in the antecedent spaceX, we
need a mechanism to counterweight these uninteresting train-
ing samples. Earlier works [29, 33] consider binary explanation
spaces, and perturbations are uniform random changes in the
binary signature of the explanations. As noted before, a binary
change may have a drastic impact on potential expression of
the antecedents in X, which, again, exemplifies the role of 𝜋𝑥
in LIME-like systems. For this reason, we discuss in this paper
new ways to deal with locality around and explanation instance
by introducing a more gradual interpretable space and pertur-
bation mechanism as well as a strict locality as defined by an
adapted clustering algorithm.

Further properties are discussed to create its own LIME expla-
nation algorithm in [36]. Noticeably, [36] discusses one of the
key hypothesis of LIME that consists in knowing by advance
the relationship between the interpretable space and original
space and indicates that, whenever possible, bijective functions
should be considered to limit errors when projecting from the
interpretable space to the original one. This hypothesis is very
strong and explains the simplifying choices that are made by
[29] not to perturb instances outside already existing instances,
to avoid the definition of a proper Out-Of-Sample (OOS) process
that we implement in this paper. Tightly related to this problem
of OOS prediction is the ability of the explanation instance rep-
resentation chosen in LIME-RS to effectively capture locality via
the perturbationmechanism. Indeed, one drawback of LIME-like
approaches is that they sometimes fail to estimate a proper lo-
cal surrogate model [21] and rather produce a model not solely
focused on the explanation instance but influenced by more gen-
eral trends in the data as well.

In our proposal, we want to achieve the same flexibility as
LIME-RS by extending the principle of LIME algorithm [33] and
to circumvent the locality problem with the introduction of two
mechanisms: (1) a more gradual perturbation mechanism and
its dedicated OOS prediction, and (2) a neighborhood that can
possibly better capture local decision boundaries around the ex-
planation instance.

Our paper also raises the question of the evaluation of an ex-
planation, as reflected by the experiments and metrics that we
use. This question has been raised in [7] where they define a con-
tinuum of evaluation methods from “Function-based” that relies
on benchmarks and formalized evaluation metrics with low va-
lidity and cost of explanation, to “Cognition-based” where the
objective is to quantify the driving factors of features that are
related to the task and finally to “Application-based” that relies
on experts from the domain to evaluate in a real-use case the
validity of an explanation that have high validity and cost.

In [27], the authors are interested in the type of explanations
that humans are able to understand and define a set of user-
studies to evaluate the cost for human to understand the ra-
tionale of an explanation based on input, output of prediction
model and its explanation.

In our tests, we focus on accuracy of the surrogate model (fi-
delity to the black-box) and relevance of the interpretable fea-
tures. Other quantitative quality measures have been proposed
in the literature. For example, [29] describes a fidelity measure
that does not rely on an absolute rating prediction error, but

rather on differences in top-k item ratings between the black-
box and its surrogate model. In this paper we also compare rank-
ings but focus on interpretable features which is more local to
an explanation instance and more related to the quality and in-
terpretability of the explanation while [29] focus on the ability
of the surrogate model to mimic the black-box behavior.

Several other quantitative metrics for explanation evaluation
could be considered in the context of recommender systems. No-
ticeably, the robustness of an explanation following the princi-
ple of locally Lipschitz continuity in the classification context
seems to be a promising idea [4] that we plan to adapt to the
recommendation context in the near future.

Finally, in [26] the author describes several properties of an
explanation andwhatwouldmake an explanation human-friendly.
These concepts and ideas should be borrowed and adapted to the
context of recommender systems.

6 CONCLUSION AND FUTUREWORKS
This paper introduces new implementations of locality in post-
hoc explanation approach for recommender systems. Our two
main contributions are: (1) the introduction of a more gradual
perturbation mechanism paired with an Out-Of-Sample predic-
tion method dedicated to Matrix Factorization recommendation,
and (2) the use an off-the-shelf k-means clustering algorithm
paired with a UMAP dimensionality reduction method to deter-
mine the neighborhood of each explanation instance. On overall,
our approach LIRE-P performs better than the reference LIME-
RS to predict top-recommendations (LIRE-P MAE is 0.89 while
LIME-RS is 1.59), and provides more relevant explanations by
identifyingmore of the expected interpretable features (relevance
LIRE-P is 0.212 and NDCG@3 is 0.269 when LIME-RS in item-
mode does not find any relevant features). LIRE-P takes advan-
tage more efficiently of simulated locality in our double white-
box experiment (relevance LIRE-P is 0.328). Finally, LIRE-P scales
to 20M entries when the actual internal implementation (based
on hot-encoding of users and items) of LIME-RS does not allow
this volume of data. Our other variant LIRE-M has in some cases
comparable performances with LIRE-P but at a lower complex-
ity. Finally, future work should improve the LIRE-C variant that
is not as efficient as the other 2 approaches. We also plan in a
near future to extend our test to the context of a real company
use case. Future research will concern the central question of
the evaluation of explanation: how to evaluate the robustness
of an explanation and how to be more aligned with the recom-
mendation problem by taking into account diversity, coverage,
or multi-stakeholders context that are not studied in the general
classification post-hoc explanation context.
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