
An Empirical Study of Open Data JSON Files
Mark Lukas Möller
University of Rostock

Germany
mark.moeller3@uni-rostock.de

Nic Scharlau
University of Rostock

Germany
nic.scharlau@uni-rostock.de

Meike Klettke
University of Rostock

Germany
meike.klettke@uni-rostock.de

ABSTRACT
JSON is challenging XML as lingua franca of data exchange for-
mats. Likewise, the JSON schema initiative has been gaining
momentum to the point where it is considered by many as a de-
facto standard. Both the JSON data format and the JSON schema
formalism allow for great degrees of freedom in modelling nested
and semistructured data. In this article, we introduce a scalable
tool, jHound for profiling JSON document collections. We use
this tool to pursue the question how real-life datasets are struc-
tured, and whether developers actually make use of the features
offered by these languages when modelling their data. For this
analysis, we focus on JSON documents available as open data.
While this sample can only deliver a biased snapshot of what real
JSON is like, we gain first insights into the common practices
in modelling data with JSON. The jHound tool is provided and
available as open source, so that scientist and practicioners can
apply it for profiling of other JSON data sources.

KEYWORDS
NoSQL Data Exploration, Metrics for JSON Data, JSON Data
Profiling, Open Data Analysis

1 INTRODUCTION
Data for data science applications nowadays are provided in vari-
ous formats. Besides the established relational databases, various
data sources are available as NoSQL data, especially in JSON
format, a very popular data format that was originally developed
for data exchange between web applications. NoSQL databases
are an alternative to traditional relational databases when scal-
able database solutions for storing large quantities of data are
needed. In these lightweight NoSQL databases systems data with
an arbitrary internal structure can be stored and in most NoSQL
systems it is not required to define a schema before storing data.

If such heterogeneous NoSQL data shall be used in data science
applications, an ETL process is necessary for transforming these
data into a certain structured target format as shown in Figure 1.
The first step in this process is understanding of the datasets.
For this we have to determine the statistics and commonalities
of JSON files and need the opportunity for a comprehensive
data exploration. Users must be able to explore and understand
the structure of the data set in depth, know the data types, the
completeness of the data (e.g. percentage of null values in each
property), the regularity of the data sets, the nesting depth, and
their overall size. The derivation of several metrics describing
these characteristics is represented in this article.

In short, the exploration of NoSQL data is always the first step
in all data engineering tasks in data science. With jHound, we in-
troduce amethod for analyzing and using available JSON data and
provide a efficient tool for JSON data exploration. Furthermore,
we apply the approach onto available data sets to understand how

Copyright ©2021 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

JSON is used in different applications. We use open data reposito-
ries to test our techniques, calculate statistics and find interesting
patterns in data, such as relationally stored data dumped into the
JSON data exchange format. In this article, we examine how the
capabilities of JSON are used. Is it common that data is deeply
nested? Do people use optional properties or do they store data
in a traditional regular way?

Data Analysis
and Statistics

Data
Cleaning
Data

Cleaning

From Datalake To Database

...
Matching
Mapping

Loading/
Integration

Scope of jHound Data Preparation Steps

Figure 1: Pipeline from a datalake to a database

Outline. The rest of the article is structured as follows: In
Section 2, we introduce the tool jHound and give a performance
evaluation of the parallel implementation. Section 3 focuses on
the results of selected parts of the CKAN data profiling. In the
next section, related work in the fields of data profiling and
schema extraction is given. Finally, it is shown how jHound can
be applied for analyzing own JSON data in Data Science projects.

2 THE JHOUND ANALYSIS TOOL
jHound1 has been developed for data exploration of NoSQL
datasets. It scrapes links from open data repositories, downloads
the NoSQL datasets, parses them and derives several metrics from
the data. jHound is written in Python as a distributed systemwith
a map-reduce process using multiple analysis servers, referred
to as nodes.

To learn more about the variety of JSON data and the way
how JSON is utilised, we use the CKAN repositories for our anal-
yses. CKAN is a project in which any kind of public data can be
stored, often used by governments to provide access to public
information. Hence, CKAN repositories are a good baseline for
the retrieval of JSON documents because it contains a wide vari-
ety of different kinds of JSON data. CKAN consists of packages,
which, in itself, consist of URLs to documents, called resources.
Every repository, every package, and every resource comes with
some metadata such as the total amount of elements, data types,
and more. For all data sources, the jHound analysis workflow
consists of the following three steps: Retrieval, Analysis, and
Visualization.

2.1 Data Retrieval
JSON Documents are fetched via CKAN’s RESTful API while
the URLs to resources with a specified format of either JSON or
GeoJSON are stored in our database. Afterwards, the files behind
the crawled URLs are downloaded simultaneously on multiple
machines sharing a network-based storage. We analyzed a total
1Source code: https://jhound.de, documentation: https://docs.jhound.de.

https://jhound.de
https://docs.jhound.de


Abbrev. Provider Fetched at # Scraped # Analyzed

DHC datahub.ckan.io 2020-08-23
20:30:09 CEST 537 197

HRO opendata-hro.de 2020-08-23
17:44:41 CEST 386 382

DRP dados.recife.pe.gov.br 2020-08-23
17:43:44 CEST 282 280

CPS ckan.publishing.service.gov.uk 2020-08-20
11:54:36 CEST 4,988 500

ZUE data.stadt-zuerich.ch 2020-08-15
19:30:46 CEST 151 14

GOV data.gov.ie 2020-08-15
19:30:17 CEST 1,604 1,494

BOD data.bodik.jp 2020-08-15
19:27:30 CEST 108 107

HDX data.humdata.org 2020-08-15
19:21:39 CEST 1,036 712

Figure 2: The JSON data sample

of 3,686 JSON data documents. This includes data published by
the government of Ireland, open data portals from cities such as
Rostock [HRO] or Zurich [ZUE], NGOs such as Humanitarian
Data Exchange [HDX], and others. The sizes of individual files
range from less than 16 B to well over 1GB. The table in Figure 2
describes the data sets by introducing an abbreviation, stating
the web source, the number of scraped files, and the number of
successfully analyzed files.

2.2 JSON Data Analysis
The analysis step treats the downloaded JSON documents as in-
put information. Making use of ijson, an iterative, event-driven
JSON parser, all JSON documents represented as trees are ana-
lyzed. Here, the JSON structure is interpreted by ijson as triples,
whereby each triple consists of a prefix, an event (e.g. for an
observed begin of an object), and a respecting value. jHound
collects the following document metrics during the analysis pro-
cess which are relevant for this article’s key research question to
understand how actual JSON documents look like:

• Document Tree Level (DTL). This metric measures how
deep documents are nested. If there is a JSON document
which only consists of a single object with one or a set of
properties which are not nested, DTL is 0. If there are ob-
jects with properties whose values represent other objects,
the DTL increases by one per object nesting level.2

• Bulk of Data Level (BDL). The bulk of data level rep-
resents the information on which DTL most properties
can be found. We often faced documents having their bulk
of data not on the root level which shows that nesting
capabilities of JSON are actually used.

• Data Type Inference and Distribution. The JSON syn-
tax [4] allows to distinguish between different data types.
The jHound tool keeps track of the used data types for
all JSON documents. According to the definition of JSON,
we distinguish between the following data types of the
property values: object, array, string, integer, number (non-
integer numeric values), boolean, and null values.
In addition to the analysis with ijson, jHound tries to
parse each string to a float to check whether the string
has been “abused” to represent a numerical value. If a
value of a string is either “true” or “false”, representing a
boolean value, we register this kind of abuse as well. Such

2While the ECMA 404 specification and the JSON RFC do not specify how depths
is defined, we rely on definition e.g. from IBM where only the depths of objects is
taken into consideration, while arrays are not (c.f. https://www.ibm.com/support/
knowledgecenter/SS9H2Y_10.0/com.ibm.dp.doc/json_maxnestingdepth.html [2021-
01-21], https://tools.ietf.org/html/rfc7159 [2021-01-21]).

typecast can be found in several JSON documents namely
thosewhichwere presumably transformed from other data
formats into JSON. Furthermore, we check documents for
empty strings to get an insight whether the possibilities
of optional properties or null values are used.

• Property Occurrence. The property occurrence metrics
provides an insight of potentially required and optional
attributes. This is a metric inspired by JSON schema which
is able to distinguish between required and non-required
properties. We infer a similar metric from the documents
but do not use JSON schema since this schemas are not
included in the scraped files. Interpreting nested JSON doc-
uments as a tree, the properties of each node are collected
per nesting level. Afterwards it is checked if a certain
property is available in each node of the respecting level.
If this is the case, we treat this property as required and
otherwise as an optional property. Another interpretation
is “always available”/“not always available”. This metric
evaluates the regularity or heterogeneity of the JSON doc-
uments. It is possible to have valid JSON documents where
both the required and the non-required count is zero, e.g.
if the document only consists of an array of values with-
out keys. Object-valued properties in arrays without a
specified key are regarded as optional values, too.

• Document Metadata. We collect some metadata about
the JSON documents, e.g. their filesizes and origins. To-
gether with the raw analysis data about the previously
mentioned metrics, we want to see if there are similar
JSON documents which might belong together and are
stored in chunks in the repositories. Additionally, meta-
data helps to find out whether documents represent spe-
cialized JSON, such as GeoJSON, by looking for predesti-
nated keys and properties.

• Repository Metadata. CKAN repositories allow to host
arbitrary types of data. Regarding the repository curation,
we inspect the metadata of the repositories to find out how
many documents are mislabelled as JSON. This helps to
estimate if data can be analyzed on-the-fly or if another
data preprocessing step has to be made before analyses.

Additionally, we investigated how well jHound scales. For
this, we analyzed all repositories on one local node with only
one thread, as well as on multiple nodes with four threads each.
We determined that threading was the best way to speed up the
JSON analysis process. As apparent in Figure 4, the speed up
factor between one thread and two nodes with eight threads in
total reduced the analysis time by the factor 8.24 in the best case
(Figure 4, CPS) and by the factor 3.75 in the worst case (Figure 4,
DRP). If additional nodes are used for the analysis, it is apparent
that there is no (e.g Figure 4, DRP) or only a slight speedup (e.g
Figure 4, CPS: Factor 1.16 for two versus three nodes and factor
1.15 for three versus four nodes). In comparison to the increase of
threads per node, the speed up is negligible. The reason for this
can probably be attributed to jHound’s map-reduce internals and
its data store which we plan to optimize in the future. In general,
it is possible to add or remove analysis nodes on demand during
a running analysis. However, the number of nodes and threads
was static during all analysis processes.

2.3 Visualization
Finally, the results of the analysis process are shown in raw data
as well as in certain diagrams. Figure 3 gives a first impression

datahub.ckan.io
opendata-hro.de
dados.recife.pe.gov.br
ckan.publishing.service.gov.uk
data.stadt-zuerich.ch
data.gov.ie
data.bodik.jp
data.humdata.org
https://www.ibm.com/support/knowledgecenter/SS9H2Y_10.0/com.ibm.dp.doc/json_maxnestingdepth.html
https://www.ibm.com/support/knowledgecenter/SS9H2Y_10.0/com.ibm.dp.doc/json_maxnestingdepth.html
https://tools.ietf.org/html/rfc7159


The Provenance Inspection Component

Figure 3: The provenance component for the inspection of the main data location levels

Local analysis, Distributed analysis, 4 threads per node
Repository 1 thread 2 nodes 3 nodes 4 nodes)

DHC 156.39 s 35.20 s 34.03 s 29.96 s
HRO 2130.20 s 364.14 s 308.65 s 312.50 s
DRP 540.30 s 144.03 s 146.97 s 146.32 s
CPS 38 459.47 s 4664.00 s 3992.94 s 3450.45 s
ZUE 7.17 s 2.06 s 1.93 s 1.64 s
GOV 15 163.72 s 2500.89 s 1921.17 s 1717.58 s
BOD 385.84 s 59.19 s 50.49 s 46.42 s
HDX 6032.33 s 1160.41 s 1098.58 s 1041.11 s
Total 62 875.42 s 8929.92 s 7554.76 s 6745.98 s

Figure 4: Average runtimes with respect to the amount of
nodes and threads used for the analyses

on the results overview and provenance component of the user
interface of jHound.

The graphical visualizations provide a quick overview on cer-
tain JSON document characteristics and so support the data explo-
ration tasks. Additionally, a user can use a provenance component
to see which documents influenced which part of the result.

3 KEY INSIGHTS IN OPEN DATA JSON FILES
There are numerous characteristics of JSON documents that influ-
ence how the documents are processed. The jHound exploration
tool is focused on the most important metrics: tree characteristics
like size and depth, distribution of data types, nesting, and so
on. In this chapter, we describe these metrics for selected JSON
documents from the CKAN repository which mainly are:

• We inspect the metrics of the JSON files and show which
conclusions can be drawn from the metrics to determine
necessary subtasks in the data preprocessing and what
information about the usability of the data can be de-
rived from the metrics? What is the distribution of data
types and how often are they abused? Is there a significant
amount of specialized JSON, such as GeoJSON?

• We question how intensively relational and non-relational
approaches are used. We want to find out if data is stored
flatly or if the capability of nesting data is used. If so, up
to which level? Is it possible to find documents which may
belong together by using our metrics?

• The last question deals with how well data is curated in
open data repositories. When downloading data from a
repository, which potential problems occur during an on-
the-fly analysis process? How many files are labeled as
JSON but actually contain XML or HTML?

To answer the first questions, we investigate the metrics in-
troduced in Section 2 and got the following results.

Required vs. non-required properties. Across all 3,686 analyzed
datasets, approximately 66% of the properties are required pro-
perties while the rest are optional. This implies that documents
often follow a kind of regular structure. Yet, the occurrence of
completely unstructured documents was very rare. Often, we
find a fully regular structure which probably results from the
use of programs which either require a certain structure to be
parseable or which generate the JSON documents in a regular
structure.

Consequences for data imputation and data analysis: The in-
formation about required and optional properties defines a mea-
sure for regularity of datasets, which is required for further data
processing, e.g. integrating the data into relational storage en-
vironments such as RDBMS systems. This information can also
be used for the decision which datasets are selected because it
reflects the completeness of information. With the jHound tool
this is clearly displayed at a glance.

Distribution of datatypes. Across all repositories and docu-
ments, more than 2.68 billion properties were analyzed. By far
the most frequent data type in the collection are numbers with
over 50% of occurrence, followed by arrays and strings. Only
1.12% of properties are named objects containing other proper-
ties or other objects. The least common data types are booleans
and null values. We did not expect arrays to occure with such a
high frequency and took a manual look at the documents. We
determined that this is often caused by GeoJSON-documents
which encode tuples of coordinates as arrays. Figure 5 shows
the distribution of JSON datatypes for the CKAN excerpt. If the
data is integrated into a relational database schema, a lot of 1:n
relationships occur due to the numerous arrays, which have to be
taken into account with regard to performance, especially when
reconstructing by using join operations. If numerical operations
like aggregations are in the foreground of the subsequent anal-
ysis, a column-oriented design should be adopted as a result of
the predominance of numbers.

Nesting characteristics. Interesting insights came up when we
correlate this type distribution with our analysis where most of
the data resides when interpreting the JSON documents as a tree.
As apparent in Figure 6, most of the properties reside in tree level
2 (starting with level 0 for “flat” documents). Even though objects
make up 1.12 % (Figure 5), most of the data is located in nested



String Number Boolean Array Object Null
Data types

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Nu
m

be
r o

f o
cc

ur
re

nc
es

1e9

308,280,934

1,529,162,980

3,293,492

740,799,279

30,120,313 68,716,607

Figure 5: Datatype distribution across all datasets

data structures. 2,235 of 3,210 analyzed documents, have a DTL of
2wherebymost of the data resides in tree level 2 (BDL 2), followed
by 597 documents with a DTL of 1 with a BDL of 1, followed by
378 documents with a DTL and BDL of 0. When representing the
connection between the DTL and BDL in a diagram, it is apparent
that if JSON documents are nested, the bulk of data resides mostly
in the deepest tree level. Having a look at all documents, the most
deeply nested documents found had a tree level of 7wherebymost
of the data resided on level 5 in these documents. Consequences
for Data Transformation: The nesting information is important if
JSON documents have to be transformed into relational databases.
Beside that, the nesting depth is a hint that reveals the data model
complexity and processing costs. Especially in systems where
path operations are expensive to execute with regards to the
system’s resources, data scientists may unnest the documents
before post processing the data.

Geographical data. We inspected the documents for certain
keywords which are typical indicators for GeoJSON. They typi-
cally consist of properties with keys such as FeatureCollection, or
MultiPolygon. We found out that 466 of 3,686 – this is about every
eighth document – contained at least one of those properties
and were classified as GeoJSON. Considering this fact, it can be
assumed that GeoJSON as a special case of JSON plays more than
a minor role in applications. As a consequence, jHound’s metrics
can be used to spot GeoJSON data, such as by certain keywords
or pairs of coordinates inside of arrays. This is a valuable aid if a
geospatial database is to be built based on the analyzed data.

Using metrics for classifying datasets. Taking raw metrics into
account also supports answering the questions how intensively
relational vs. non-relational approaches are used. For example,
in one repository, we explored that jHound found more than 100
documents with a very similar metrics pattern. Having a manual
inspection of these documents revealed that these documents
semantically belonged together. If we find JSON documents with
an object nesting depth of 0, it is a very strong indication of
relational data exported as JSON documents into arrays.

Consequences for data ingestion. Hence, we can conclude from
the jHound analysis metrics as well as from the manually in-
spected files with the same metrics pattern that it is not uncom-
mon that relational data is stored in JSON and documents in the
same repository have a cross-document connection.

Figure 6: Connection between the DTL and the BDL of all
analyzed documents

It can be inferred that similar values in certain metrics are an
indicator for similarity of dataset structures. Due to this, metrics
can be used for identifying datasets with certain characteristics
and select these datases for data ingestion.

Data quality. Another question of interest is the evaluation
of data quality. JSON supports multiple data types as shown,
but from our own experience, we know of the existence of low-
capability tools which store any information in the most general
data type, a string. Technically, this works, but may be hard to
interpret for other tools when reading this data because type-
casting must be executed beforehand. Therefore, we took a look
if strings were abused in this way. We distinguish between the
following types of abuse and classify these in the following:

• Boolean Abuse. Since JSON supports booleans, we ex-
pect the use of property values like True and False. How-
ever, we often found them encoded as strings.

• Numerical Abuse. Analogous to the boolean abuse, we
had a look how often numerical values are stringified.

• Empty String Abuse. Because JSON allows optional pro-
perties, we typically expect that properties with an empty
value are omitted.

We found out that a third of all documents contained empty
strings as shown in Figure 7. We suspect that data is often stored
regulary when exported by systems which generated those docu-
ments and therefore, empty values are used for representing null
values. However, the metrics must be interpreted with caution
since empty strings might also have a semantical meaning. The
same fact holds for numbers encoded as strings. The encoding of
booleans as strings is rather rare. We found only 73 documents
where this was inspectable. This is analogous to the rare use
of the data type boolean in the CKAN excerpt, which could be
seen in Figure 5. In any case, if datasets which contain such type
deriavtions shall be processed, type castings have to be executed
as part of the data preprocessing step.

Data Repository Curation. jHound also offers the opportunity
to check link constraints, We also investigated the curation qual-
ity of the analyzed open data repositories and their aptitude for
an ad-hoc analysis of open JSON data. Across all repositories, we
scraped links to 9,092 JSON documents. Merely 3,676 or 40.43% of
the documents were suitable for the analysis by our tool. For the
other 60% of the documents, our analysis process resulted in an



Abuse Type # Affected Documents # Affected Properties
Boolean 73 4,337
Number 1,121 55,932,374

Empty String 1,076 12,286,977
Total 2,270 68,223,688

Figure 7: Datatype abuse by documents and properties

erroneous state. Regarding the huge amount of failed documents,
the most influencing fact is probably the CPS repository where
only 500 documents could be downloaded while the other ones
fail with no server response. Ignoring this repository results in
a scrape/analysis success rate of 78%. jHound tracks occurring
errors to notify where the workflow fails. There can be differ-
ent reasons for link errors: ranging from malformed documents
to server side rate limit which cuts our connection. The most
frequent errors jHound found were malformed documents and
HTTP status codes 404 or 403, indicating that the repositories ei-
ther have “dead links” to non-existing JSON documents or are in
network areas that exclude public access. For repositories such as
HDX, we often encountered the HTTP error 429 which indicates
that jHound made too many requests in a specific time period
and was therefore prevented to download all JSON files.

An investigated fact regarding data quality and repository
curation is that CKAN repositories often announce datasets in
wrong data formats, for example the ZUE repository. Here, errors
mainly occurred with error code “Parsing after download (Unex-
pected symbol ’<’ at 0)”, implying other data formats like HTML
or XML, although if the file was listed as JSON. Because this
error occurred for more than 100 files, we inspected the reposi-
tory manually. Unfortunately we found out that the repository
curators labeled the resources as JSON, but instead of providing
a downloadable file as expected, the JSON file is embedded in
an online map and serves for the display of coordinates3. Hence
jHound finds an uninterpreteable web page. While our tool is
able to report unparsable documents and report the underlying
cause, we did not inspect broken documents further since the
structural and semantic meaning cannot be recovered.

Taking all the results into account, we conclude that a naive
on-the-fly analysis is not possible. Not all repositories are per-
fectly curated and often, links are not existing anymore or do not
provide a way to directly access the JSON documents. Therefore,
a variety of pre-analysis steps to mitigate errors are required. This
also holds for the JSON documents themselves. Often, non-string
data types are encoded as strings and require a typecasting before
processing. The jHound tool allows to discover these potential
problems regarding data quality both for own and openly hosted
data. It gives a first, brief insight how data looks like and points
out typical pitfalls which have to be solved before the data is
processed in the following data cleaning step (c.f. Figure 1).

4 RELATEDWORK
In the last decades, different data metrics have been developed
for different data formats, Document depth and the bulk of data
metrics were introduced in [6]. Byron Choi published a well-
known article entitled “What Are Real DTDs Like" [2]. In this
article it was examined whether all features that are offered by
DTDs for defining the structure of XML documents are used in
real applications. Our work is also related to the ongoing efforts
in extracting a schema from large collections of JSON data, e.g. [1,
3, 5, 7, 8, 10]. All these metrics influenced the development of the

3https://stadt-zuerich.ch/geodaten/download/Spital?format=10009 [2020-09-21].

jHound approach. The first version of this tool [9] included basic
metrics like the distribution of data types as nesting depths. Since
then, the current version now implements a parallelizedworkflow
with the ability to add or remove analysis nodes on-demand and
during analyses. Additional metrics such as the incorrect usages
of data types were added to the inspection as well, which supports
the data cleaning process as given in Figure 1.

In our own work, the data exploration task is embedded in a
schema evolution and migration approach for NoSQL databases
where a NoSQL schema evolution language, different efficient
data migration strategies and a migration advisor4 are developed
for this purpose.

5 CONCLUSION
For this article we analyzed open JSON data and present our re-
sults and a brief insight was given into jHound, our JSON analysis
tool, which implements a full pipeline for scaping, downloading,
and analyzing JSON documents from open data repositories. We
inspected 8 repositories, among them ones of governments and
cities, to find out how JSON is used. We determined that not all
data repositories are well curated and often, a preprocessing step
is required in advance of the analysis. During the analysis of
JSON documents, we have shown that often JSON is used with
all its capabilities such as optional properties and nested data,
while we also found documents that seemed to be generated and
exported from origins storing relational data. We explained the
challenges like abused data types. With jHound we were able
to use JSON metrics pattern to find documents which belong
together in the same repository. In the future, we plan to auto-
mate this process and aim to inspect the JSON documents more
in-depth with different metrics.

Acknowledgements. The article is published in the scope of
the project “NoSQL Schema Evolution und Big Data Migration at
Scale” which is funded by the Deutsche Forschungsgemeinschaft
(DFG) under the grant no. 385808805. A special thanks goes to
Nicolas Berton, a former guest student of the University of Ros-
tock, whose ideas and whose first draft of the jHound tool largely
influenced the outcome of this article.

REFERENCES
[1] Mohamed Amine Baazizi, Houssem Ben Lahmar, Dario Colazzo, et al. 2017.

Schema Inference for Massive JSON Datasets. In Proc. of the 20th Intl. Conf. on
Extending Database Technology, EDBT 2017. OpenProceedings.org, 222–233.

[2] Byron Choi. 2002. What are real DTDs like?. In Proc. WebDB 2002. 43–48.
[3] Michael DiScala and Daniel J. Abadi. 2016. Automatic Generation of Normal-

ized Relational Schemas from Nested Key-Value Data. In Proc. SIGMOD 2016.
ACM, New York, 295–310.

[4] Ecma International. 2017. The JSON Data Interchange Format. Standard
ECMA-404, 2nd Edition.

[5] Angelo Augusto Frozza, Ronaldo dos Santos Mello, and Felipe de Souza da
Costa. 2018. An Approach for Schema Extraction of JSON and Extended
JSON Document Collections. In 2018 IEEE Intl. Conf. on Information Reuse and
Integration (IRI). IEEE, 356–363.

[6] Paola Gómez, Claudia Roncancio, and Rubby Casallas. 2018. Towards Quality
Analysis for Document Oriented Bases. In Conceptual Modeling. Springer
International Publishing, Cham, 200–216.

[7] Javier Luis Cánovas Izquierdo and Jordi Cabot. 2013. Discovering Implicit
Schemas in JSON Data. In Web Engineering - 13th Intl. Conf., ICWE 2013. Proc.
Springer, Berlin, Heidelberg, 68–83.

[8] Meike Klettke, Uta Störl, and Stefanie Scherzinger. 2015. Schema Extraction
and Structural Outlier Detection for JSON-based NoSQL Data Stores. In Proc.
BTW’15. GI e.V., Bonn, 425–444.

[9] Mark Lukas Möller, Nicolas Berton, Meike Klettke, et al. 2019. jHound: Large-
Scale Profiling of Open JSON Data. In BTW’19 (LNI). GI e.V, Bonn, 555–558.

[10] Diego Sevilla Ruiz, Severino Feliciano Morales, and Jesús García Molina. 2015.
Inferring Versioned Schemas from NoSQL Databases and Its Applications. In
Conceptual Modeling. Springer International Publishing, Cham, 467–480.

4https://sites.google.com/view/evolving-nosql/tools/darwin

https://stadt-zuerich.ch/geodaten/download/Spital?format=10009
https://sites.google.com/view/evolving-nosql/tools/darwin

	Abstract
	1 Introduction
	2 The jHound Analysis Tool
	2.1 Data Retrieval
	2.2 JSON Data Analysis
	2.3 Visualization

	3 Key Insights in Open Data JSON Files
	4 Related Work
	5 Conclusion
	References

