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ABSTRACT

Classifying cities and other geographical units is a classical task in
urban geography, typically carried out through manual analysis
of specific characteristics of the area. The primary objective of
this paper is to contribute to this process through the definition
of a wide set of city indicators that capture different aspects
of the city, mainly based on human mobility and automatically
computed from a set of data sources, including mobility traces
and road networks. The secondary objective is to prove that such
set of characteristics is indeed rich enough to support a simple
task of geographical transfer learning, namely identifying which
groups of geographical areas can share with each other a basic
traffic prediction model. The experiments show that similarity in
terms of our city indicators also means better transferability of
predictive models, opening the way to the development of more
sophisticated solutions that leverage city indicators.

1 INTRODUCTION

Classifying a geographical territory into semantic categories is
one of the most common tasks in research areas such as urban
geography, urban planning and mobility data analytics [7]. Char-
acterizing human mobility is a key component of this process,
and it is well known that mobility often does not work the same
way across different regions. A movement pattern in a moun-
tainous countryside may have other implications than the same
pattern has in the suburbs of a large town. The movement trajec-
tories in a planned city with rectangular streets and strict zoning
laws might be completely different than the ones in a town that
has grown organically without any clear structure. Therefore,
any kind of property that was learned in a particular area, in
general cannot simply be assumed to hold in another one.

This paper aims at making a first step towards the characteri-
zation of a geographical area. That is achieved through a range
of quantitative measures that provide a multilayer description
of urban regions and are a means for displaying differences be-
tween cities, municipalities, or other geographical units. Such a
numerical description of urban areas can have a wide spectrum of
applications. Among them, the measures presented in this work
can be used as an input for geographical transfer learning, that
is the transformation of knowledge gained in one geographical
region in order to apply it to another region. This problem will
be considered as a case study for the extracted indicators.

We consider two main approaches: (i) computing features that
describe each area isolated from the others, that we call local city
indicators; and (ii) computing features that describe its relation
with the others, named global city indicators. The first group
covers four different families of measures: spatial concentration
indexes of human activities; network features of intra-city traffic
flows; mobility characteristics of the individual mobility, obtained

© 2021 Copyright for this paper by its author(s). Published in the Workshop Proceed-
ings of the EDBT/ICDT 2021 Joint Conference (March 23-26, 2021, Nicosia, Cyprus)
on CEUR-WS.org. Use permitted under Creative Commons License Attribution 4.0
International (CC BY 4.0)

Agnese Bonavita
Scuola Normale Superiore
Pisa, Italy
agnese.bonavita@sns.it

Riccardo Guidotti
University of Pisa
Pisa, Italy
riccardo.guidotti@di.unipi.it

from networks that represent the places and movement of single
users; last, characteristics of road networks and how traffic is
distributed in them. The group of global city indicators, instead,
looks at the mobility between cities as a graph, where each city
is represented by a node, and extracts network features for each
node. Both the complete network and the ego-network for each
city are considered.

After describing all the city indicators we introduce a mobility
prediction problem, and we use it to test how much predictive
models are transferable across different regions. In particular, we
study the relationship between transferability between two areas,
i.e. the performances of a model built on one area and used to
make predictions on the other one, and their similarity in terms
of city indicators. The results confirm our hypothesis that cities
with similar indicators are more likely to be transfer-compliant,
this providing a first guide to understand which predictive models
can be reused in other areas.

Finally, a key feature of this work is that all methods are
implemented in a way that makes it possible to automatically
calculate all characteristics for hundreds of different cities and
entire regions. The resulting software (a Python library) enables
the user to process an unlimited amount of data simply by passing
a database with trajectories and a list containing the positions of
the geographical areas of interest as an input.

The rest of this paper is organized as follows. Section 2 in-
troduces some related works; Section 3 presents the dataset and
geographical areas used as testbed in the paper; Sections 4 and
5 describe, respectively, the local and global city indicators; Sec-
tion 6 presents our case study on evaluating the relations between
geographical transferability of a simple predictive model between
any pair of areas and their similarity based on our indicators;
finally, Section 7 closes the paper with conclusive remarks.

2 RELATED WORK

Chracterizing urban spaces is a fundamental task of urban ge-
ography, which considers the spatial distribution of spaces and
patterns of movement, focusing both on structural properties
and how the different parts interact [7]. Historically, determining
such characteristics was usually a domain expert-driven process,
that required a huge amount of time, and also particular care to
ensure that results are comparable across different places. Ge-
ographical Information Science introduced several innovations
that helped also to automatize and extend the approach, includ-
ing statistical methods for geography [33] and computational
tools for managing large databases of information.

On another direction, city indicators have a important applica-
tion in defining the sustainability characteristics of urban areas.
Various attempts have been made to design indicators for moni-
toring sustainability at various levels, such as national [11] and
city level [32]. As described in the review paper [17], the litera-
ture covers a wide range of aspects, including mobility-related
ones (e.g. mobility space usage and functional diversity). How-
ever, very few attempts were made to systematically exploit big
data sources to estimate them. One example was the Air Quality
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Figure 1: The areas of study: 10x10km squares centered on
each municipality in Tuscany.

Now EU project [9], which used vehicular and public transport
data to infer some measures. Yet, that is limited to direct and sim-
ple ones, such as traffic, speeds and exposure to pollution. The
literature also considers mobility indicators and road network
properties as potential measures to adopt, which is aligned with
our approach [38].

Finally, exploiting big mobility data to understand the proper-
ties of geographical spaces is a very active area. It includes data
mining methods to find mobility patterns and regularities [15],
simulations to estimate various indicators, like the impact of
alternative transportation means as car pooling [20], the visual
exploration of patterns and contextual features [13], etc. How-
ever, to the best of our knowledge, no existing work tried to
collect a wide set of complex indicators in a systematic and re-
producible way, directly aimed to make cities comparable in a
computational way.

3 DATASET

The testbed considered in this paper is a dataset of GPS traces of
private vehicles provided within the Track &Know project! mov-
ing in the Tuscany region, Italy. The experiments were performed
on a sample of 18.9 million trajectories of 250,239 cars, which
were collected during a period of seven weeks. The geographical
unit adopted to model a “city” is the municipality.

All measures were calculated separately for each of the 276
municipalities of Tuscany. For the sake of simplicity and applica-
bility to a wider range of situations, the areas to investigate were
chosen to be a 10 X 10 km rectangle for each municipality, with
the sides approximately parallel to the meridians and parallels,
centered around the town or village center (see Figure 1).

It should be noted that, for the purpose of this work, only a
partial subset of trajectories is considered, namely those starting
and ending in Tuscany, and lasting less than 24 hours (indeed,
longer trips are exceptional and not very representative).

4 LOCAL CITY INDICATORS

Here we introduce the local city indicators designed individually
for each municipality. They are grouped in spatial concentration
measures, flows measure, individual mobility and street network.

Ihttps://trackandknowproject.eu/

4.1 Spatial Concentration

Spatial concentration is one of the most important aspects in the
description of urban regions and answer the question how the
density of people and activities vary across the area? This question
was traditionally focused on people’s residency and workplace,
since that was the only available data, mostly coming from census
or government records. More recent research is profiting from
the availability of more detailed data from mobile phones, vehicle
trackers and satellite imaging [2, 22, 39]. Spatial concentration
is used in a vast range of different fields [16, 19, 20, 23, 36]. In
this work, the concept of spatial concentration is focused on the
overall amount of mobility, undifferentiated by types of activity.
The question of interest is: are the activities concentrated in cluster-
like centers of high density or are they spread-out across the map?

In the following, we present three approaches to answer this
question: spatial entropy, Moran’s measure, and the average near-
est neighbor distance. The first two approaches can only be calcu-
lated after the geographical space has been partitioned into a set
of disjoint areas. In this work, we do that adopting an equally-
spaced grid, and divide the 100km? region representing each area
using different resolutions, including a grid of 10x10 (i.e. each
cell is a square of side 1 km), 20x20 and 50x50 cells.

4.1.1 Entropy. It can be used to measures how equally activi-
ties are distributed across the grid. Let X be a discrete random
variable modeling the positions of an individual ending up in n
different fields [5]. The entropy is defined as [35]:

E(X) = - ) P(xi) log P(x;)
i=1

where {x1,...,x,} are the possible values of X and P(x;) is the
probability of X being in state i. For maximum entropy (log(n))
there is an equal amount of activity in all fields; for minimum
entropy (0) all the activity is amassed in a single field. In order
to compare entropy scores of different-sized grids, the measure
must be normalized by dividing it by the expected entropy of a
uniform distribution, i.e., log(n).

4.1.2  Moran’s I. It overcomes the entropy weakness by con-
sidering how the fields are positioned in space: spatial autocorre-
lation [33] that represents the degree to which the fields’ values
are correlated to the value of neighboring fields. For spatial au-
tocorrelation, the nearness between all pairs of fields must be
defined with a so-called weight matrix w, where w;; is the near-
ness between nodes i and j. A simple form of weight matrix is
an adjacency matrix, with the value 1 if fields are adjacent, 0
otherwise. An important difference to the entropy is that spatial
autocorrelation has two directions. A high autocorrelation indi-
cates that values of the same magnitude are prone to be next to
each other, while a low autocorrelation means that similar values
are less likely to be near each other than under random posi-
tioning. Somewhere in between lies a value of autocorrelation in
which the population of the fields is how one would expect it to
be under a random distribution with no spatial autocorrelation.
The most famous autocorrelation measures is Moran’s I [26]:

N i 5wy (v = ) (x; = %)
W N

1(X) =

where N is the number of fields, x is the amount of activity or
population, x is the average field value, and W is the sum of all
the weights. The minimum and maximum values of Moran’s I
depend on the weight matrix. We highlight that the absence of



autocorrelation is given at Moran’s I equals to —1/(N — 1), that
tends to zero in grids with an high amounts of fields.

4.1.3  Nearest Neighbor Distance. The Average Nearest Neigh-
bor Distance (ANND) is not dependent on a grid and its param-
eters. For every point, the distance to its nearest neighbor is
calculated. The mean of those values is the ANND :

i min(d;)

N

where d; is a vector containing the distances of point i to all
the other points, and N is the amount of points. The lower the
ANND , the higher is the average spatial concentration in the
areas surrounding the points. We highlight that this definition
bears a similar weakness as the entropy. The expected ANND
under assumption of a uniform distribution of points across the
area is the Mean Random Nearest Neighbor Distance (MRNND)
MRNND = 0.54/A/N, where A is the surface of the area and N
the amount of points. By dividing the ANND by MRNND we
obtain the Nearest Neighbor Index (NNI) which is comparable
among samples with different sizes and areas. A NNI smaller
than 1 indicates a higher spatial concentration than in a random
case, whilst value above 1 shows that the points are spread out
across the map more than one expects in a random scenario.

ANND =

4.2 Flows in a Grid Network

In order to capture the information about flows in urban regions,
the data can be transformed into a directed weighted graph that
represents the flow of the people’s trajectories:

e a set of nodes V representing places that are origins and
destinations of trajectories,

e a set of edges E representing the directed connections
between the nodes,

e a weight function w : E — R that maps each edge to a
weight, which indicates the amount of trajectories that
occur along the edge.

The map is split into fields of a grid and all origins and destina-
tions of the trajectories in the area are assigned to the field in
which they lie. The network is created by assigning every node to
a cell, and to each edge the weight the amount of flows occurring
along the edge. The weight function w is equivalent to an origin
destination matrix. The network allows us to gain knowledge
about the structure of a region by looking at the properties of
the resulting network described in the following.

4.2.1 Node Degrees. A basic property of the network is the
distribution of its degrees. Degree is hereby defined as the total
traffic (sum of in- and out-flow) of a grid field. This measure is
sometimes also referred to as node-flux [34].

4.2.2  Louvain Modularity. An interesting quality of networks
is the degree to which nodes can be partitioned into groups,
such that the connectivity is high within those groups, and low
in between. In the context of urban regions, the corresponding
question is: can the city be split into areas that are relatively
autonomous and have only low interaction between them? In
network science, modularity measures this property for a given
partitioning: a graph partitioning separates the graph’s nodes into
non-overlapping communities. Modularity shows the difference
between the relative amount of inner-community links and the
expected relative amount under random linking in a non-directed
weighted graph [4]. The modularity goes from —1 to +1, where 0
marks the value expected in a network where all possible edges

have the same expected weight. We highlight that the direction
of traffic flow is not important here. Thus, the grid networks in
this work are transformed into non-directed networks before the
modularity is calculated. Modularity does not describe a network
on its own, but a network along with its partition. In order to
quantify how well an urban region is separable into different sub-
areas we adopt the Louvain Algorithm [6] that does not guarantee
an optimal solution but it performs well empirically.

4.2.3 Interaction Models. The flow network allows us to test
how well the empirical data aligns with two established mod-
els that describe human interaction in space. The Gravitation
Model [1] idea is that the traffic flow from place i to place j
depends on the origin population m; and the destination popula-
tion n;. Highly populated places, attract flow towards them. The
classic model predicts the traffic flow from i to j which have a dis-

B

tance of r as Gjj = Am?‘nj /rY, where A is a normalization factor,
and @, f, y are the model’s parameters. They can be optimized by
multiple regression when fitting data to the model. In this work
we adopt a simpler model [25] with & = = 1. The Radiation
Model [37] updates G;; by introducing s;; that is the population
within a circle around place i, with a radius of its distance to
place j, minus m; and n;. The intuition is that outgoing trips are
being attracted by nearby populations [25]. It predicts the flow

i min;
—% (mi+sij)(m,-+nj+sij)
from i, and M = }}; m; is the total sample population.

Tjj as : where T; is the sum of outflows

4.3 Individual Mobility

Here we consider the mobility at level of individual users. From
this perspective, urban regions can be described by aggregated
values of their inhabitants’ mobility, therefore a set of statistics
are calculated for each individual from their trajectories:

e Average distance and duration per trip
e Average driving distance and duration per day
e Average amount of trips per day

Also, following the methods described in [21, 31], individu-
als’ mobility data can be transformed into Individual Mobility
Networks (IMN), which is a representation of a person’s travel
behavior in the form of a weighted directed network, where the
set of nodes V represents places that are visited once or repeat-
edly by the individual, and the edges E represent trajectories
from one of those places to another. The edge’s weights model
the amount of times was followed a trajectory from one node
to another. From an IMN, we can describe the individuals travel
behavior with the following indicators:

o Size of the network: number of nodes and edges.
Temporal-uncorrelated entropy: measure how equally the
different places of the IMN are visited.

Radius of gyration [28]: approximates the average distance
of an individual from its center of mass [18].

Regularity of trajectories: percentage of trips that are driven
more often than a certain threshold per time [19, 21].
Modularity: the Louvain Algorithm [6] applied to the IMN.

4.4 Roads and Traffic

4.4.1 Static Road Network. This section focuses on the road
network modeled as a directed graph (G = (E, V), where V is
a set of nodes representing roads intersections, E is the set of
directed edges which model the the road segments,and [ : E — R



maps each edge to its length in meters. Some basic statistics of
the road network can be calculated:

(1) amount of edges and nodes/node density

(2) amount of intersections/intersection density

(3) average node degree/average intersection degree
(4) total length of edges/mean edge length

In addition, since nodes in any network can be evaluated w.r.t.
their centrality, we evaluate the road network’s closeness centrality
in terms of the length of the shortest path to any given node. The
average of those path lengths is a node’s average farness from
other nodes. The reciprocal of this value is a node’s closeness
centrality C(x) = W where x and y are nodes and the d

returns the length of the shortest path between its arguments.
As distance function we consider the length as the summed road
lengths of the edges of the shortest path [30].

4.4.2  Traffic in the Road Network. To investigate how traffic is
distributed in a road network one must map match the sequences
of GPS locations that represent the trajectories to nodes and
edges in the road network. There is a variety of algorithms that
handle this problem, such as hidden Markov models [27]. In the
case study of this work, a simpler algorithm was implemented
due to the high reliability of the data. It independently maps
every point of a trajectory to a node in the road network. The
nodes are then connected and build a path that describes the
individual’s trajectory.

Given a map matching, it is possible to create a function that
reveals the fraction of total traffic that flows through a given
percentage of the most dense roads. For this purpose, all edges are
sorted by their traffic flow in a non-ascending order. Cumulative
traffic, measured as #cars X meters, is calculated for the end
of every edge by multiplying the edge length with the amount
of traffic flow and adding the result to the previous amount of
cumulative traffic. The intermediary values within edges can
be calculated by linear interpolation. For any given percentage
of roads, the percentage of traffic in those roads is calculated
by dividing the cumulative traffic until that point by the total
amount of traffic.

5 GLOBAL CITY INDICATORS

In this section we introduce the global city indicators designed
to compare two cities. To compare and cluster cities in groups,
we need some quantitative features. Therefore, we have to define
some metrics describing a city with respect to traffic. A possible
approach is to exploit again a network structure where each city
(in our case study, 276 municipalities in Tuscany) is a node, and
edges are drawn based on the trajectories between them. Starting
from the trajectories we infer descriptive attributes from two
perspectives: (i) graph measures from the complete network of
cities; (ii) graph measures from the ego-network of each city.

5.1 Complete Network of Cities

We can derive a set of global indicators through a network of
cities as described in the following. Given the trajectories on
the territory, we can derive an Origin-Destination Matrix (OD),
which measures the number of trips that starts from city A and
ends in city B for each pair (A, B). Since connections established
through very few trajectories might be not significant, a threshold
is needed to establish if an edge should be drawn. In our case
study, after empirical evaluation, we fixed this threshold to 110
trajectories by analyzing the results yielded by different values
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Figure 2: Disconnected nodes vs. flow threshold.

through Figure 2. The plot shows the number of disconnected
nodes corresponding to a selected threshold. The fraction of
“isolated” cities grows as the threshold increases, but there is
a little plateau between 110 and 130, which led to our choice.
With the selected threshold, the final graph consists of 276 nodes
(corresponding to municipalities), 22 of which are disconnected
from the giant component.

The properties related to each node of the network constitute
the first set of attributes to be considered for clustering:

o Self-loops: # trajectories starting and ending in that node.
o In/Out degree: fraction of nodes its incoming/outgoing
edges are connected to.

Closeness: the closeness centrality of a node u is the recip-
rocal of the average shortest path distance (see Section 4.4).
Betweenness: the betweenness of a node v is the sum of
the fraction of all-pairs shortest paths that pass through v.
Clustering coefficient: the local clustering coefficient C;
for a vertex v; is given by the proportion of links between
the vertices within its neighborhood divided by the num-
ber of links that could possibly exist between them.
Radius of Gyration: the radius of gyration of a city c is

defined as ry(c) = \/ﬁ ZIN wi(ri — rem)?, where N is the
total number of travels from ¢, w; is the number of travels
from c to i, r; is the pair of coordinates of location i and
rem 18 the center of mass (i.e., the average position) of the
visited cities starting from c.
e Random Entropy: the random entropy captures the de-
gree of predictability of the destination starting from a
city i if each location is visited with equal probability
Sran = log, M, where M is the number of distinct cities
visited starting from city i;
Uncorrelated Entropy: the temporal-uncorrelated entropy
is the historical probability that a location j was visited
starting from a city i, characterizing the heterogeneity its
of visitation patterns Sypc = — Z?I pjlogp; where pj is
i’s probability of visiting location j. We can also normalize
the uncorrelated entropy by dividing it by log, N.

5.2 Ego-Networks

In Social Network Analysis, it is usual to refer to Ego Networks
as social networks made of an individual (called ego) along with
all the social links he has with other users (called alters)[3, 10].
Several fundamental properties of social relationships can be char-
acterized by studying them. Adapting the terms to the present



context, we can obtain an ego network for each city, where the
ego is the city itself and the alters are its neighbors. The additional
set of attributes obtained consists of:

o Number of nodes of the ego network.

o Number of edges of the ego network.

e Average clustering coefficient: the clustering coefficient
is the average C = % > veG Co, Where n is the nbr. of nodes
in G and ¢, is the clustering coefficient of each node;.

o Diameter: is the longest shortest path of the ego network.

e Assortativity: is measured as the Pearson correlation co-
efficient of degree between pairs of linked nodes. It mea-
sures the preference for a network’s nodes to attach to
others that are similar in some way.

6 CASE STUDY: TRANSFER-COMPLIANT
GEOGRAPHICAL LOCATIONS

The huge amount of urban data generated by smartphones, vehi-
cles, and infrastructures (e.g., traffic cameras, air quality moni-
toring stations) opens up new opportunities to learn about city
dynamics from a variety of perspectives and facilitates various
smart city applications for traffic monitoring, public safety, urban
planning, etc. — all contributing to what is called urban computing.

However, there are some questions that remains still almost
unexplored: what if the administration of a city wanted to predict
the impact of an event on the urban mobility without having
historical data on it? Is it possible to infer some useful insights
exploiting the experience gained by other municipalities? Can
knowledge be transferred from any city or are there some con-
straints? How can you compare two cities, for example in terms of
urban mobility? Lately there have been different attempts to over-
come the data scarcity issue in “new” urban contexts. All these
studies have in common the application of Transfer Learning, a
very broad family of approaches which focuses on developing
methods to transfer knowledge learned in one or more “source
tasks”, and use it to improve learning in a related “target task”.
This section studies these questions in the context of Machine
Learning (ML) and big data analytics for mobility data. In partic-
ular, our goal it to verify the feasibility of a model transfer, i.e., a
ML model is trained in the source domain and then transferred
to the target domain, in the prediction of urban traffic, exploiting
the city indicators developed in the previous sections.

The basic idea is that cities that are similar can be represented
by the same model more easily than very different cities. For
instance, a highly populated city with heavy traffic and users
that frequently make long trips is expected to have mobility
dynamics very different from small, country-side cities with low
traffic. The approach proposed in this section is developed in
three steps: first, using a similarity measure between cities based
on the indicators presented in Sections 4 and 5, cities are clustered
into similarity groups; next, for each city a traffic prediction task
is defined, which is approached through a standard machine
learning solution (XGBoost regression [8]); finally, the prediction
model of a city is applied to make predictions in each of the
others, aiming to test whether cities in the same cluster show a
better transferability of their models.

6.1 City Clustering

In this step, the city indicators built in the previous sections are
first preprocessed and filtered, and then used to cluster cities.
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Figure 4: Dendogram and selected clusters.

Preprocessing and Feature Selection. Since the range of differ-
ent indicators varies widely, we applied a form of normalization
to make them homogeneous. We adopted the min-max scaling,
where feature are re-scaled in the interval [0, 1]. Then, we per-
formed a study of correlation on each set of features (local and
global) to eliminate unnecessary ones. To efficiently filter them,
we adopted a network-based correlations finder, where the fea-
tures are interpreted as nodes of a graph, and a link is drawn
between two features if they are highly correlated. As evaluation
metrics, the standard Pearson’s Correlation Coefficient is used [29].

Considering each couple of features (i, j), an edge is drawn if
pi,j > 0.65. The result obtained on the global features is shown
as example in Figure 3. The removal of features is an iterative
process that removes the node (feature) with the highest degree
(thus is correlated to the highest number of non-filtered features)
and repeats until the average degree of the network is 0. The
remaining nodes are the features which are preserved. This pre-
processing step is applied to global and local indicators separately,
and then on the set of survived features of both categories. Apply-
ing the procedure to our case study, the initial set of indicators,
composed of a total of 178 measures, was reduced to 21 features.

Hierarchical Clustering. The city clustering step has been re-
alized through a Hierarchical agglomerative clustering schema,
adopting Ward’s linkage criterion, which at each step of aggre-
gation aims to minimize the total within-cluster variance. In our
case study, a small fraction of cities resulted to be disconnected



cluster id | # of cities | % of cities
0 22 8.0
1 53 19.2
2 47 17.0
3 110 39.9
4 44 15.9

Table 1: Cluster Population

Figure 5: Map of clustered municipalities. Colors white,
yellow, orange, red and dark red correspond resp. to clus-
ters 0, 1,2, 3 and 4.

from all the others in terms of flows, thus making them outliers
w.r.t. the global features (e.g., the assortativity measure is null).
Therefore, we decided to put them in a separate cluster, and apply
the hierarchical clustering on the remaining ones. The results
of applying the clustering to our dataset is shown in Figure 4 as
a dendogram of the hierarchical clusters found (notice that the
dendogram is truncated, in order to show only the last 12 aggre-
gations. Based on the gaps between splits/merge points in the
dendogram, the aggregation is stopped at distance 4.0, yielding
four clusters. To these, we add another cluster (id 0) containing
the isolated cities. A summary of clusters’ size is in Table 1.

An analysis of the properties of each cluster reveals that they
may be distinguished based on the kind of traffic flows they
involve. Also, clusters are depicted on the map in Figure 5. Cluster
0 was named Disconnected, since it is composed by the nodes not
connected in the inter-city flows network. These municipalities
also have a low entropy and low Moran’s I score, meaning a
not significant pattern of traffic, and most of them are located at
the boundary of Tuscany and in the country-side areas, where
there is a lower concentration of roads. Cluster 1, named Self
Sufficient, is characterized by high entropy, high modularity and
high fraction of regular trips, yet a low radius of gyration and
low diameter of the associated ego networks. Also, they are
mostly far from the highways that cross the region. Cluster 2,
called Visited Sites, have a very low entropy (almost as low as
those in the disconnected group), low modularity and the lowest
fraction of regular trips, and yet a relatively high betweenness.
Cluster 3 was named Drive Through, as these cities are crossed
by a great flow of traffic, which is however basically coming

Figure 6: Selected cells for some municipalities.

from outside or going outside. Indeed, they have high values
for entropy and low values for Moran’s I, the highest number of
nodes regularly visited from users and a large ego network radius.
This cluster is the most populated, comprising almost 40% of the
dataset. Finally, cluster 4 was called Hubs, since it comprises all
the biggest cities, encompassing most of the busiest roads in
Tuscany. Municipalities are pretty similar to those belonging to
cluster 3, excepted that they have a large Moran’s I, which reflects
the presence of specific patterns within the city.

6.2 Traffic Forecasting in City Grids

Urban traffic prediction is a discipline that aims to exploit ML
models to capture hidden traffic characteristics from substantial
historical mobility data, making then use of trained models to
predict traffic conditions in the future [24]. However, there is
a main problem to face: is it possible to extract specific traffic
patterns that reflect the peculiarities of a city structure?

A Grid to Split the City. Following one of the most used ap-
proach in traffic prediction problems [24], we divide every geo-
graphical area corresponding to municipalities in adjacent squared
cells having side of 0.5 km, and our predictive objective is to fore-
cast the traffic flow that crosses a given cell. In our case study we
select a subset of representative cells and, in order to avoid the
possible issues emerging when a random or top-frequency subset
is selected, we adopt a mixed approach, randomly selecting 5 cells
among those having a traffic volume above the 90 percentile
over the municipality, and other 5 cells among those having a

traffic volume between the 80" and the 90" percentiles.

Time Series Preprocessing. Based on the trajectories that cross
the representative cells identified above, we compute a time series
for each cell with a 1-hour sampling rate, by counting the number
of vehicles that crossed the cell within each hour of each day.
A first operation performed was to compute a moving-average
smoothing of the time series, since a preliminary test with the
Augmented Dickey-Fuller test (ADF) [14] reveals that they are not
stationary, i.e. it could not be rejected the null hypothesis that a
unit root is present in the time series sample (ADF=-2.38 against
a critical 90% threshold at -2.57). On the contrary, after smooth-
ing, the null hypothesis is rejected with a very large confidence
(ADF=-5.57 against a 99% threshold at -3.43, p-value = 2 - 107°).

Predictive Features. Similarly to what done by several time
series forecasting solutions [12], we base our predictions for the
next value of the time series on more recent observations of the
same time series. In particular, we adopt as basic features the
24 most recent lagged values, i.e., the observations of the last
24 hours. We remark that in this simplified approach we do not



Figure 7: XGBoost traffic forecasting on Florence (green)
against real values (blue). The two curves differ in very
few points.

include features about other time series in the same municipal-
ity, as done in more complex solutions that exploit the spatial
autocorrelation of this kind of phenomena.

Another important property that can be encoded is related to
the weekday; at this regard, we introduce the Boolean feature
is_weekend that is true if the weekday is Saturday or Sunday and
false otherwise, since we expect to see different behaviors in the
weekends. Finally, we can encode information about a weekday
by inserting the average traffic volume at that day.

Having a total of 26 new features, we can now try to forecast
the smoothed time series.

Predictive Model. As regressive model, we selected the popular
and effective algorithm XGBoost [8]. XGBoost has proved to be
highly reliable in regression tasks, providing in general a good
accuracy of predictions and remarkable speed of execution, yield-
ing good results in term of robustness with its default settings,
which simplifies our task. XGBoost adopts a Boosting procedure,
i.e., is a ML ensemble meta-algorithm for primarily reducing bias
and variance in supervised learning, where a set of weak learners
is turned into a single strong learner.

In Figure 7 we can see an example of XGBoost predictions ex-
ploiting the features previously introduced over the municipality
of Florence, which shows results very close to the real values. The
model performance is evaluated through the standard Normal-

ZT (§r=ys)*
ized Root Mean Squared Error, defined as RMSE = "ZIT

having predicted values §; for times t of a regression’s dependent
variable y;, with variables observed over T times. RMSE is always
non-negative, the lower is the value the better are the predictions.
Since RMSE is scale-dependent, we adopt the Normalized RMSE
(NRMSE), computed as: NRMSE = RngE, where o is the standard
deviation of the observed values.

Empirical evaluation shows that the most important feature is
the value of traffic 1 hour before, as expected, while the previous
hours have all a comparable influence. Instead, it is apparently
almost irrelevant to know if a day is a week-end day or not.

6.3 Testing Model Transferability

In this section we study the transferability of the predictive mod-
els built above, and its relation with the similarity groups found
through clustering. The hypothesis we want to test is that the
similarity based on our city indicators is indeed useful to identify
groups of areas such that any model built from an area in the
cluster is usable in other areas within the same cluster.

The first step is to split the traffic time series of each city in
training and test sets. In this way it is possible to obtain a matrix

0 )

log(NRMSE)

Figure 8: Transfer scores matrix with cluster separation
(red lines). Each row/column represents a municipality.
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Figure 9: NMRSE mean values for all train-test pairs.

of prediction scores where on the rows there are the cities in
which the model is trained and in the columns those where the
model is tested. The algorithm implemented iteratively trains
a model on each city, tests it against all the cities and fills the
score matrix with the corresponding NRMSE score obtained. To
enable a more meaningful comparison, NRMSE scores are log-
transformed to reduce the skewness.

The final result is visually shown Figure 8 which shows the
transfer scores by sorting the cities based on their cluster be-
longing. Keeping in mind that the squares around the diagonal
represent training and testing on cities of the same cluster, while
the other rectangles depict training and testing on different clus-
ters, we can observe:

(1) the transfer is far better between cities of the same cluster
(the NRMSE values obtained making predictions on a mu-
nicipality using a model built on a different one is lower
if the two belong to the same cluster);

(2) it is worth noting that also cluster 0, that we built up
artificially behave exactly as the others;

(3) the matrix is not symmetric: training on city A and testing
on B is different from training on B and testing on A.



The trend noticed in Figure 8 can be better identified by comput-
ing the average error among the clusters, i.e., considering all the
possible source areas in each cluster (where the models are built)
and all the possible target areas in each other cluster (where the
model is tested), including the case source = target. This is shown
in Figure 9, where each bar corresponds to one of the rectangles
outlined in red in Figure 8. We observe that the lowest mean
values are always those corresponding to central squares, where
the source and the target cities are from the same cluster. Overall,
these results confirm our hypothesis, namely that the similarity
of cities based on our city indicators is a good proxy of model
transferability, at least for the simple predictive task we adopted.

7 CONCLUSIONS

In this work we have defined a large array of local and global city
indicators, we have calculated them on a real case study, and we
have proved that they can be successfully exploited in a task of
mobility transfer learning. In particular, we have clustered mu-
nicipalities based on the mobility behavior described by the city
indicators. Then, we have assessed the transferability of a ma-
chine learning model for traffic forecasting. Experimental results
show that models trained on a municipality perform markedly
better when tested on other municipalities belonging to the same
cluster, and thus more similar (according to the city indicators)
to the first one.

As future work, it would be interesting to extend the set of
features used to describe a city, for example including census
and cartographic data or some indicators related to economy,
industry level and information about the most florid commercial
activities in each area. All these extra properties would also
help to interpret the results of clustering, to identify patterns of
similarity and eventually to supervise with some kind of feedback
the allocation of a city to a determinate group. More models
should be analyzed and compared to evaluate which is the most
effective. Finally, the approach presented here works on a city-to-
city transfer, namely the model of a single city is used to make
prediction on the destination city. That assumes that there exists
at least one origin city that is similar enough to perform the
transfer. Alternatively, all the data and known city models can
be exploited to achieve better prediction on the target city.

ACKNOWLEDGMENTS

This work is partially supported by the European Community
H2020 programme under the funding scheme Track &Know (Big
Data for Mobility Tracking Knowledge Extraction in Urban Ar-
eas), G.A. 780754, https://trackandknowproject.eu/ and SoBig-
Data++,G.A. 871042, http://www.sobigdata.eu. We thank Christoph
Pfaltz and Matteo Centonze for their contribution to preliminary
materials of this work.

REFERENCES

[1] W Alonso. 1976. A Theory of Movements: Introduction. Working Paper 266

(1976).

Gennady Andrienko et al. 2020. (So) Big Data and the transformation of the

city. International Journal of Data Science and Analytics (2020).

[3] Valerio Arnaboldi, Marco Conti, Andrea Passarella, and Robin IM Dunbar.
2017. Online social networks and information diffusion: The role of ego
networks. Online Social Networks and Media 1 (2017), 44-55.

[4] Albert-Laszl6 Barabasi and Marton Pésfai. 2016. Network science. Cambridge
University Press, Cambridge.

[5] Michael Batty. [n.d.]. Spatial Entropy. Geographical Analysis 6, 1 ([n.d.]), 1-31.
https://doi.org/10.1111/j.1538-4632.1974.tb01014.x

[6] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne
Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of
Statistical Mechanics: Theory and Experiment 2008, 10 (2008), P10008.

[2

=

[7] Harold Carter. 1995. The Study of Urban Geography. E. Arnold publications.

[8] Tianqi Chen et al. 2016. XGBoost: A Scalable Tree Boosting System.

[9] CITEAIR consortium. 2007. Air Quality in Europe web site. http://www.
airqualitynow.eu/ [Online; accessed 21-December-2020].

[10] Michele Coscia, Giulio Rossetti, et al. 2012. Demon: a local-first discovery
method for overlapping communities. In ACM SIGKDD. 615-623.

[11] H.G De Sherbinin, A.; Bittar. London, UK, 2003. The Role of Sustainability
Indicators as a Tool for Assessing Territorial. Environmental Competitiveness;
International Forum for Rural Development (London, UK, 2003).

[12] George E. P. Box et al. 2015. Time Series Analysis: Forecasting and Control.
John Wiley and Sons.

[13] LiuF. et al. 2020. Citywide Traffic Analysis Based on the Combination of
Visual and Analytic Approaches. J geovis spat anal 4, 15 (2020).

[14] W. A. Fuller. 1976. Introduction to Statistical Time Series. John Wiley and Sons.

[15] Fosca Giannotti, Mirco Nanni, Dino Pedreschi, et al. 2011. Unveiling the
complexity of human mobility by querying and mining massive trajectory
data. The VLDB Journal 20, 5 (Oct. 2011), 695-719.

[16] Fosca Giannotti, Mirco Nanni, Fabio Pinelli, and Dino Pedreschi. 2007. Tra-
jectory pattern mining. In Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining. 330~339.

[17] D. Gillis, I. Semanjski, and D. Lauwers. 2015. How to Monitor Sustainable Mo-
bility in Cities? Literature Review in the Frame of Creating a Set of Sustainable
Mobility Indicators. Sustainability 8 (2015), 29.

[18] Marta C. Gonzalez, Cesar A. Hidalgo, et al. 2008. Understanding individual
human mobility patterns. Nature 453, 7196 (June 2008), 779-782.

[19] Riccardo Guidotti and Mirco Nanni. 2020. Crash Prediction and Risk As-
sessment with Individual Mobility Networks. In 2020 21st IEEE International
Conference on Mobile Data Management (MDM). IEEE, 89-98.

[20] Riccardo Guidotti, Mirco Nanni, Salvatore Rinzivillo, Dino Pedreschi, and
Fosca Giannotti. 2017. Never drive alone: Boosting carpooling with network
analysis. Information Systems 64 (2017), 237-257.

[21] Riccardo Guidotti, Roberto Trasarti, Mirco Nanni, Fosca Giannotti, and Dino
Pedreschi. 2017. There’s a path for everyone: A data-driven personal model
reproducing mobility agendas. In 2017 IEEE International Conference on Data
Science and Advanced Analytics (DSAA). IEEE, 303-312.

[22] M.K. Jat, P. K. Garg, and D. Khare. 2008. Modelling of urban growth using
spatial analysis techniques: a case study of Ajmer city (India). International
Journal of Remote Sensing 29, 2 (2008), 543-567. https://doi.org/10.1080/
01431160701280983 arXiv:https://doi.org/10.1080/01431160701280983

[23] Gabriel Lang, Eric Marcon, and Florence Puech. 2016. Distance-based Measures
of Spatial Concentration: Introducing a Relative Density Function. (Sept. 2016).

[24] Z.Liu, Z.Li, K. Wu, and M. Li. 2018. Urban Traffic Prediction from Mobility
Data Using Deep Learning. IEEE Network 32, 4 (2018), 40-46. https://doi.org/
10.1109/MNET.2018.1700411

[25] A Paolo Masucci, Joan Serras, Anders Johansson, and Michael Batty. 2013.
Gravity versus radiation models: On the importance of scale and heterogeneity
in commuting flows. Physical Review E 88, 2 (2013), 022812.

[26] P. A.P. Moran. 1950. Notes on Continuous Stochastic Phenomena. Biometrika
37, 1/2 (1950), 17-23.

[27] Paul Newson and John Krumm. 2009. Hidden markov map matching through
noise and sparseness. In Proceedings of the 17th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems. ACM, 336-343.

[28] Luca Pappalardo, Salvatore Rinzivillo, Zehui Qu, Dino Pedreschi, and Fosca
Giannotti. 2013. Understanding the patterns of car travel. The European
Physical Journal Special Topics 215, 1 (01 Jan 2013), 61-73.

[29] Karl Pearson. 1895. Notes on regression and inheritance in the case of two
parents. Proceedings of the Royal Society of London 58 (1895), 240-242.

[30] S. Porta, P. Crucitti, and V. Latora. 2006. Centrality measures in spatial net-
works of urban streets. Physical Review E 73, 3, part 2 (24 3 2006), 036125-1.

[31] Salvatore Rinzivillo, Lorenzo Gabrielli, Mirco Nanni, Luca Pappalardo, Dino
Pedreschi, and Fosca Giannotti. 2014. The purpose of motion: Learning activi-
ties from individual mobility networks. In 2014 International Conference on
Data Science and Advanced Analytics (DSAA). IEEE, 312-318.

[32] Antonio Nélson Rodrigues da Silva et al. 2015. A comparative evaluation of
mobility conditions in selected cities of the five Brazilian regions. Transport
Policy 37 (2015), 147 - 156.

[33] P.A. Rogerson. 2010. Statistical Methods for Geography: A Student’s Guide.
SAGE Publications. https://books.google.ch/books?id=Zz69Ab8i0QsC

[34] Meead Saberi, Hani S. Mahmassani, Dirk Brockmann, and Amir Hosseini.
2017. A complex network perspective for characterizing urban travel demand
patterns: graph theoretical analysis of large-scale origin-destination demand
networks. Transportation 44, 6 (November 2017), 1383-1402.

[35] Claude Elwood Shannon. 1948. A Mathematical Theory of Communication.
The Bell System Technical Journal 27, 3 (7 1948), 379-423.

[36] Sulochana Shekhar. 2004. Urban sprawl assessment Entropy approach. GIS
Development 2004, Vol 8 issue 5, Page ., 6 Pages (05 2004), 43 — 48.

[37] Filippo Simini, Marta C. Gonzalez, Amos Maritan, et al. 2012. A universal
model for mobility and migration patterns. Nature 484, 7392 (2012), 96-100.

[38] Pavlos Tafidis et al. 2017. Sustainable urban mobility indicators: policy versus
practice in the case of Greek cities. Transportation Research Procedia 24 (2017),
304 - 312. 3rd Conference on Sustainable Urban Mobility.

[39] Roberto Trasarti, Riccardo Guidotti, Anna Monreale, and Fosca Giannotti.
2017. Myway: Location prediction via mobility profiling. Information Systems
64 (2017), 350-367.


https://trackandknowproject.eu/
http://www.sobigdata.eu
https://doi.org/10.1111/j.1538-4632.1974.tb01014.x
http://www.airqualitynow.eu/
http://www.airqualitynow.eu/
https://doi.org/10.1080/01431160701280983
https://doi.org/10.1080/01431160701280983
http://arxiv.org/abs/https://doi.org/10.1080/01431160701280983
https://doi.org/10.1109/MNET.2018.1700411
https://doi.org/10.1109/MNET.2018.1700411
https://books.google.ch/books?id=Zz69Ab8i0QsC

	Abstract
	1 Introduction
	2 Related Work
	3 Dataset
	4 Local City Indicators
	4.1 Spatial Concentration
	4.2 Flows in a Grid Network
	4.3 Individual Mobility
	4.4 Roads and Traffic

	5 Global City Indicators
	5.1 Complete Network of Cities
	5.2 Ego-Networks

	6 Case study: transfer-compliant geographical locations
	6.1 City Clustering
	6.2 Traffic Forecasting in City Grids
	6.3 Testing Model Transferability

	7 Conclusions
	Acknowledgments
	References

