
Graph Cities: Their Buildings, Waves, and Fragments
James Abello

1
Daniel Nakhimovich Chengguizi Han Mridul Aanjaneya

Department of Computer Science, Rutgers University, USA

1
DIMACS, Rutgers University, USA

Figure 1: When a direct graph layout is unavailable or impractical due to memory or screen size constraints, our method
can render humanly interpreted visualizations of massive graphs on the order of 10 seconds (after a few minutes of pre-
processing) by leveraging the Graph Waves [3] decomposition. (Left) A Graph City for the Friendster social network with
1.8 billion edges. (Right) The internal structure of a building from the city with peel value 13 showing finer scale connec-
tivity. By leveraging hierarchical decompositions, our framework allows for interactive visualization of massive graphs.

ABSTRACT
“Graph Cities” are 3D representations of maximal edge graph

partitions. Each connected equivalence class corresponds to a

“Building” that is formed by stacking graph “Edge Fragments”.

The number of such graph edge fragments determines the height

of the building. The overall number of buildings is the number

of equivalence classes in the edge partition. A poly-log buck-

etization of the size distribution of the equivalence classes is

used to generate a 2D position for each bucket. For the buckets

containing more than one equivalence class, we also generate

a visual “Bush” representation. The Delaunay triangulation of

these building locations determines the “street network” of the

Graph City. The weight of a connection between two buildings

on this street network is proportional to the intersection of the

subgraph vertex sets represented by the two buildings. To handle

equivalence classes (i.e., buildings) consisting of a large num-

ber of fragments, we use the notion of “Graph Waves” from

[3]. Graph Waves are intervals of graph edge fragments with a

“well-defined” beginning and end fragment. For computational

purposes, the beginning and end fragments should satisfy a com-

putationally “easy to verify” property. We illustrate Graph Cities

obtained with the maximal edge partitions defined by the iter-

ative edge core decomposition introduced in [4]. The graphs

used include the Friendster social network (1.8 billion edges),

a co-occurrence keywords network derived from the internet

movie database (115 million edges), and a patents citation net-

work (16.5 million edges). For graphs with up to 2 billion edges,

© 2021 Copyright for this paper by its author(s). Published in theWorkshop Proceed-

ings of the EDBT/ICDT 2021 Joint Conference (March 23–26, 2021, Nicosia, Cyprus)

on CEUR-WS.org. Use permitted under Creative Commons License Attribution 4.0

International (CC BY 4.0)

all the elements of their corresponding Graph Cities are built in

a few minutes (excluding I/O time) and storage proportional to

the number of edges and vertices of a graph. Our ultimate goal is

to obtain humanly-interpretable hierarchical descriptions of any

graph that are accessible via a Unified Web Interface for Graph

Analytics, without being constrained by the graph size.

1 INTRODUCTION
Techniques for analyzing massive data sets are becoming central

to several communities, with the need for interactive and scalable

visualizations being one of the most pressing issues [27]. Since

a large variety of massive data sets can be abstracted as hav-

ing an underlying graph topology, our interest is in computing

graph decompositions that are useful for making sense ofmassive
graphs, for which a direct layout is unavailable due to memory

constraints or impractical due to screen size constraints. We fo-

cus on the identification of “global data patterns” that emerge

due to the co-occurrence of pairs of well-defined data entities.

Motivated by [12] who proved that the graph degree sequence

solely determines the expected Hopfield network pattern stabil-

ity, we wanted to find an “efficient” visual representation of any

graph that is driven by the dismantling of its degree distribution.

We introduce Graph Cities as a visual representation of such

dismantling. It has the potential of bringing together streaming

computations and visualization to offer “large scale” structural

graph information without losing the ability to interactively ex-

tract finer scale connectivity. All this is possible by streaming

Graph Waves [3], which are in turn streams of graph fragments.

The obtained visual representations can be rendered in a few

minutes and offer humanly interpretable large scale features of

graphs with billions of edges at different levels of granularity.

Figure 2: Overview of our proposed framework. (Left) The individual buildings in the graph city, which comprise of cylin-
drical edge fragments. (Middle) The entire graph city. (Right) Bushes representing buckets with more than one building.

The coarsest views are offered by Graph City buildings with

floors and frustums representingWaves and their interconnecting

Edge Fragments. Each building internal structure is represented

by a Directed Acyclic Graph (DAG) whose macro-vertices can be

expanded into their internal fragments, that can be navigated by

usual node link diagrams at different levels of detail depending

on their size. In summary, our approach follows a hierarchical

edge decomposition with five levels: Edge Graph Decomposition,

Buildings, Waves, Edge Fragments, with the bottom level consist-

ing of “structured” node-link subgraphs of reasonable size that
make them amenable to human descriptions. To our knowledge,

this is the first time that such a large scale representation has

been introduced for visualizing graph data sets, that is humanly

interpretable at “natural” topological levels of granularity.

1.1 Summary of Our Overall Approach
An overview of our proposed framework is illustrated in Figure 2.

Our work builds upon the Graph Wave decomposition recently

introduced in [3], which is a refinement of the iterative degree

edge partition [4]. Each connected equivalence class is visually

represented as a “building”. The size distribution of the equiva-

lence classes in the given edge partition is bucketed via a poly-log

function of the total number of edges in the entire data set. Buck-

ets containing more than one building are visually represented by

“bushes” that are generated via special L-systems (see green areas

in Figure 2(right)). A spiral embedding of this poly-log expression

provides a layout for all the equivalence classes in a graph city.

Each graph city has a “street network” that is obtained by com-

puting the intersection graph of the collection of vertex sets of

the buildings. The 2D positions of the centers of the bottom floors

of the buildings are used to indicate the location of the building

vertex sets. The weight of the geometric edge representing the

distance between two buildings is obtained as a function of the

size of the intersection of the corresponding buildings vertex sets

(i.e., a Jaccard-type coefficient).

All the elements of a graph city including its buildings, bushes,

and street network are built in a few minutes (excluding I/O time)

and storage proportional to the number of edges and vertices of

the graph. We exemplify our results on a variety of large graph

data sets ranging in size from 1 million to over 2 billion edges.

They include the Friendster social network (1.8 billion edges), a co-

occurrence keywords network derived from the internet movie

database (115 million edges), and a patents citation network (16.5

million edges). To summarize, our main contributions are:

• Graphs become represented as a collection of buildings with
floors, with inter-floor volumes encoding subgraph sizes.

• A 2D spiral layout is used to fix building locations, and also

for visualizing the street network, whose edge widths are de-

termined by the intersection graph of the building vertex sets.

• Smaller buildings are bucketed into “green” areas of bushes

that are generated by special natural-looking L-systems.

• Graph Cities can be navigated at different levels of granularity.

• The largest buildings within graphs with over a billion edges

are rendered in a few seconds. The algorithms computing the

data required to specify the rendering of a graph city from a

given wave decomposition are linear both in time and storage.

As far as we know, Graph Cities constitute the first abstract vi-
sual representation of node link representations of graphs that are

linearly computable, and that are amenable to interactive topo-

logical exploration at different levels of granularity for massive

graph data sets. We plan to provide browser access to our tools

for the exploration of graphs with up to a few billion edges. In

this paper, we focus on the computational techniques to provide

scalable visible abstractions for large graphs. In the future, we

will couple the graph city abstraction with semantic information.

The paper layout is as follows: Section 2 summarizes relevant

work. In Section 3, we introduce the main definitions and illus-

trate the main conceptual tools borrowed from a previous work:

graph Edge Fragments and GraphWaves [3]. Section 4 introduces

Graph Cities, their buildings, bushes, waves and fragments, and

Section 5 describes what the drawn street network represents.

Section 6 discusses 3 data sets used, and statistics of their size and

various decompositions. Sections 7 and 8 discuss the rendering

of graph cities and their interactive navigation. Section 9 briefly

mentions end-user goals. Section 10 discusses avenues for future

research and Section 11 closes with concluding remarks.

2 RELATEDWORK
Efforts to deal with large graphs have mainly employed compu-

tational approaches to handle scale. Generally, computation and

visualization appear to be treated as independent tasks. One ap-

proach is to develop scalable algorithmic tools that amplify users’

understanding of the underlying data topologies at different lev-

els of granularity. In general, macro graph views can in principle

be obtained by some form of vertex or edge aggregation that is

conceptually represented as hierarchy trees [5, 8, 13, 26, 32]. The

choice of representations that facilitate smooth visual interaction

is a subject of active research [19, 22, 23, 25].All these previ-

ous techniques have algorithms with running time substantially
greater than linear on the number of graph elements, making

them not suitable for massive graph visualization. Sampling, as a

mechanism to shed light on graph structure, has been explored in

[24]. Graph Thumbnails, as a mechanism to identify and compare

multiple graphs, are alone the subject of [31]. Uses of the Core

decomposition to grasp some coarse graph topological views

are discussed in [15]. Generation of graphs with a predefined

core structure is the focus of [10]. Computational aspects of

core related graph decompositions and graph sparsification are

studied in [7, 9, 18, 20, 28, 30].Some algorithmic principles for

graph reachability in large graphs are proposed in [17]. Machine

learning approaches, such as those described in [16], have been

proposed to learn low-level embeddings of graphs, however, such

approaches are not yet scalable to billion edge graphs.

Our approach differs from prior work in the sense that we look

for efficient data traversal algorithms via exploration primitives

that lend themselves to visual representations that amplify users’

understanding of the internal graph structure for graphs that

are too large to be visualized directly. Buildings, Waves, and

Fragments are examples of such primitives.

3 PROBLEM FORMULATION
We aim to provide visual abstractions for representing edge par-

titions of graphs to highlight connectivity and size distribution

of subgraphs with special degree distributions - fixed points in

our case (see Def. 3). We achieve this by first computing a maxi-

mal edge partition of the graph as in [4]. We then represent the

equivalence classes of the given edge partition as “buildings”.

Each building consists of a collection of “Waves”, each of which

is formed by a stack of “Edge Fragments” [3], i.e., Waves are

ordered maximal sequences of graph Edge Fragments (see Def. 5

and 6). This section will first describe what the graph structures

called fixed points, waves, and fragments are and then the visual

representations we use to display them will be described in Sec. 4.

3.1 Graph Edge Fragments and Waves
One approach to getting a sense of the topology of a graph be-

gins with a choice of a starting set of vertices 𝑆0 satisfying a

property of interest 𝑃 and marking them as “explored”. All the

edges with at least one endpoint in 𝑆0 are then traversed, deleting

them from the graph and adding them to the “Edge Fragment”

associated with 𝑆0. These edges then become the beginning part

of the “Graph Wave” generated by 𝑆0. If there are any edges with

one endpoint not in 𝑆0, we check whether those vertices not in 𝑆0
still satisfy a property of interest 𝑄 (usually, a relaxation of 𝑃) in

the remaining graph. If there are any such vertices we continue

exploring in parallel only from such vertices, adding incremen-

tally the new found edges into the current Wave started by 𝑆0,

and deleting them from the existing graph. This process ends

when all edges with exactly one endpoint in the current Wave

lead to vertices that do not satisfy 𝑃 . This means that if there

still remains “unexplored” edges, a new Wave can be initiated

by selecting another starting set of vertices satisfying a property

of interest 𝑅 (usually, stricter than 𝑃). We formalize the process

above with the following definitions.

3.2 Definitions
We consider undirected graphs 𝐺 = (𝑉 , 𝐸) with vertex set

𝑉 (𝐺) and edge set 𝐸 (𝐺). We denote by 𝑛 the number of vertices

in 𝑉 , 𝑚 the number of edges in 𝐸, and the degree of a vertex

𝑢 ∈ 𝑉 by deg(𝑢). For any 𝑈 ⊂ 𝑉 , let the notation 𝐺 (𝑈) denote
the subgraph of 𝐺 induced by𝑈 . For the sake of completeness,

we restate some definitions from [4].

Figure 3: Graph cities for (top left) the Friendster network
(1.8 billion edges), (top right) movie phrase co-occurrence
network (115 million edges), and (bottom left) the patent
citation network (16.5 million edges). The Delaunay tri-
angulation (bottom right) of the spiral building layout
(green). The red street network corresponds to the white
street network in the city on the bottom left.

Definition 1. (Peel Value) The peel value of a vertex 𝑢 ∈
𝑉 (𝐺), denoted 𝑝𝑒𝑒𝑙𝐺 (𝑢), is the largest 𝑖 ∈ [1, 𝑑𝑒𝑔(𝑢)] such that 𝑢
belongs to a subgraph of 𝐺 of minimum degree 𝑖 .

Definition 2. (Graph Core) The core of 𝐺 , denoted 𝑐𝑜𝑟𝑒 (𝐺),
sometimes also called the k-core of𝐺 , is the subgraph induced by
the maximal subset of vertices of 𝐺 whose peel value is maximum.

Definition 3. A graph 𝐹𝑘 is a fixed point of degree peeling 𝑘 ,
if 𝑐𝑜𝑟𝑒 (𝐹𝑘) = 𝑉 (𝐹𝑘) and the peel value of each vertex in 𝐹𝑘 is 𝑘 .

Figure 4 shows vertices in a small graph colored by their peel

value. It also shows edges colored according to the iterative edge

decomposition from [4] which obtains an edge partition by re-

moving the highest peel value edges (i.e., initially the red edges),

updating the vertex peeling values, recoloring the affected edges,

and identifying the next highest peel value edges and repeating

until the whole graph is processed. A graph city (Sec. 4) can be

derived from this edge partition by mapping each connected edge

color class into a building.

Figure 4: Left: The vertices are colored according to their
peel value: 1-grey, 2-blue, 3-orange, 4-red. Right: The
edges are colored according to the iterative edge decom-
position using the same color scale.

3.3 Waves and their Edge Fragments
Next, we present some new definitions that generalize the notion

of graph Edge Fragments and Waves introduced in [3].

Definition 4. The boundary of a vertex set 𝑆 ⊂ 𝑉 is defined
as 𝜕𝑆 = {𝑣 ∈ 𝑉 : ∃ (𝑢, 𝑣) ∈ 𝐸, 𝑢 ∈ 𝑆, 𝑣 ∉ 𝑆}. The proper

boundary of S, denoted 𝜕𝑃𝑆 , is the set of vertices in 𝜕𝑆 which
satisfy a desired property P restricted to the graph induced by𝑉 \𝑆 .
These definitions are extended, in a straightforward fashion, to a
collection of disjoint sets by taking their union.

Definition 5. Given a vertex subset 𝑆 ⊂ 𝑉 , the edge fragment
frag(S) generated by S is the set of edges (𝑢, 𝑣), such that 𝑢 ∈ 𝑆 .

Definition 6. A graph wave𝑊 (𝑆0, 𝑃) is the union of frag-
ments in the sequence (frag(𝑆 𝑗))𝑚𝑗=0, with 𝑆0 being the source set
of vertices satisfying 𝑃 and each subsequent 𝑆 𝑗+1 = 𝜕𝑃 (

⋃𝑗

𝑖=0
𝑆𝑖).

3.3.1 Why are Graph Waves useful abstractions? Waves were

inspired by previous graph exploration approaches based on

Sparse Nets [2] and Boruvka MST type contraction algorithms

[1]. GraphWaves generated by minimum degree source sets were

introduced in [3]. In this work, we generalize this notion and use

Edge Fragments to describe and visually represent the Waves’

internal structure (see subsection 3.3.2 below).

Graph Waves provide different “lenses” into the structure of

a graph according to a particular property or substructure. For

example, if 𝑆0 is non-empty and consists of the set of vertices not

in a given maximal edge-matching𝑀 , then the Wave generated

by such an initial set 𝑆0 provides a layered view of G as a sequence

of independent sets, and the last Wave Edge Fragment is a perfect

matching. This is because, for this example, 𝑆0 is the complement

of a maximally matched set of vertices. We refer to this example

as the Maximal Matching Wave. Graph Waves derived from a

graph’s degree distribution are essential for discovering the non-

regular macro structure of very large graphs, and at the same time

help isolate Edge Fragments with peculiar levels of regularity.

For example, if 𝑘 is the minimum degree of a graph 𝐺 and if 𝑆0
consists of all the vertices of degree 𝑘 , and subsequent boundary

sets are restricted to have degree strictly less than this minimum

𝑘 , the corresponding Wave is called a Fixed Point of Degree 𝑘

in [4] with a vertex source set of minimum degree. We refer to

these subgraphs as Minimum Degree Waves.

Graph Waves can be adapted to the particular properties of

the boundary vertex sets and Edge Fragments being discovered

during the algorithmic exploration of a large unknown graph

topology. Efficiently and automatically determining the most

appropriate properties to generate the Waves of a particular

graph is an interesting direction for future work. In this work,

we only use Waves generated based on vertex degree thresholds.

3.3.2 Meta-DAG Internal Structure of a Wave(𝑆0,𝑃). Since
the edges of a Wave(𝑆0, 𝑃) are obtained by taking the union of

Edge Fragments in the sequences (𝑓 𝑟𝑎𝑔(𝑆 𝑗))𝑚𝑗=0, where 𝑆 𝑗+1 =

𝜕𝑃 (
⋃𝑗

𝑖=0
𝑆𝑖), the Wave vertex set is an ordered partition of sub-

sets (𝑆0, 𝑆1, ...𝑆𝑚). We use the connected components of the sub-

graphs induced by each subset to define a Meta-DAG, where each

macro-vertex represents such connected components. Weighted

directed meta-edges ((𝐶 𝑗,𝑢 ,𝐶𝑙,𝑣),𝑊𝑢,𝑣) encode nonempty set of

edges {(𝑥,𝑦) : 𝑥,𝑦 ∈ 𝐶 𝑗,𝑢 ∪ 𝐶𝑙,𝑣}, where 𝐶 𝑗,𝑢 and 𝐶𝑙,𝑣 are con-

nected components of 𝑆 𝑗 and 𝑆𝑙 . Finally, the weight𝑊𝑢,𝑣 encodes

the density of edges running between 𝐶 𝑗,𝑢 and 𝐶𝑙,𝑣 .

The spanning subgraph of this metagraph that consists of

only those meta-edges that connect components present in con-

secutive vertex sets, 𝑆 𝑗 , 𝑆 𝑗+1, is called the Spanning Meta-DAG
of the Wave (shown in Figure 5). It describes some of the most

fundamental directed internal macro-connectivity of a Wave and

is expected to be substantially smaller that the Wave itself. An

extreme case in which this is not the case is when the Wave is a

tree with the source set being the tree leaves. However, in this

Figure 5: An “interesting” portion of the spanning Meta-
DAG of a fixed point of peel value 101 from the movie
phrase co-occurrence network. The whole fixed point con-
tains 17,311 vertices and 182,085 edges while the spanning
Meta-DAG only has 4181 vertices and 10,016 edges.

case we already have a simple description of the Wave: it is a tree

with the number of fragments equal to the radius of the tree.

4 WHAT IS A GRAPH CITY?
We assume that the input is some ordered partition (𝐸0, 𝐸1, ..., 𝐸𝑧)
of the edges of a graph𝐺 = (𝑉 , 𝐸), where each 𝐸𝑖 is edge-maximal

with respect to a predefined property. An efficient representation

for such partitions is stored as a set of triples (source, target,

label𝑖). This assumption is justified since the edges of any graph

𝐺 can be efficiently partitioned into edge-maximal subgraphs𝐺𝑘 ,

each of minimum degree at least 𝑘 and average degree not more

than 2𝑘 [4]. Furthermore, we assume that for each subgraph in

the sequence (𝐺𝑘 = (𝑉𝑘 , 𝐸𝑘))𝑧𝑘=0 the Wave and Edge Fragment

decompositions from [3] has already been computed. This decom-

position is stored in three parts: triples of (source,target,unique

fragment id), a mapping from unique fragment ids to wave num-

bers, and a mapping from wave numbers to edge label𝑖s. The

vertex set 𝑉𝑘 of each such subgraph𝐺𝑘 can be partitioned into

ordered sets 𝑉𝑘,𝑗 that correspond precisely to Minimum Degree

Waves(𝑆0, 𝑃) (see Section 3.3), where 𝑆0 consists of the vertices

of minimum degree, and the property 𝑃 corresponds to boundary

vertices of degree less than the degree of vertices in 𝑆0 [3].

A Graph City is a 3D representation of a given maximal edge

graph partition, as shown in Figure 3. It consists of a floor plan

of buildings (one per equivalence class), bushes that represent
clusters of small buildings, and a weighted street network.

4.1 Graph City Buildings
For each edge-maximal subgraph 𝐺𝑘 , we use the ordered se-

quence of vertex subsets (𝑉𝑘,𝑗)ℎ𝑗=0, their “internal” edges, and
those edges running between consecutive levels to create a vi-

sual representation for each such fixed point 𝐺𝑘 , that resembles

a building in a city with ℎ floors (see Figure 2).

This building representation provides an alternative view of

a fixed point 𝐺𝑘 = (𝑉𝑘 , 𝐸𝑘) that can be computed in time and

space linearly dependent on the size of 𝐺𝑘 , plus the complexity

of finding and/or “describing” the initial subset 𝑉𝑘,0 of 𝑉𝑘 . That

is, the macro-structure of any fixed point can be described as a

“building” whose internal structure is a Meta-DAG (see Section

Figure 6: A flag on a building from the (left) Friendster
City, and (right) from the patent citation network city.

3.3.2), with macro-vertices representing connected components

of seed sets within each building floor (Figure 5).

A graph building with ℎ floors representing a fixed point

𝐺𝑘 = (𝑉𝑘 , 𝐸𝑘) is completely determined by the “Disjoint Union

of ordered Edge Fragments” specified by the partition of 𝑉𝑘 into

level sets (𝑉𝑘,𝑗)ℎ𝑗=0. Our representation requires only 5ℎ numbers.

For each wave we specify 2 disk radii, the starting height, the

color of a frustum, and a light intensity for night view.

The “ 𝑗-th floor” of a building representing 𝐺𝑘 corresponds to

the subgraph induced by a subset of vertices 𝑉𝑘,𝑗 . Each floor is

represented by two concentric disks, one above the other. The

radius of the bottom disk encodes the number of vertices in

the seed set of the starting fragment of the corresponding floor.

The radius of the top disk encodes the total number of vertices

besides the seed set vertices. The top disk is placed at the same

height as the bottom disk of the next floor. A frustum between the

bottom disks of adjacent floors is set to have volume encoding

the number of edges running from one floor to the next. Since

the radii of the two disks is already determined, the height of

the frustum is calculated from the desired volume. For the last

floor the height of the top disk is determined from the volume

corresponding to the total number of edges on the floor.

A special fixed color map across the entire graph is used to

encode the density of a variety of induced subgraphs. For exam-

ple, the color of a frustum represents the density of the set of

edges running between the corresponding two floors, and the

same color map is used to highlight the density of the connected

components within a floor, as shown in Figure 2.

A flag on top of a building displays summary information

that includes the distribution of fixed point values of that bucket.

Recall that “fixed point” refers to the edge-maximal subgraph𝐺𝑘 .

For buildings that are alone in a bucket the flag shows the number

of floors, the peel value, and the number of vertices and edges of

the corresponding fixed point. Figure 6 shows both these cases.

The height of the flag cloth encodes the total number of edges

in 𝐺𝑘 , and its width encodes the total number of vertices. The

length of the flag pole is the overall edge density of𝐺𝑘 . If the user

toggles the night view mode, a checkerboard of lights is applied

to the frustum between all floors, as shown in Figure 9(right).

The light intensity at each floor is proportional to the number

of vertices shared between the set of edges represented by that

floor and its complement with respect to the whole graph.

Handling buildings with lots of fragments does not present

an issue because an intermediate structural level of granularity

between Fixed Point Buildings and Fragments is provided by

Waves (Section 3.3). The floors of a building represent contigu-

ous segments of Fragments that satisfy some initial condition.

They are characterized by their source layer of vertices and an

ending layer of verticeswhose unexplored neighbors violate a pre-

specified expansion condition. The beginning and end fragments

of Minimum Degree Waves specifically satisfy a bounded-degree

condition, i.e., the number of connections to non-Wave vertices

is larger than the degree of vertices in the Wave source set.

4.2 Summary Graph City Sculpture
To provide an overview of the size distribution of fixed points

in the set of buildings in a graph city we use a summary sculp-

ture (see Figure 7). The aspect ratio of the sculpture encodes

the average gap between consecutive fixed point values from

the iterative edge core decomposition. The taller it is, the larger

the average gap. This sculpture is obtained by considering each

building as its set of connected components. All these edge maxi-

mal connected subgraphs with the same peel value and the same

size are represented by cylinders encoding their frequency. Each

cylinder of a particular peel value appears at a unique height

in the sculpture. Larger cylinder radii correspond to higher fre-

quency of a particular size. All the disks representing connected

components with the same peel value (i.e., associated with the

same building) are stacked vertically on top of each other sorted

by size. The fixed point value is encoded by rainbow coloring the

corresponding cylinders (increasing from blue to red). Our inter-

face provides access to the location of all buildings in the graph

city that correspond to a fixed point selected in the sculpture.

Figure 7: Graph City Sculptures for (left) the Friendster
network, (middle) the movie co-occurence phrase net-
work, and (right) the patent citation network. Note that
the largest data set need not have the tallest city sculpture.

4.2.1 Vertex Diversity and Light Intensities. Graph cities can

be seen as 3D representations of a coloring of the edges, where

colors encode the edge peel values. This coloring partitions the

edges adjacent to any particular vertex by their assigned color.

The frequencies of these local colors for a vertex defines a profile

vector for that vertex. Following [4] we compute this profile vec-

tor’s Shannon Entropy and use it as a measure of the “diversity”

of the color pattern of the local edge coloring around each vertex.

Higher “diversity” of a vertex is an indicator of a higher weighted

level of participation of that vertex in a given edge partition. It is

worth noting that diversity is a more expressive measure than

degree. Specifically, very high degree vertices can have very low

diversity. We add “diversity” light intensities to the disks in the

City Sculpture to encode the average diversity of the vertices in

the corresponding connected fixed point.

4.3 Graph City Interpretation
“Graph Cities” provide visual representations of the overall macro-

structure of graphs with few billion edges, i.e., GigaGraphs, which

are derived by mapping each connected equivalence class, of a
special edge partition, into a “city building”. Below we address

some common questions regarding their interpretation:

(1) What do “floors” tell us about a “building” in a Graph
City? The number ℎ of floors in a building (i.e. the number

of waves) indicates a fixed point whose full exploration

requires the sequential activation of ℎ disjoint seed sets.

In cases where a “building” is used to represent an edge

equivalence class with several connected components then

the number of floors in the “building” corresponds to the

maximum number of waves in any of its components.

(2) What does a “building” volume represent? It encodes
the number of edges of the represented edge equivalence

class, i.e., a fixed point of degree peeling. A building with

no enclosure represents a more localized topology, i.e., is a

“tree like” fixed point with only consecutive edges.

(3) How is the internal detailed structure of a “building”
made accessible for user exploration? It is represented
by a Directed Acyclic Macro Graph obtained by contracting

the connected components of each wave seed set. This DAG

represents the connectivity between the connected compo-

nents of all seed sets appearing in the waves. Our interface

provides on-demand access to this DAG internal structure

for user navigation and exploration on a per building basis.

A video illustrating our current interface can be found here
1
.

5 GRAPH CITIES STREET NETWORK
5.1 Graph City Layout and Street Network
The size distribution of the equivalence classes is used to generate

a 2D position for each building. This is done by bucketing the

fixed points of a graph by size and then mapping each such

bucket to a 2D location by following an Archimedean spiral. We

create buckets containing connected fixed points the same way

as [3]. These connected fixed points are grouped together into

buckets according to the number of edges. Bucket 𝑖 has fixed

points of size 𝑠 , such that 𝑙𝑜𝑔𝑖−1 (𝑚) < 𝑠 ≤ 𝑙𝑜𝑔𝑖 (𝑚). We create

a building for the largest fixed point in each bucket 𝐵, and if

|𝐵 | > 1, we create “bushes” (see Section 5.1.1) for a representative

selection of 𝑙𝑜𝑔(8 ∗ (|𝐵 | − 1)) fixed points from 𝐵. Additionally,

for such buckets we also draw a grass patch as a green polygon

with 𝑙𝑜𝑔(8 ∗ (|𝐵 | − 1)) + 2 sides (see Figure 2(right)). From each

bucket, we display the tallest building and a flag with a histogram

with peel values on the 𝑋 -axis and the number of buildings with

that peel value and the maximum size of all these buildings. For

buckets with one fixed point the flag just shows the peel value.

The Graph City street network is determined by the Delau-

nay triangulation of the building locations in the spiral layout

(see Fig. 3). The weight of a connection between two buildings

is proportional to the intersection of the subgraph vertex sets

represented by the two buildings. Graph-theoretically, the street

network is determined by the intersection graph of the collection

of vertex sets of the subgraphs (𝐺𝑘 = (𝑉𝑘 , 𝐸𝑘))𝑧𝑘=0, which in turn

are determined by the given edge partition (𝐸0, 𝐸1, ..., 𝐸𝑧). When

a particular building is selected by the user, a Euclidean spanning

tree rooted at that building displays the corresponding street net-

work, which is obtained by a Breadth First Search. If the building

street network is disconnected, then we show a spanning forest

instead. Note that the connectivity of the street network only

depends on the connectivity of the subgraphs represented by the

buildings and not the graphs represented by the entire bucket.

5.1.1 Bushes and L-Systems. To provide a visual indication

for the properties of fixed points in a bucket (besides the largest

1
https://rutgers.box.com/s/qeygblwr5udeti9vxcmr0nj6swuf179n

Figure 8: (Left) The bush skeleton for a fixed point of peel
value 1 from the Friendster network [21]. (Right) The com-
plete bush after applying 3 iterations of an L-system.

one represented by the building) we sort the fixed points in a

bucket by size and uniformly select a few fixed points to draw as

bushes. These bushes visually show some of the same properties

as a building but are a much “rougher” view of a fixed point.

For generating a bush, a skeleton is first created based on the

parameters of a given fixed point (see Figure 8(left)). Then, a

few iterations of an L-System are executed with axiom points

distributed along the skeleton drawing (see Figure 8(right)), to

create natural-looking bushes. The skeleton consists of a central

stem with branch segments coming out at points in between.

These junction points are spaced the same as the disks in the

building representation of the fixed point; thus, the length of

stem segments correspond to the height of the respective frus-

tums. The inclination of the stem segments ranges from 0 to 45

degrees off the vertical axis based on the density of edges in the

frustum (0 degrees corresponding to 0 density and 45 degrees to

a density of 1). Two sets of branches are produced at each stem

junction corresponding to the inner and outer disks in the build-

ing. The number and length of branches encodes the number of

vertices represented at that level. The inclination of the branches

is proportional to the density of internal edges for that level. All

branches are equally spaced at the junction and phase angles at

successive junctions are randomized.

We extended an implementation of a turtle graphics based

L-system interpreter
2
to draw the underlying skeleton structure

and then applied 2-3 iterations of a natural looking L-system,

starting at evenly spaced lengths along the stem and branches.

The bushes and the green polygon together give the appearance

of a “garden” for some of the buildings in the Graph City, that

are primarily centered around the periphery of the spiral layout

on the ground, as shown in Figures 3 and 2(right). Although

these bushes don’t reflect as much detail of the underlying fixed

point they represent as opposed to the building metaphor, they

are useful for quickly getting a sense of scale for the size and

distribution of other fixed points in a bucket while being more

efficient to render than a whole building.

6 DESCRIPTION OF OUR DATA SETS
We show examples of our system applied to 3 datasets. Our largest

data set is the Friendster social network consisting of 65,608,366

nodes each representing a user and 1,806,067,135 edges represent-

ing “friendships” between them. This dataset was retrieved from

the Stanford Large Dataset Collection (SNAP) [21]. Our next data

set is a graph of phrases used in movie reviews. There are 218,052

nodes each representing a phrase and 115,050,370 edges, where

2
https://github.com/andonutts/donatello

https://rutgers.box.com/s/qeygblwr5udeti9vxcmr0nj6swuf179n
https://github.com/andonutts/donatello

Figure 9: Different views provided by our interactive control menu when rendering Graph Cities in day and night modes.

each edge connects two phrases both used to describe the same

movie in a review. This data set was derived from the Internet

Movie Database
3
. Our last data set is a patents citation network,

also from [21]. There are 3,774,768 nodes each representing a

patent and 16,518,947 edges each linked to a cited patent.

Table 1 shows the number of connected components (CC),

connected fixed points (FP), peel value of the core (CV), maximum

number of waves among its fixed points (MW), and maximum

number of fragments among its fixed points (MF) for each data

set. The spiral length is related to the total number of graph edges.

The number of fragments in a building, i.e., the building’s height,

encodes the longest path length in the building’s Meta-DAG.

Dataset CC FP CV MW MF RT

Friendster 1 29,692 304 212 3,279 11.82

Movies 38 2,044 3114 37 282 3

Patents 3,627 6,469 64 47 996 3.3

Table 1: Statistics for all data sets. The last column shows
the rendering times (RT) for the graph city in seconds.

7 RENDERING GRAPH CITIES
We use Three.js [6], a 3D Javascript library to create and display

Graph Cities interactively in the web browser using WebGL.

Each building in the Graph City consists of several floors (i.e.,

Edge Fragments). For each floor, we instantiate a cylinder shape
geometry, where the top and bottom face radii, height, and color

are chosen appropriately from the data (see Section 4.1), the

number of balcony segments defaults to 6, with 3 windows per

floor in the night view. All floors are generated in the material

space, centered at the origin, and subsequently translated in the Y

(up) direction to form a building in the world space. Each building

is also translated in the X and Z directions to form the spiral

layout (see Section 5.1). Bushes are generated with an L-system.

On top of each building, a flag displaying summary informa-

tion for that building (i.e., edge-maximal subgraph) is added. A

box shape geometry is used for the flag, and a cylinder shape
geometry is used for the mast. The length of the mast, size of the

flag, and color of the flag are all determined from the data set.

To highlight the street network representing data flow from

one building to the remaining Graph City, we precompute the

Delaunay triangulation for all the buildings in the Graph City

at the beginning. Subsequently, when a user selects a particular

building from the interactive control menu (see Figure 9(left)),

we perform a Breadth First Search (BFS) from the root building

to the rest, and display only those edges that are encountered

in the search. The width of the edges are determined by the

data. Rendering times for the Graph City for each data set are

summarized in the last column in Table 1.

3
https://www.imdb.com/interfaces/

8 NAVIGATING A GRAPH CITY
The interactivity provided by Three.js [6] allows the user to ex-

plore different parts of a Graph City conveniently from a browser.

An interactive control menu is provided on the top right (see

Figure 9(left)) for toggling between various options, such as the

current data set being viewed, displaying building information,

changing camera/environment controls and day/night modes, or

selecting different street networks. The user can use the mouse

to zoom in and out, as well as pan around the Graph City. Upon

entering a particular building, the view changes to highlight the

finer scale internal connectivity for each edge-maximal subgraph

(or fixed point) that constitutes a building, as shown in Figure 10.

Our interactive visualization ultimately owes its speed to the

hierarchical Graph Wave decomposition [3]. At the macroscopic

level, our abstraction has a much smaller spatial complexity than

the actual data set, which makes rendering cheap. The only com-

putation that happens is whenever the root for the street network

changes, but this is only linear in the number of buildings. When

the user views inside a particular building, although we show

finer scale connectivity, it is still conveniently partitioned into

Edge Fragments. Thus, rendering is never the bottleneck, as the

user is only visualizing a subset of the data.

9 CATALOGUE OF SUBGRAPH PATTERNS
A useful outcome of user or computer explorations of any graph

citywill be a summary and an extensive catalogue of the subgraph

patterns found. For this to be feasible, users must be provided

with annotation and summarization tools that can keep track

of their exploration trails. These patterns should be classified at

least by size, density, frequency of occurrence, rarity, interest

and usefulness. To assess the efficacy of these tools we are cur-

rently identifying a list of basic tasks that a user can perform in

order to conduct a substantial number of user experiments. For

example: can graph cities be used effectively on shortest path

approximations queries?

One of the ultimate goals of this work will be to have a descrip-

tive semantic summary of the expected patterns that can be fed

into a deep learning engine to learn to discriminate and find new

patterns according to certain specified criteria. In our current

experimentation with a variety of data sets, the most naturally

detected patterns include: tree forests, cliques, bi-cliques, and

hierarchical compositions of these basic patterns.

10 FUTUREWORK
Streaming Graph Cities:An interesting question is the feasibil-
ity of efficiently updating the Wave and Fragment decomposition

when the streaming input graph is known a priori to be a fixed

point or a Wave of fixed degree peeling. This is the main bot-

tleneck for streaming a Graph City. If the wave decomposition

https://www.imdb.com/interfaces/

Figure 10: Snapshots of a user navigating the Graph City for the patents citation network with interactive camera control.

is provided then we can easily obtain web renderings of the

corresponding individual building(s) at interactive frame rates.

Composing Global Solutions fromLocal Ones: TheWave

and Edge Fragments decomposition will be more advantageous

in those cases where a given question or structure of interest on

𝐺 = (𝑉 , 𝐸) can be obtained as a “composition” of the local Wave

and/or Fragment solutions. For example, is there any algebraic

relation between the all-pairs shortest path distances in𝐺 versus

their restrictions to the Waves and/or Fragments of 𝐺?

How to pick interesting Waves? Automating the process

of choosing the property of interest for the Wave decomposition

would be a powerful addition to the pipeline. Can the type of wave

be chosen efficiently based on local or global graph structure?

Semi-random Graph Processes: It will be interesting to un-
derstand the type of Graph Waves that can be built by these

semi-random processes with high probability in 𝑂 (𝑛) rounds
where 𝑛 is the number of vertices [11].

Hypergraph Cities: A central problem in simplicial finite

set systems is to identify a global structure whose intersection

with a given finite set family is highly concentrated around its

expectation. Random matchings are an example [14].

11 CONCLUSIONS
The iterative edge decomposition partitions the edges of a graph

into Fixed Points of degree peeling; they are in turn decomposed

into Graph Waves and Edge Fragments. They provide mecha-

nisms that may help assess the topological and statistical reasons

that explain the emergence of a large class of bipartite graph-like

patterns in very large graph data sets.

We introduced 3D representations of Fixed Points based on

their wave decomposition that resemble buildings in a city, hence

Graph Cities. A spiral arrangement of the buildings is obtained

from the size distribution of the Fixed Points. The Delaunay

triangulation of the building locations determines the graph city

street network. The size distribution of all the Fixed Points is

summarized by a graph city sculpture (Sec 4.2).

Dense bipartite graph-like patterns have been proposed as an

abstract formalization of “concepts” in [29]. Their identification

in very large data sets has defied computation. Nevertheless,

Graph Cities offer a promising approach to the efficient detection

of a large sub-class of these patterns in attributed graphs.

Due to lack of space, some technical results were put in an

appendix here
4
.

REFERENCES
[1] J. Abello, A. L. Buchsbaum, and J. R. Westbrook. 1998. A functional approach

to external graph algorithms. In European Symp. on Alg. Springer, 332–343.
[2] James Abello, Daniel Mawhirter, and Kevin Sun. 2019. Taming a Graph

Hairball: Local Exploration in a Global Context. In Business and Consumer
Analytics: New Ideas. Springer, 467–490.

[3] James Abello and Daniel Nakhimovich. 2020. GraphWaves. In The 3rd Interna-
tional Workshop on Big Data Visual Exploration and Analytics with EDBT/ICDT.

4
https://rutgers.box.com/s/qeygblwr5udeti9vxcmr0nj6swuf179n

[4] J. Abello and F. Queyroi. 2013. Fixed points of graph peeling. In Proc. of the
2013 IEEE/ACM Int. Conf. on Adv. in Soc. Net. Anal. and Mining. 256–263.

[5] James Abello, Frank Van Ham, and Neeraj Krishnan. 2006. Ask-graphview: a

large scale graph visualization system. IEEE TVCG 12, 5 (2006), 669–676.

[6] Ed Angel and Eric Haines. 2017. An Interactive Introduction to WEBGL and

Three.JS. In ACM SIGGRAPH 2017 Courses. Article 17, 95 pages.
[7] A. Arleo, O.-H. Kwon, and K.-L. Ma. 2017. GraphRay: Distributed pathfinder

network scaling. In 2017 IEEE 7th Symp. on Large Data Anal. and Vis. 74–83.
[8] B. Bach, N. H. Riche, C. Hurter, K. Marriott, and T. Dwyer. 2017. Towards

unambiguous edge bundling: Investigating confluent drawings for network

visualization. IEEE Trans. on Visualization & Computer Graphics (2017), 1–1.
[9] V. Batagelj and M. Zaveršnik. 2011. Fast algorithms for determining core

groups in social networks. Adv. in Data Anal. and Class. 5, 2 (2011), 129–145.
[10] M. Baur, M. Gaertler, R. Görke, M. Krug, and D. Wagner. 2007. Generating

graphs with predefined k-core structure. In Eur. Conf. of Compl. Sys. Citeseer.
[11] O. Ben-Eliezer, L. Gishboliner, D. Hefetz, and M. Krivelevich. 2020. Very fast

construction of bounded-degree spanning graphs via the semi-random graph

process. In Proc. of the Symposium on Discrete Algorithms. SIAM, 718–737.

[12] Daniel Berend, Shlomi Dolev, and Ariel Hanemann. 2014. Graph Degree

Sequence Solely Determines the Expected Hopfield Network Pattern Stability.

Neural computation 27 (11 2014), 1–9.

[13] Tim Dwyer, Nathalie Henry Riche, KimMarriott, and Christopher Mears. 2013.

Edge compression techniques for visualization of dense directed graphs. IEEE
transactions on visualization and computer graphics 19, 12 (2013), 2596–2605.

[14] Peter Frankl and Andrey Kupavskii. 2018. The Erdös Matching Conjecture

and concentration inequalities. arXiv preprint arXiv:1806.08855 (2018).
[15] P. Govindan, C. Wang, C. Xu, H. Duan, and S. Soundarajan. 2017. The k-peak

decomposition: Mapping the global structure of graphs. In Proceedings of the
26th International Conference on World Wide Web. 1441–1450.

[16] W. L. Hamilton, R. Ying, and J. Leskovec. 2017. Representation learning on

graphs: Methods and applications. IEEE Data Engineering Bulletin (2017).

[17] R. Jin, N. Ruan, S. Dey, and J. Y. Xu. 2012. SCARAB: scaling reachability

computation on large graphs. In Proc. of Int. Conf. on Man. of Data. 169–180.
[18] H. Kabir and K. Madduri. 2017. Shared-memory graph truss decomposition.

In 2017 IEEE 24th Int. Conf. on High Perf. Comput. (HiPC). IEEE, 13–22.
[19] M. Krommyda, V. Kantere, and Y. Vassiliou. 2019. IVLG: Interactive Visualiza-

tion of Large Graphs. Int. Conf. on Data Engineering (2019), 1984–1987.

[20] R. Laishram, A. Erdem Sar, T. Eliassi-Rad, A. Pinar, and S. Soundarajan. 2020.

Residual Core Maximization: An Efficient Algorithm for Maximizing the Size

of the k-Core. In Proc. of Int. Conf. on Data Mining. SIAM, 325–333.

[21] Jure Leskovec and Andrej Krevl. 2014. SNAPDatasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[22] Zhiyuan Lin, Nan Cao, Hanghang Tong, Fei Wang, and U Kang. 2013. Interac-

tive multi-resolution exploration of million node graphs. In IEEE Conference
on Visual Analytics Science and Technology, Poster.

[23] Peng Mi, Maoyuan Sun, Moeti Masiane, Yong Cao, and Chris North. 2016.

Interactive graph layout of a million nodes. In Informatics, Vol. 3. Multidisci-

plinary Digital Publishing Institute, 23.

[24] Q. H. Nguyen, S.-H. Hong, P. Eades, and A. Meidiana. 2017. Proxy graph: visual

quality metrics of big graph sampling. IEEE TVCG 23, 6 (2017), 1600–1611.

[25] R. Pienta, F. Hohman, A. Endert, A. Tamersoy, K. Roundy, C. Gates, S. Navathe,

and D. H. Chau. 2018. VIGOR: interactive visual exploration of graph query

results. IEEE Trans. on Vis. and Comp. Graph. 24, 1 (2018), 215–225.
[26] L. Royer, M. Reimann, B. Andreopoulos, and M. Schroeder. 2008. Unraveling

protein networks with power graph analysis. PLoS comp. bio. 4, 7 (2008).
[27] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M Tamer

Özsu. 2017. The ubiquity of large graphs and surprising challenges of graph

processing. Proceedings of the VLDB Endowment 11, 4 (2017).
[28] N. Wang, D. Yu, H. Jin, C. Qian, X. Xie, and Q.-S. Hua. 2017. Parallel algorithm

for core maintenance in dynamic graphs. In Prof. of ICDCS. 2366–2371.
[29] Rudolf Wille. 1992. Concept lattices and conceptual knowledge systems.

Computers & mathematics with applications 23, 6-9 (1992), 493–515.
[30] H. Wu, J. Cheng, Y. Lu, Y. Ke, Y. Huang, D. Yan, and H. Wu. 2015. Core

decomposition in large temporal graphs. In Int. Conf. on Big Data. 649–658.
[31] V. Yoghourdjian, T. Dwyer, K. Klein, K. Marriott, and M. Wybrow. 2018. Graph

thumbnails: Identifying and comparing multiple graphs at a glance. IEEE
Transactions on Visualization and Computer Graphics 24, 12 (2018), 3081–3095.

[32] H. Zhou, P. Xu, X. Yuan, and H. Qu. 2013. Edge bundling in information

visualization. Tsinghua Science and Technology 18, 2 (2013), 145–156.

https://rutgers.box.com/s/qeygblwr5udeti9vxcmr0nj6swuf179n
http://snap.stanford.edu/data

	Abstract
	1 Introduction
	1.1 Summary of Our Overall Approach

	2 Related Work
	3 Problem Formulation
	3.1 Graph Edge Fragments and Waves
	3.2 Definitions
	3.3 Waves and their Edge Fragments

	4 What is a Graph City?
	4.1 Graph City Buildings
	4.2 Summary Graph City Sculpture
	4.3 Graph City Interpretation

	5 Graph Cities Street Network
	5.1 Graph City Layout and Street Network

	6 Description of our Data Sets
	7 Rendering Graph Cities
	8 Navigating a Graph City
	9 Catalogue of SubGraph Patterns
	10 Future work
	11 Conclusions
	References

