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ABSTRACT
Cloud data lakes are amodern approach for storing large amounts

of data in a convenient and inexpensive way. Query engines (e.g.

Hive, Presto, SparkSQL) are used to run SQL queries on data

lakes. Their main focus is on analytical queries while random

reads are overlooked. In this paper, we present our approach for

optimizing needle in a haystack queries in cloud data lakes. The

main idea is to maintain an index structure that maps indexed

column values to their files. According to our analysis and exper-

imental evaluation, our solution imposes a reasonable storage

overhead while providing an order of magnitude performance

improvement.

1 INTRODUCTION
Data lakes are a relatively new concept, which has recently re-

ceived much attention from both the research community and

industry [2, 29, 41]. There is no formal definition of the term data
lake, but it is commonly described as a centralized repository con-

taining very large amounts of data in their original (or minimally

processed) format. The main idea behind this approach is that in-

stead of loading the data into traditional data warehouses, which

require scrupulous schema design, and a high development and

maintenance cost, the data is simply streamed into a distributed

storage system (e.g. HDFS [43]), and from that moment becomes

available for analytics. Cloud data lakes are managed by cloud

providers and store their data in cloud object stores, as AWS S3

[12], Google Cloud Storage [31], and Azure Blob Storage [37].

For analytics, compute engines (e.g. Spark [47], MapReduce [25])

are used "on-demand". They access cloud data lakes via simple

get/put API over the network, and this separation of storage and

compute layers results in a lower cost and allows independent

scaling of each layer (Fig. 1).

Figure 1: Data Lakes Architecture

A plethora of new systems, often referred to as query engines
[1], have been developed in recent years to support SQL queries
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on top of data lakes. Hive [18], originally built at Facebook, was

the first such system. In Hive, SQL-like queries are compiled

into a series of map-reduce jobs and are executed on MapReduce

[25] framework. A somewhat similar approach is implemented

in Spark SQL [13], where SQL queries are running on top of the

Spark engine [47].

Another group of query engines do not use general-purpose

frameworks such as MapReduce or Spark but rely on their own

engines, built on the ideas from parallel databases. The first such

system was Google’s Dremel [36], which inspired many modern

query engines; most well-known are Drill [32], Presto [42] and

Impala [33].

The following techniques are commonly associated with the

query engines running on data lakes:

• in-situ processing: In-situ means that the data is ac-

cessed in-place (i.e. in HDFS or cloud object store), and

there is no need to load the data into the database man-

agement system (DBMS). Thanks to this feature, the same

data lake can be queried simultaneously by different query

engines without any difficulties.

• parallel processing: The data is accessed in parallel

(usually by a cluster of dedicated machines).

• columnar storage: The main idea is that instead of stor-

ing the data row by row, as is customary in relational

databases, the data is stored column by column. The most

important benefits of such column-wise storage are fast

projection queries and efficient column-specific compres-

sion and encoding techniques. Some of the popular open

source formats are ORC and Parquet [28].

• data partitioning: The idea is simple and yet powerful.

The data is partitioned horizontally based on some of the

input columns. Then, files related to each partition are

stored in a different directory in the storage system (see

an example below).

Let us demonstrate how these techniques look in a typical

real-world scenario. Consider a large enterprise company receiv-

ing a lot of events (e.g. from IoT sensors) and stores them in a

data lake. The data lake would look like a collection of files (Fig.

2) stored in some distributed storage system. In our example,

the data lake is partitioned by year and month columns, so for

example events from March 2020 are located in the path data-
lake/year:2020/month:03/. Events are stored in a columnar format

Parquet, so queries on specific columns would scan only relevant

chunks of data. When a query engine executes a query, it scans

all the relevant files in parallel and returns the result to the client.

Data lakes and query engines are optimized for analytic queries

and a typical query calculates aggregate values (e.g. sum, max,

min) over a specific partition. For such queries, all the files under

specified partition should be scanned.

However, sometimes users may be merely interested in find-

ing a specific record in the data lake (a.k.a needle in a haystack).

Consider for example a scenario where a specific event should

be fetched from the lake based on its unique identifier for trou-

bleshooting or business flow analysis. Another important use
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Figure 2: Data lake layout in storage system

case is managing the General Data Protection Regulation (GDPR)

compliance [45], where records related to a specific user should

be found in the data lake upon user request. Unfortunately, even

when the requested information resides in a single file, query

engines will perform a scan of all the files in the data lake (can be

millions). Obviously, this behavior results in a long query latency

and an expensive computation cost.

In this paper, we present our approach for optimizing "needle

in a haystack" queries in cloud data lakes. The main idea is to

build an index structure that maps indexed column values to

the files that contain those values. We assume enormous data

volumes in cloud data lakes, and hence, we need our index to be

highly scalable in both compute and storage sense. For scalable

compute, we utilize parallel processing paradigm [25, 47]; for

scalable storage, we design a new storage format that allows

unlimited scaling while minimizing the number of network op-

erations during reads.

Our main contributions are as follows:

• Development of a novel index structure that allows speed-

ing up random queries in cloud data lakes.

• A prototype implementation of our solution and its exper-

imental evaluation in a real-world cloud data lake.

The rest of the paper is structured as follows. In Section 2, we

formally define the problem. In section 3, we describe the pro-

posed solution. In section 4, we provide a performance analysis

of our solution. In Section 5, we introduce our proof-of-concept

implementation and provide an experimental evaluation thereof.

In Section 6, we review related work. We conclude in Section 7.

2 PROBLEM STATEMENT
We model a data lake as a set of tuples 𝐷 = {< 𝑐1 : 𝑣1, 𝑐2 :

𝑣2, ..., 𝑐𝑛 : 𝑣𝑛 > | ∀1 ≤ 𝑖 ≤ 𝑛, 𝑐𝑖 ∈ 𝐶, 𝑣𝑖 ∈ 𝑉 } where 𝐶 is the set of

column names and 𝑉 is a set of column values (see notation in

Table 5). Data lake 𝐷 is stored in a distributed storage system as

a collection of 𝑁 files, denoted by 𝐹 = {𝑓1, 𝑓2, ..., 𝑓𝑁 }.
Query engines support SQL queries on data lakes. In this paper

our focus is on simple selection queries of type:

SELECT C1, C2, ...
FROM DATA-LAKE
WHERE SOME-COLUMN = SOME-VALUE

Files that contain tuples that satisfy query 𝑄 are denoted by

𝐹 (𝑄). As already mentioned in the previous section, the current

Table 1: Index content example

Column Name Column Value File Names

event-id 207 file051, file033

event-id 350 file002

event-id 418 file170, file034

... ... ...

client-ip 192.168.1.15 file170

client-ip 172.16.254.1 file883, file051

approach to perform query 𝑄 is to scan all 𝐹 files in parallel,

which is wasteful as only 𝐹 (𝑄) files should be scanned and in

many cases |𝐹 | >> |𝐹 (𝑄) |. If we knew 𝐹 (𝑄) for a given 𝑄 we

would read only relevant files and so will be able to significantly

improve query performance. Thus the problem we are trying

to solve in this paper can be defined as – “construct a function

𝑔𝑒𝑡𝐹𝑖𝑙𝑒𝑠 (𝑄) that receives a query 𝑄 and returns 𝐹 (𝑄) - the list
of files that contain tuples that satisfy 𝑄”.

Figure 3: System model

Fig. 3 presents a high-level diagram of the considered system

model.

(1) A client submits a query to the query engine

(2) A query engine queries the index to get relevant file names

(3) A query engine reads relevant files from the data lake

(4) A query engine computes query result and returns it to

the client

An obvious approach to implement 𝑔𝑒𝑡𝐹𝑖𝑙𝑒𝑠 (𝑄) is to create

a simple inverted index [40] that stores a mapping between the

values of relevant columns and the files that contain these values

(Table 1). An open question is: what is the best way to do that

in a big data environment. More formally, we are looking for a

solution that will satisfy the following constraints:

(1) scalability: we want our index to be able to handle very
large and growing amounts of data

(2) performance: we need our index to be able to respond to

the lookup queries in a reasonable time (optimally sub-

seconds)

(3) cost: we want to minimize the monetary cost of our solu-

tion as much as possible

The trivial solution would be to store our index in a distributed

NoSQL database (e.g Cassandra [34], DynamoDB [11]) and up-

date it with parallel compute engines (e.g Spark, MapReduce).

However, while this approach may satisfy the first two of our

requirements (scalability and performance), its monetary cost

is far from being optimal. Let us show why by using some real

numbers.

We have two main alternatives for using a database service in

the cloud environment: IaaS and DaaS.



Table 2: Storage cost comparison

cost of 1TB/year pricing info references
Cassandra on EC2 16,164 $ [5, 9]

DynamoDB 2,925 $ [4]

S3 276 $ [6]

(1) IaaS: "Infrastructure-as-a-Service" model provides users

with the requested number of virtual machines where they

can install DBMS and use it as they wish (e.g. Cassandra

on top of EC2).

(2) DaaS: "Database-as-a-Service" model provides users with

database API without the need for managing hardware or

software (e.g. DynamoDB).

In Table 2
1
, we compare the monetary cost of storing data in

each one of these alternatives against storing it in a cloud object

store (similarly to how the data is stored in cloud data lakes). It

clearly can be seen that an object store is at least one order of

magnitude lower-priced than any other option. Since our focus is

on real-world cloud data lakes (i.e. petabytes and beyond scale),

we need to support indexes of very large volumes as well (index

on a unique column of data lake 𝐷 will need 𝑂 ( |𝐷 |) storage).
Thus, potential monetary savings of implementing indexing by

using object stores, instead of the naive solution based on key-

value stores, can be tremendous.

This observation is not new, and object stores superiority

in cost is a well-known fact in both industry [24] and research

community [44]. However, object stores are not suitable for every

case. More specifically, when comparing them to key-value stores,

they have the following caveats:

(1) higher latency : the actual numbers may vary, but usu-

ally object stores have higher latency than DBMS [44]

(2) limited requests rate : while requests rate is nearly

unlimited in scalable databases, in object stores there is an

upper limit (typically around thousands per second [38])

(3) optimized for large objects : object stores are op-

timized for storing large objects (typically GB’s [8]) and

hence are not suitable for systems that need random reads

(4) no random writes : the only way to mutate objects in

object stores is to replace them, which may be problematic

for systems that need random writes

While the first two points ("higher latency" and "limited re-

quests rate") are usually acceptable in OLAP systems, the last

two ("large objects" and "no random writes") introduce signifi-

cant implementation challenges. In our solution, we address both

these challenges.

To summarize, in this work, our research goal is twofold:

• to implement 𝑔𝑒𝑡𝐹𝑖𝑙𝑒𝑠 (𝑄) and thereby improving random

reads performance in cloud data lakes

• to build our solution on top of object stores so the addi-

tional monetary cost imposed by our scheme will be as

low as possible

1
For simplicity, we ignore some factors that cannot change the general trend, like

the maintenance cost of Cassandra, the cost of requests in S3 and DynamoDB,

and the fact the data in object stores can be compressed. Our goal is only to show

that object stores are significantly cheaper than the other options. We also provide

numbers for specific systems (Cassandra, DynamoDB, AWS), but the same cost

trend is preserved in other similar systems as well.
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Figure 4: Index storage layout example

3 OUR APPROACH
In sections 3.1, 3.2, and 3.3 below, we explain how exactly we

store, compute, and use our index. In section 3.4, we discuss

potential optimizations to our basic scheme.

3.1 Index Storage
We store our index as a collection of files partitioned by an in-

dexed column name (Fig. 4). Each index file is responsible for

some range of column values and stores relevant information

about this range in a format depicted in Table 3.

There are two sections in the index file - data and metadata.
The data part consists of a map between a column value and a

list of corresponding file names ordered by a column value. The

map is divided into 𝐾 chunks based on the predefined number of

values per chunk𝑀 , such that each of the 𝐾 chunks contains a

mapping for the𝑀 consecutive values of the particular indexed

column. For example, in the index presented in Table 3, we have

𝑀 = 3, and the first chunk contains a mapping between 3 column

values (207, 350, 418) and the file names that contain tuples with

these values.

Metadata stores information about the location of data chunks

inside the index file along with their "border" values. Considering

the example in Table 3 again, from the metadata section we learn

that the firsts chunk’s minimal value is 207, the maximal value is

418, and its location in the file is in offsets 0:2048.

For very big data lakes, we will have many index files and then

will start experiencing the same problem we are trying to solve

in data lakes (many irrelevant files are accessed). We solve this

issue by managing an index of indexes (i.e. root index) - a single

file that stores a mapping between the index file name and its

border values (Table 4). In Section 3.3 below, we will explain how

the root index and metadata sections are used by the index users.

3.2 Index Computation
Since data lakes store enormous volumes of data, our index will

be very large as well. To be able to compute such an index in a

reasonable time we would like to be able to compute it in parallel

by using common parallel compute engines like MapReduce [25]

and Spark [47].

Fortunately, we can easily do that by a simple map-reduce flow.

Pseudo-code (in Spark-like syntax) of the algorithm for creating

an index on a specific column in a given data lake is presented in

Algorithm 1.



Table 3: Index file example

Data 207 file051, file033

350 file002

418 file170, file034

513 file0002

680 file443, file001, file033

799 file883

... ...

Metadata 1 min:207|max:418|offset:0

2 min:513|max:799|offset:2048

... ...

Table 4: Root index example

Column Name Min Max Index File Name

event-id 207 560 index13

event-id 590 897 index23

... ... ... ...

In the map phase, each worker emits (col-value, file-name)
pairs and in reduce phase map results are grouped into (col-
value, List<file-name>) map. Then, the result is written into the

distributed storage in our custom format (presented in Table 3

and denoted in the pseudo-code as my.index). Finally, we create
the root index file by scanning metadata sections of all the created

index files and taking minimum and maximum values from each

file.

Algorithm 1 creates an index for an existing data lake (i.e.

static scenario). In a dynamic scenario, bulks of new files are

being added to the lake periodically during scheduled Extract-

Transform-Load (ETL) processes. To support a dynamic scenario,

we should be able to update our index in accordance with the

new data.

Our algorithm for index update, presented in Spark-like syntax

in Algorithm 2, runs in parallel and tries to modify as few existing

index files as possible. It works like that:

• First (line 2), we read the root index to get "ranges" - a set

of tuples (min, max, index-file-name) for a given column

(the result may look similar to Table 4).

• Then (lines 3-4), we use broadcast join technique [16] to

compute "labeled-delta" - values from delta files labeled

with the corresponding "index-file-name" from "ranges"

set. Considering the example in Tables 1-4, the result

would look as a set of triples (event-id, data-file-name,
index-file-name); for example, (450, file1111, index13), (645,

file1112, index23).

• Finally (lines 5-8), we use index file names computed in

labeled-delta, to identify index files that should be changed.

We read these files and combine their data with the delta

files. Then, we apply Algorithm 1 on this data and override

relevant existing index files and the root index.

• Note that we need to re-partition our data by "index-file-

name" (line 7) to ensure that there will not be a mix be-

tween different index files and each index file will be com-

puted by a different process.

3.3 Index Usage
In this section we explain how to use our index format to imple-

ment 𝑔𝑒𝑡𝐹𝑖𝑙𝑒𝑠 (𝑄) (pseudo-code is presented in Algorithm 3).

Upon receiving a "needle in a haystack" query𝑄 and a path to

index location, we first extract the column name and the column

value from the "where" clause of the query (line 2). We then read

the root index and find to which index file the given value belongs

(lines 3-4). Once we know what index file has information about

our value, we perform the following:

• we read the metadata part of the file

• we find to which data chunk our value belongs based on

the min/max values.

• once found to which chunk our value belongs, we read

the (column value, List<file name>) map from the specified

offset

• if our value appears in the map we are done and the

method returns the file names list

• otherwise we know that requested value is not in the index

so we exit with a relevant flag

Note that Algorithm 3 does not require parallel processing

and can run as a standalone function.

Algorithm 1 Create Index

1: procedure CreateIndex(datalake-path, index-path, col-name)

2: datalake = read(datalake-path)

3: index = datalake.groupBy(col-name).agg(collect("f-name"))

4: index-sorted = index.orderBy(col-name)

5: index-sorted.write.format("my.index").save(index-path)

6: create-root-index(index-path)

7: end procedure

Algorithm 2 Update Index

1: procedure UpdateIndex(path-to-new-files, index-path, col-name)

2: ranges = getIndexRanges(index-path, col-name)

3: delta = read(path-to-new-files).select(col-name, "f-name")

4: labeled-delta = delta.join(broadcast(ranges))

5: old-index = read(labeled-delta.select(index-file-name))

6: new-index = labeled-delta.union(old-index)

7: new-index.repartition(index-file-name)

8: run CreateIndex on new-index and override old-index files and

the root-index

9: end procedure

Algorithm 3 Get Files

1: procedure GetFiles(Q, index-path)
2: col-name, col-value = extract-col-values(Q)

3: root-index = readRootIndex(index-path)

4: index-file = root-index.getFile(col-name, col-value)

5: meta = readMetadata(index-file)

6: chunk-id = meta.getChunkIdByValue(col-value)

7: map = readDataChunk(index-file, chunk-id)

8: fileNames = map.get(col-value)

9: if fileNames is not empty then
10: return fileNames

11: else
12: return VALUE-NOT-EXISTS

13: end if
14: end procedure



3.4 Optimizations
In this section, we briefly discuss several potential optimizations

that can be done to our basic scheme. We plan to deepen some

of them in our future work.

• Bloom filter: In Algorithm 3, we perform two reads

from the index file that may contain our queried value

even if the value does not exist in the data lake at all. A

possible solution to this issue is adding a Bloom filter [17]

containing all the column values in the index file to the

metadata section and check it before querying the index

data chunk. This way, in most cases, we will perform a

single read operation for non-existing value but will have

a larger metadata section in each index file.

• Caching: By caching the root index and metadata sections

on the query engine side, we can significantly reduce the

number of network operations per query.

• Compression/Encoding: We can apply different encod-

ing and compression techniques to reduce the storage

overhead of our index. For example, instead of storing file

names lists as strings, we can use compressed bit vectors

[21]; metadata offsets can be encoded with delta encoding

[35].

4 PERFORMANCE ANALYSIS
In this section, we analyze our solution from a performance

perspective. We first show how our index improves queries per-

formance and then we show what is the performance overhead

imposed by it.

A cost of query 𝑄 is dominated by a cost of read operations

from remote storage. When columnar format is used, irrelevant

columns can be skipped, but at least some data should be read

from each file. Thus, by using a notation from Table 5, we can

define a cost of query Q as:

𝐶𝑄 = 𝐶𝑅 · |𝐹 | (1)

When using our index, we read only relevant data files 𝐹 (𝑄)
and perform at most three read operations from the index files

(for the root index, metadata, and data chunk). Hence, the cost is

reduced to:

𝐶𝑄 = 𝐶𝑅 · ( |𝐹 (𝑄) | + 3) (2)

Thus, the performance is improved by:

|𝐹 |
|𝐹 (𝑄) | + 3

(3)

Since our focus is on "needle in a haystack" queries, we assume

that |𝐹 (𝑄) | is a small number (typically below 100), while |𝐹 |
in real-world data lakes can reach millions [42]. Thus, we can

expect a reduction of query cost by order of magnitude.

Our solution imposes overhead in the following two dimen-

sions:

• Storage: Additional storage required for our index has an
upper limit of |𝐷 | (in case that all columns are indexed).

In a more realistic scenario, when only a few of the data

lake columns are indexed, storage overhead is expected to

be much lower than |𝐷 |. For example, in our experimental

evaluation an index on unique column requires around

5% of the data lake size (exact numbers are presented in

Section 5.1)

• CreateIndex/UpdateIndex: Algorithms 1 and 2 are sup-

posed to run offline without affecting query performance.

Their cost is dominated by the cost of reading relevant

Table 5: Notation

Symbol Description

𝐷 A data lake

𝐶 Data lake column names

𝑉 Data lake column values

𝐹 Data lake files

𝑁 Number of files in the data lake

𝐾 Number of data chunks in index file

𝑀 Number of values in a data chunk

𝑄 A query

𝑅 Read operation from remote storage

𝐹 (𝑄) Files that contain tuples that satisfy 𝑄

|𝑥 | Size of object 𝑥

𝐶𝑥 Cost of operation 𝑥

data lake files, creating an index by map-reduce flow, and

writing the index into a distributed storage.

In summary, our solution imposes reasonable storage and

(offline) computation overhead but improves query performance

by order of magnitude (equations 1-3).

5 IMPLEMENTATION AND EXPERIMENTAL
RESULTS

We have implemented a prototype of our solution (Algorithms 1,

3); the implementation and extended results are available on-line

[46]. For experimental evaluation, we cooperated with a large

enterprise company that manages cloud data lakes at petabyte

scale. We used an anonymized subset of the real data lake for our

experiments.

The data lake we used is stored in AWS S3 cloud storage. The

data lake properties are as follows:

• 1,242 files in Parquet format (compressed with snappy)

• 605,539,843 total records

• each record has a unique identifier (8 bytes)

• 233 columns (mainly strings but also numbers and dates)

• 54.2 GB (total compressed size)

Our evaluation focused on the following stages:

(1) Index Creation: We created an index according to our

approach (Algorithm 1) and according to a naive approach

based on a key-value store. Then, we compared index

creation time and its storage size in each of the approaches.

(2) Index Usage: We queried random values from the data

lake in different ways (with and without index) and com-

pared query execution time in different modes.

5.1 Index Creation Evaluation
We built an index on two data lake columns:

• record-id (Long): unique identifier of each record in

the data lake (distinct count - 605,539,843)

• event-id (String) : unique identifier of each event in

the data lake (distinct count - 99,765,289), each event-id is

mapped to 6 record-ids on average.

For index creation, we used Apache Spark (2.4.4) running on

AWS EMR (5.29.0). EMR cluster had 15 nodes of type r5d.2xlarge

(8 cores, 64GB memory, 300GB SSD storage). Our index was

stored in AWS S3 as a collection of Parquet files compressed with

Snappy and with a chunk size of 10 MB; root-index was stored in

a single line-delimited JSON file. The key-value index was stored



Table 6: Index creation results

column name our index (S3) Cassandra index

record-id (pk)

compute time:

3 min

storage size:

1 root file - 5.5 KB

30 index files - 3.1 GB

compute time:

4 hours, 23 minutes

storage size:

13.2 GB

event-id

compute time:

3 min

storage size:

1 root file - 5.3 KB

30 index files - 5.2 GB

compute time:

47 min

storage size:

4.4 GB

in Apache Cassandra (3.4.4) running on AWS EC2 (3 nodes of

type i3.xlarge, a replication factor of 1, LZ4 compression).

Experimental results of index creation are presented in Table

6 and Figures 5, 6.
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Figure 6: Index Creation Storage

It is worth noting, that even though our primary reason to

implement the data lake index on top of object stores was moti-

vated by reducing the monetary cost, our experiments provide

an additional benefit of this decision. Index creation time of our

approach is an order of magnitude faster than those based on a

key-value store. In addition, in our approach, the storage size of

the index is much smaller for a unique column and more or less

the same for a non-unique column.

5.2 Index Usage Evaluation
For index usage evaluation, we performed the following test for

the indexed columns (record-id, event-id):

(1) get 10 random column values from the data lake

(2) for each column-value, do
(a) run "select * from data-lake where column = column-

value"
(b) print query execution time

We executed this test in the following modes and compared

their results.

(1) SparkSQL with our index (Algorithm 3)

(2) SparkSQL with Cassandra index

(3) SparkSQL without index

(4) AWS Athena [3] without index

SparkSQL was executed on the same cluster as in the previ-

ous section (AWS EMR with 15 nodes). AWS Athena (Amazon

serverless query engine based on Presto [42]) ran on AWS Glue

[7] table created on top of the data lake Parquet files. The average

results of the 10 runs for each one of the modes are presented in

Fig. 7.

Experimental results confirm our performance analysis in

Section 4, as it clearly can be seen that our solution (as well as

Cassandra-based) outperforms existing query engines (Spark and

Athena) by order of magnitude.

To better understand the trade-offs between our solution and

Cassandra-based, we also compared their execution time of cal-

culating 𝑔𝑒𝑡𝐹𝑖𝑙𝑒𝑠 (𝑄). The results are presented in Fig. 8. We eval-

uated two versions of our approach, with and without caching of

the root index (see Section 3.4). Cassandra latency is lower than

that of our approach, but when using a cache, the difference is

not significant (less than a second).

To summarize, as expected, adding indexing to data lakes dras-

tically improves queries performance. In this evaluation, we have

demonstrated that index can be implemented in two different

ways - a trivial approach based on key-value stores and our ap-

proach based on cloud object stores. Both approaches improve

queries’ execution time in an almost identical way (the difference

is in milliseconds resolution). However, our approach has the

following advantages over the naive solution:

(1) order of magnitude monetary cost improvement (Table 2)

(2) order of magnitude index creation time improvement (Fig.

5)

(3) significantly less storage overhead in some cases (Fig. 6)
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6 RELATEDWORK
Data lakes are a relatively new approach for storing and ana-

lyzing large amounts of data. As a new technology, it still lacks

a formal definition, and in existing literature, different authors

assign different (and sometimes even contradictory) meanings

to this concept [29, 41]. In this paper, we stick to the definition

from the recent Seattle Report on Database Research [2], where

the main characteristic of the data lakes architecture is that it

"disaggregates compute and storage, so they can scale indepen-

dently."

There are several research challenges in the data lakes domain.

The most fundamental ones are knowledge discovery [30] and

various optimizations [2]. We focus on the latter and study opti-

mization of a specific scenario in data lake systems - "needle in a

haystack" queries. Our solution can be seen as a combination of

different techniques from databases and big data domains. Thus,

we use partitions as in [18] to organize our index according to

columns. For scalability, we use root-index as in B+ trees [40] and

some distributed databases (e.g. [22]). The format of our index

files is similar to columnar formats [28] with multiple chunks

of data and a single metadata section. We use Bloom filters [17]

to improve the performance of queries on non-existing values.

Parallel processing paradigm [25, 47] is used for index creation

and updating.

At a high level, our solution resembles a well-known inverted
index structure which is extensively used in full-text search en-

gines [14, 20, 40, 48]. Inverted index maps words to the lists of

documents that contain them, and for data sets of the moderate

size, it can be implemented with the standard index structures as

a B+ tree or a hash index [40]. For "big data" volumes, distributed

inverted indexes were proposed [48]. Two main techniques used

in distributed inverted indexing are document-based [14] and

term-based [20]. Both these techniques assume combined com-

pute and storage layers, while in our system model, the main

assumption is that compute and storage are separated.

In [27], the authors study inverted indexes in dataspaces ("col-
lections of heterogeneous and partially unstructured data"). Their

main focus is on the heterogeneity of data and very large indexes

are not considered (index implementation is based on a single-

node Lucene engine [15]); in our solution, the focus is on struc-

tured data, yet we expect very large volumes of both data and

indexes. In [26], indexing in big data is achieved by enhancing

the MapReduce load process via user-defined functions (UDF).

However, this solution is limited to a particular system (Hadoop),

where compute (MapReduce) and storage (HDFS) components

are running on the same machines; our focus is on disaggregated

architecture. System model similar to ours is considered in [19],

as well as in multiple industry approaches (e.g. [10]), however

in these approaches index is stored in a key-value database, and

as we show in this work it has two severe drawbacks comparing

to our solution - significantly higher monetary cost and much

longer load time.

To the best of our knowledge, our work is the first research

attempt to improve queries performance in cloud data lakes by

building indexing on top of object stores. However, two indus-

try projects focus on the same domain - Microsoft Hyperspace

[39] and Databricks Delta Lake [23]. Both assume data lakes

architecture and try to improve queries performance by using

indexes stored in object stores. Below we briefly discuss how

these projects differ from our approach based on the available

online information about these systems [23, 39].

• Hyperspace currently uses only "covering indexes" and

plan to support other index types in the future. Covering

indexes are built upon user-provided columns lists "in-

dexed columns" and "data columns", and aim to improve

the performance of the queries that search by "indexed

columns" and retrieve "data columns". The implementation

is based on copying both "indexed" and "data" columns

from the data lake and storing them in a columnar format

sorted by "indexed" columns. While covering indexes can

improve some types of queries, they are not suitable for

"needle in a haystack" queries where retrieval of all the

columns should be supported (e.g. for GDPR scenario).

• Delta Lake uses Bloom filter indexes in the following

way. Each file has an associated file that contains a Bloom

filter containing values of indexed columns from this file.

Then, upon a user query, Bloom filters are checked before

reading the files, and the file is read only if the value was

found in the corresponding Bloom filter. We use a similar

technique (Section 3.4), but in our case, only a single Bloom

filter will be read for a particular value, while in Delta Lake

all existing Bloom filters should be read.



7 CONCLUSION
In recent years, cloud data lakes have become a prevalent way of

storing large amounts of data. The main implication is a separa-

tion between the storage and compute layers, and as a result, a

rise of new technologies in both compute and storage domains.

Query engines, the main player in the compute domain, are de-

signed to run on in-place data that is usually stored in a columnar

format. Their main focus is on analytical queries while random

reads are overlooked.

In this paper, we present our approach for optimizing needle
in a haystack queries in cloud data lakes. The main idea is to

maintain an index structure that maps indexed column values

to their files. We built our solution in accordance with data lake
architecture, where the storage is completely separated from the

compute. The reason for building our index on top of object

stores was motivated by the observation that the monetary cost

of this solution is significantly lower than the one based on DBMS.

Our experimental evaluation provides an additional reason to

favor object stores over the DMBS approach - much lower index

computation time.

For future work, we are planning to extend our index scheme

and support more complex query types (e.g. joins, group by).

An additional research direction may be an implementation of

different systems according to data lake architecture and thereby

improving their monetary cost and load time. For example, im-

plementing a key-value store on top of object stores seems to be

a promising research direction which can be based on the ideas

presented in this work.
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