
Automating Bronchoconstriction Analysis based on U-Net
[Industrial and Application paper]

Christian Steinmeyer
Susann Dehmel
David Theidel
Armin Braun
Lena Wiese∗

christian.steinmeyer@item.fraunhofer.de
susann.dehmel@item.fraunhofer.de
david.theidel@item.fraunhofer.de
armin.braun@item.fraunhofer.de
lena.wiese@item.fraunhofer.de

Fraunhofer Institute for Toxicology and Experimental Medicine
Hannover, Germany

ABSTRACT

Advances in deep learning enable the automation of a
multitude of image analysis tasks. Yet, many solutions
still rely on less automated, less advanced processes. To
transition from an existing solution to a deep learning
based one, an appropriate dataset needs to be created,
preprocessed, as well as a model needs to be developed,
and trained on these data. We successfully employ this
process for bronchoconstriction analysis in Precision Cut
Lung Slices for pre-clinical drug research. Our automated
approach uses a variant of U-net for the core task of airway
segmentation and reaches (mean) Intersection over Union
of 0.9. It performs comparably to the semi-manual previous
approach, but is approximately 80 times faster.

KEYWORDS

Image segmentation, Preprocessing pipeline, Medical image
analysis, Bronchoconstriction, Lung tissue slices

1 INTRODUCTION

Inflammatory and allergic lung diseases, such as lung in-
jury, pneumonia, asthma, chronic obstructive pulmonary
disease, or pulmonary hypertension are still difficult to
treat. A common symptom of these diseases is the obstruc-
tion of the airways or Airway Hyperresponsiveness (AHR).
Bronchodilators aim to avoid or reduce these symptoms.

With advances in the field of deep learning, computers
reach and sometimes surpass human level performance in
specific tasks like image analysis [7]. In semantic segmenta-
tion, Convolutional Neural Networks (CNNs) achieve state
of the art results [13]. In this work, we describe our process
of changing from a conventional, semi-manual workflow to
a fully automated one using Neural Networks (NNs) for
the evaluation of bronchodilators in microscopy image data
from Precision Cut Lung Slices (PCLSs). We focus on the

∗Also with Institute of Computer Science, Goethe University
Frankfurt.

© 2021 Copyright for this paper by its author(s). Published in the
Workshop Proceedings of the EDBT/ICDT 2021 Joint Conference
(March 23–26, 2021, Nicosia, Cyprus) on CEUR-WS.org. Use permit-
ted under Creative Commons License Attribution 4.0 International
(CC BY 4.0)

underlying dataset curation, image labelling, and process-
ing. We present an optimized data processing pipeline from
raw images to model input. We transparently develop a NN
model for the task of semantic segmentation of airways. We
also explore image quality as means to improve predictions.
Finally we show preliminary results.

2 BACKGROUND

There is a continuous need of innovative or advanced drugs
to treat the symptoms of obstructive lung diseases. PCLS
is one of the developed models to evaluate bronchodila-
tory compounds in the non clinical phase of drug devel-
opment. Bronchoconstriction analysis with this model is
applied in house since 2012. PCLS allows to target small
airways of the lung in different animals, (mouse, rat, or
non-human primates) or human lung explant tissue. They
can be analyzed to assess potency of bronchodilatory drugs
through concentration-response curves. Mean inhibitory
concentrations (IC50 values) can be compared to reference
drugs within one human donor or animal to compare effi-
cacy of the drugs [14, 19, 22, 24]. Bronchoconstriction can
also be compared across different species (e. g., for AHR
in asthma) [9]. In 13 studies, we tested bronchodilators
or bronchoconstricting compounds and mode of action of
drugs as contract research with pharmaceutical industry or
within public studies (sponsored by BMBF, BMWI, DFG).

2.1 Image Acquisition

Figure 1: Experiment setup for image acquisition.

We use images that were acquired in previous studies
testing efficacy of bronchodilatory drugs. In those stud-
ies, PCLSs were prepared from tumor-free parts of lung



explants or from freshly isolated lungs after necropsy of
animals, as described in [18] (see Figure 1, step 1). Lung
lobes were cut into approximately 300 µm thick slices and
transferred into petri dishes. Airways within PCLSs were
imaged and digitized using an inverted microscope and a
digital video camera (see Figure 1, step 2). Camera control
and image analysis were achieved by AxioVision software
(Zeiss, Germany). Each experiment setup differs in com-
pound(s), doses, or specimen and is repeated with at least
two samples. Throughout an experiment, images are taken
in regular intervals. The resulting data are image series of
varying length depending on the experiment (e. g., reaction
times). In approximately 1750 such series from around 420
different experiment setups, over 55000 images are available.

2.2 Semi-Manual Airway Segmentation

In our previous studies, we used a semi-manual approach to
analyze the microscopy images. The Image J plugin “PCLS
Area Tool”was used for the airway segmentation. It is based
on the IsoData approach [20], that uses different brightness
levels between object of interest and background1. It has
an automatic option (that we call “IsoData”, here), as well
as one with manual intervention (that we call “IsoData+”).
The automatic option does not yield satisfactory results
(see Section 6), mainly because it does not include locality.
If surrounding tissue has similar luminance as the airway, a
frequent result is a correctly segmented airway, surrounded
by this incorrectly segmented other tissue. It can be vastly
improved by manually setting the threshold and defining a
region of interest around the airway. But as this took time
in past studies, we automate this segmentation task.

3 RELATED WORK

In recent years, NNs have caused big leaps forward in se-
mantic segmentation tasks [16, 25]. In 2015, Ronneberger
et al. published the U-net architecture for image segmen-
tation in a biomedical setting [21]. It was designed to cope
with few training data and high resolutions, typical for med-
ical image analysis. It consists of an encoder and a decoder.
The encoder serves as a feature detector. Through a series
of convolutions and max pool operations, it reduces the
resolution (𝑥 and 𝑦 dimensions) of the data while increasing
its depth (number of feature maps). The decoder serves as
an upsampler. Through a series of convolutions and decon-
volutions, it increases the resolution again while decreasing
the depth. It also contains skip connections from each layer
before max pooling (encoder) to the corresponding layer
after deconvolution (decoder). Finally, in the last layer, the
output is mapped to the desired number of classes.

In the context of lungs, U-net is frequently used. It
can be extended to fit specific tasks, e. g., through adding
residual and recurrent connectivity [2], combining it with
other architectures [4, 12], or extending it with a third
dimension [12, 17]. We therefore select it as the starting
point for our model. For a more generic review of deep
learning techniques for semantic segmentation, see [11].

1For details on IsoData, see https://imagej.net/Auto Threshold.
html#IsoData (last accessed on 2021–03–18).

4 AUTOMATING SEGMENTATION

To automate airway segmentation with NNs, we need la-
belled data for supervised training. To the best of our
knowledge, no public dataset for airway segmentation ex-
ists. Thus, we create our own (Section 4.1) and propose a
data pipeline for preprocessing (Section 4.2). In Section 4.3,
we describe the development of an ML model for semantic
segmentation and analyse it in Sections 4.4 and 4.5.

4.1 Image Labelling

Because we are working towards the goal of optimal auto-
matic segmentation, the quality of data labels is essential.
The upper limit of model performance depends on the label
quality. Deviation from the ground truth means a loss in
model potential. Because the existing tools yield unsatis-
factory labels, the image labelling is performed manually:
Each label is created by a trained specialist. It is then
reviewed and possibly adjusted by another one.

(a) 3D representation. The dark plane
represents the camera’s focus plane.

(b) 2D representation

from above, similar to
the camera perspective.

Figure 2: Schematic depiction of a PCLS section (grey), con-
taining an airway (blue).

The main target of bronchoconstriction analysis is the
relative change of airway volume. Our annotations resemble
an approximation of the ground truth: We consider airways
simplified as prisms (see Figure 2a). The volume 𝑉 of a
prism is defined as 𝑉 = 𝑏 ∗ℎ, where 𝑏 is the base area and ℎ

is the height of the prism. The airway cross-section surface
is proportional to the airway volume; thus, we can use it
as an indicator for the volume. If an airway lies perfectly
orthogonal to the camera, all cross-section surfaces overlap.
If not, cross-sections of different depths are shifted on the
image plane (see Figure 2b). Some cross-sections might be
out of focus and choosing an arbitrary cross-section might
lead to a less stable model. To overcome these issues, we
label the cross-section in the focus plane, i. e., the plane that
lies parallel to the camera and is the sharpest. This includes
more detail and allows more unambiguous labels. We create
labels as RGB images representing class membership on
pixel level, where the target class is one of background,
border, or airway. Each target class is assigned a unique
RGB color with maximal distance to other classes.

The labelled dataset should resemble real life data. In
order to select a diverse dataset from as few images as
possible, we choose one image per experiment setup as
described in Section 2.1, yielding 420 samples.

4.2 Data Pipeline

The unprocessed sample data is preprocessed as depicted in
the pipeline in Figure 3 before being fed to a model. First,

https://imagej.net/Auto_Threshold.html#IsoData
https://imagej.net/Auto_Threshold.html#IsoData


Figure 3: Data preprocessing pipeline from a sample to model input tensor.

one sample is defined as a raw image, its corresponding
label created as described in Section 4.1, as well as its
meta data (e. g., quality, see Section 5). The samples are
collected in what we call the original dataset. From this
original set, we can create a subset (e. g., by quality). This
step is optional and depends on the goals of the test run.

Since working with image data is resource intensive, we
aim to optimize computation time and cost. To that end,
we store the dataset variants in the tfrecords format2. We
read those files into tensorflow.data.Dataset3 data struc-
tures for further processing. Both are part of the tensorflow
framework [1] and highly optimized [8]. They support lazy
evaluation, i. e., letting us read data on demand, reducing
memory needs and allowing us to work with bigger images.
We also use them to minimize idle times of Graphics Pro-
cessing Units (GPUs). We transform the data to tensors.
We do it early, because that way, we can profit most from
tensorflow ’s computation graph optimizations [8]. In most
test runs, the data is then shuffled and split into train,
test, and validation sets. Our model expects input tensors
of a fixed shape. Tensor shape is defined by the image
resolution (width, height) and number of (color) channels
(depth). Some of the available images are colored. As the
color channels might store useful information, we decode
all input images to three channel RGB format. While in
other domains, image tiling is applied to reduce model size
[21], in our case the area covered by airways varies and
often takes up the majority of an image. Thus, we do not
apply tiling, but bilinearly transform them to have fixed
dimensions (exact dimensions vary by experiment).

We want to use class based metrics (see Section 4.4) and
hence one hot encode the label images. To that end, we
transform them from RGB space to HSV space. We apply
the same transformation to the target class representations
described in Section 4.1. We empirically chose thresholds
for hue (10), saturation (100) and value (100) to determine
whether or not a pixel belongs to a target class. Each pixel is
assigned at most to one target class that way. For each label,
we use this to create binary masks for the classes. Finally,
we concatenate the binary masks as channels, forming the
one hot encoded labels (see last step in Figure 3).

4.3 Model Development Process

Within the scope of the model development process, we
work towards fast exploration and experimentation. Main-
taining high code quality and avoiding bugs are further
meta goals. Hence, we employ the following mechanisms.
Our model development process can be described as two
intertwined cycles of research on one hand and development

2For details on tfrecords, see https://www.tensorflow.org/tutorials/
load data/tfrecord#setup (last accessed on 2021–03–18).
3For details on tf.data.Dataset, see https://www.tensorflow.org/api
docs/python/tf/data/Dataset (last accessed on 2021–03–18).

on the other (see Figure 4). We start by phrasing a question
like “How does image size influence model performance?”.
If that question can be answered with the current code
basis, we continue with the research cycle. We define the
necessary test run parameters and configuration, before
executing it in our research environment. This also serves
the purpose of documentation and increases reproducibility
as the same configuration can be run again. We use jupyter
notebooks [15] to enable interaction with the results. As
soon as new questions arise, we repeat the cycle.

Figure 4: Research and development cycle. VCS stands for
Version Control System.

If a question cannot be answered with the current code
basis, we continue with the software development cycle.
Driven by reusability and modularization, we formulate
generalized requirements from the question (e. g., resize
images). We then implement and test the missing features
using test driven development [5]. In an effort to fail cheap
and fast, we create unit and integration tests for our custom
code with pytest4. In combination with syntactic checks,
they ensure intended behavior. We integrate them in a Con-
tinuous Integration (CI) pipeline [10]. As a result, breaking
changes are noticed and errors identified quickly (see Fig-
ure 4). All code is managed in a Version Control System
(VCS). Once the features work locally, they are merged
in the remote repository of the VCS. This triggers our CI
pipeline, ensuring proper behavior in the test environment.
If any of the tests fail, we repeat the implementation and
following steps (cf. dotted arrows in Figure 4). On success,
we deploy the new code and continue the research cycle.

4.4 Metrics and Defaults

In order to compare performance of different models or set-
tings, we use numeric metrics. In our semantic segmentation

4For details on pytest, see https://docs.pytest.org/en/stable/ (last
accessed on 2021–03–18).

https://www.tensorflow.org/tutorials/load_data/tfrecord#setup
https://www.tensorflow.org/tutorials/load_data/tfrecord#setup
https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://docs.pytest.org/en/stable/


task, we use per-pixel labelling. Due to strong class imbal-
ance (usually there is more background than foreground),
simply using accuracy does not suffice. By choosing metrics
that consider both, the number of correct predictions, as
well as the ratio of classes, they better represent the actual
prediction quality. Due to its wide spread use [11] and its
intuitive definition, we use (mean) Intersection over Union
(mIoU), or Jaccard Distance, defined as:

𝑚𝐼𝑜𝑈 =
1

𝑛 + 1

𝑛∑
𝑖=0

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁 𝑖
(1)

where 𝑛 is the number of target classes, 𝑇𝑃𝑖 is the number
of true positive, 𝐹𝑃𝑖 the number of false positive, and 𝐹𝑁𝑖

the number of false negative pixels for the target class 𝑖.
We also use (mean) Dice Similarity Coefficient (mDSC),

also called quotient of similarity, F1-score, or harmonic
average between precision and recall (cf. [2]), defined as:

𝑚𝐷𝑆𝐶 =
1

𝑛 + 1

𝑛∑
𝑖=0

2𝑇𝑃𝑖
2𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁 𝑖

(2)

We use Categorical Cross Entropy (CCE) as both, loss
and metric (lower is better), defined as:

𝐶𝐶𝐸 = −
𝑚∑
𝑗=0

𝑦 𝑗 ∗ log 𝑝 𝑗 (3)

where 𝑚 is the total number of values (pixels through all
channels), 𝑝 𝑗 is the model prediction for index 𝑗 , and 𝑦 𝑗 is
the corresponding target value.

In the upcoming experiments, we consider different vari-
ables, like resolution, and their effect on prediction perfor-
mance. We use the following default setting, unless specified
otherwise: (1) U-net with two encoder and decoder blocks
(2) image dimensions of 128 by 128 (3) 64 filters in first
convolutional block (4) spatial dropout of 0.5 in encoder
(5) ReLU as activation function in inner layers (6) SoftMax
as activation function in output layer (7) CCE as loss func-
tion (8) batch normalization between convolutional layers
(9) training for 50 epochs with a batch size of 8. Using
batch normalization and dropout reduces overfitting.

Further, we use a variant of ten-fold cross validation:
First, we split the data into train, test, and validation
sets. For training, we then further split the train set into
ten separate folds, each missing a different tenth of the
original set. We use the validation set to observe training
performance. After training, we use the test set to obtain
results (i. e., the ten different folds are evaluated on the
same test data). We choose this variant to be able to better
compare evaluation of different subsets (see Section 5). The
reported metrics refer to either the average (CCE, mDSC,
mIoU) over all folds, or sum (duration). All test runs are
performed on an Intel(R) Xeon(R) Gold 6252 CPU and
two NVIDIA Tesla T4 GPUs.

4.5 Experiments and Results

The approach described in Sections 4.2 and 4.3 enables
us to efficiently perform experiments. We can evaluate
hypotheses in fast cycles and robustly implement missing
functionality. We start with small images. Then, we identify
and address issues that arise as we scale up. In a first exper-
iment, the input images and labels are bilinearly resized to
differently sized squares (for images of size 1024, batch size

is reduced to 4). The results are depicted in Table 1. The
best results are achieved when using the smallest images,
increasing image size leading to a decreasing performance.

Image Size CCE mDSC mIoU Duration

32 0.124 0.951 0.908 0:14:55
64 0.118 0.948 0.904 0:15:40

128 0.128 0.942 0.893 0:26:16
256 0.168 0.925 0.866 0:54:34
512 0.255 0.877 0.786 3:18:38

1024 0.313 0.852 0.749 13:56:10

Table 1: Experiment results for different image sizes, trained
for 50 epochs each (Duration in hours:minutes:seconds)

We conclude that the task of airway segmentation is
easier, if the image resolution is smaller, i. e., there are
fewer details available. Also, models with smaller image
sizes converge faster, which we show in another experiment:
We increase the maximum number of epochs, but stop
training early, if the model converges. To evaluate conver-
gence, we consider validation loss and stop learning when
there is no improvement for twelve epochs. This further
reduces overfitting. The results are depicted in Table 2.
When comparing the average duration in both experiments,
we see: While models trained on images smaller than 128
pixels stop training earlier than 50 epochs, those trained
on bigger images need more epochs before stopping. This
also improves the results for bigger image size.

Image Size CCE mDSC mIoU Duration

32 0.113 0.947 0.902 0:10:00
64 0.110 0.948 0.903 0:13:54

128 0.119 0.945 0.898 0:26:18
256 0.148 0.936 0.883 1:39:14
512 0.19 0.91 0.84 7:35:53

1024 0.220 0.893 0.811 35:19:46

Table 2: As Table 1 but up to 500 epochs with early stopping.

Further, we identify the receptive field as limiting factor
for larger images. The receptive field of a filter is defined
by the kernel size, stride, dilation, and padding of previ-
ous layers [6]. In the case of U-net, the receptive field at
the deepest level grows exponentially with the number of
encoder blocks: It has a side length of 14 pixels for one
block, 32 for two blocks, 68 for three, 140 for four, 284 for
five etc. In the next experiment, we adapt the number of
U-net blocks for larger input sizes (see Table 3).

5 QUALITY META LABEL

Apart from the model, we also reconsider our dataset in
order to improve results. Our dataset is heterogeneous. It
contains images from various specimens and was collected
by five researchers. Due to different experiment setups,
they also vary in visual properties like brightness (standard
deviation of per image average normalized brightness of
0.11), hue (0.22), saturation (0.12), and value (0.11) in HSV
space. This affects the overall quality of each image. We em-
pirically identify the following crucial factors: (1) contrast



Image
Size

RF CCE mDSC mIoU Duration

256 68𝑏 = 3 0.149 0.934 0.881 1:27:00
512 68𝑏 = 3 0.144 0.934 0.879 9:30:14
512 140𝑏 = 4 0.133 0.942 0.893 8:47:55

1024 68𝑏 = 3 0.192 0.907 0.835 39:21:09
1024 140𝑏 = 4 0.179 0.920 0.856 22:45:53
1024 284𝑏 = 5 0.194 0.915 0.847 26:12:40

Table 3: Like Table 2, but increased receptive fields (RF).
The subscript b denotes number of U-net blocks.

between the airway and the surrounding tissue (2) airway
alignment in relation to the camera (3) sharpness of the
airway edge (4) amount of airway occlusion (by tissue, par-
ticles or image distortions like flares). Because we found our
perception influenced by these factors, we hypothesize this
might be the case for our model. Based on these criteria, we
manually categorize the samples into 22 “bad”, 345 “good”,
and 53 “great” ones and perform further experiments.

First, we inspect data subsets by quality. A test set of 30
samples is randomly selected from the original dataset. It
contains two “bad”, 24 “good”, and four “great” samples and
exhibits similar visual properties: it differs only slightly in
average brightness (−0.01), contrast (+0.001), hue (+0.03),
saturation (+0.02), and value (−0.01). The remaining data
is split by quality label. Each subset is used as training set
and evaluated on the test set. The results are depicted in
Table 4. We can explain the main difference in performance
by different subset sizes: The best outcomes result from
training on 321 “good” samples, while using 49 “great” sam-
ples yielded inferior results, followed by 20 “bad” samples.

Next, we use random under sampling to balance the
three subsets. When we repeat the experiment with only 20
samples per subset, the performance difference decreases
(see us in Table 4). The prediction performance strongly
correlates with our assigned quality label. We hypothesize
that the order in which the samples are presented to the
model might influence its performance. We test this hypoth-
esis in an experiment, in which we use up to three distinct
subsets to iteratively train a model. We stop training early
and maintain the trained state of the model between sets.
Because the order matters, we average the results of ten
independent iterations instead of using cross validation as
before. The results are depicted in Table 4. Overall, differ-
ences between settings are small, but there seems to be a
slight advantage in starting with the worst and finishing
with the best samples (bad→good→great).

6 APPROACH COMPARISON

When we consider the lessons learned in Sections 4 and 5,
we create a model that differs from our defaults in the
following way to achieve the best trade-off between image
resolution and prediction quality. (1) U-net with four en-
coder and decoder blocks (2) image dimensions of 512 by
512 pixels (3) training for 500 epochs with early stopping
and a batch size of 8 (4) training by quality meta label
(bad→good→great).

To compare our new approach to the semi-manual one,
we use the test set defined in Section 5. The above U-net

Train Set and Order CCE mDSC mIoU Duration

bad 1.592 0.647 0.493 0:07:55
good 0.14 0.932 0.875 0:33:38
great 0.42 0.856 0.757 0:09:42
badus 1.404 0.651 0.498 0:07:32
goodus 1.156 0.748 0.616 0:18:28
greatus 0.553 0.836 0.726 0:08:18
bad→good→great 0.146 0.945 0.898 0:38:00
bad→great→good 0.14 0.934 0.879 0:38:53
good→bad→great 0.187 0.937 0.885 0:41:19
good→great→bad 0.216 0.933 0.878 0:37:20
great→bad→good 0.136 0.934 0.878 0:36:41
great→good→bad 0.228 0.934 0.881 0:37:32
good→great 0.168 0.941 0.891 0:32:03
great→good 0.129 0.936 0.881 0:33:59
all 0.116 0.941 0.889 0:30:51

Table 4: Experiment results for different data subsets by
quality meta label and different order (Subscript us denotes
a balanced (undersampling) version; seta→setb denotes that
setb was used for training after seta)

is trained on all other data, before being evaluated on the
test data. An exemplary result is depicted in Figure 5.

Figure 5: Sample input (left), target output (middle), and
model output (right).

We let an expert use the old approach on the raw images
of the test set. We then compare the semi-manual and the
automated predictions with the labels created in Section 4.1
(Table 5). While our new approach yields slightly less ac-
curate performance, it requires only a fraction of the time
(mainly because it does not require human interaction).

Approach mDSC mIoU Duration

IsoData 0.538 0.392 0:12:01
IsoData+ 0.966 0.935 0:58:32
U-net 0.935 0.881 0:00:44

Table 5: Evaluation results for different approaches.

7 DISCUSSION AND CONCLUSION

In this work, we demonstrated how we transition from a
semi-manual analysis of bronchodilators to an automated



workflow using deep learning. To that end, we created a
heterogeneous dataset. We presented how to use Tensor-
flow to create an optimized data pipeline; this pipeline
can be used in other projects using Tensorflow with minor
adjustments. Further, we propose an iterative model de-
velopment process applicable to any data science project
that requires custom code. We showed the capabilities of
our approach in a set of experiments for the semantic seg-
mentation of airways. In these experiments, we trained a
variant of U-net to segment airways in PCLS microscopy
images with mIoU of 0.881 and mDSC of 0.935. We also
demonstrated that image quality and training order can
improve predictions. In comparison to our previous semi-
manual approach, the proposed automated method yields
comparable results, but does so in a significantly faster
way. Thus, our automated approach constitutes a valid
alternative. These segmentation results assign individual
pixels to the airway target class. We can count those pixels
to derive the airway area. From this, we can determine
a relative change of the area (and hence the volume as
described in Section 4.1) in a sequence of images and thus
determine the bronchoconstriction.

Parts of our implementation are affected by randomness.
As such, small differences might be due to chance. We
expect additional improvements in semantic segmentation
performance, once we add traditional or NN based data
augmentation as in [23]. So far, we deliberately did not
inspect this option to focus on the effect of other variables.
The amplitude of differences reported in this work might
decrease, once data augmentation is applied and so might
the amount of needed training data. Additionally, it should
increase the robustness of our model. As the underlying
data are image series, recurrent connections as in [2] could
have the same effects. Further, we aim to extend our con-
tinuous integration pipeline by continuous deployment to
further optimize our use of resources. There also exist other
architectures that might be suitable for the task and re-
quire an in depth evaluation. For example, [3] proposes a
fully CNN using dilated convolutions. Dilations allow them
to increase receptive fields without increasing the kernel
size, (i. e., covering a wider image area while maintaining
the same amount of parameters). Finally, we plan to make
our labelled dataset publicly available in the future.

ACKNOWLEDGMENTS

This work was supported by Fraunhofer Internal Programs
under Grant No. Attract 042-601000 and Central Innova-
tion Programme for small and medium-sized enterprises
(ZIM) on behalf of Federal Ministry for Economic Affairs
and Energy (BMWi) under Grant No. ZF4196502 CS7.

REFERENCES
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, et al. 2016.

Tensorflow: A system for large-scale machine learning. In 12th
USENIX symposium on operating systems design and imple-
mentation (OSDI 16). 265–283.

[2] M. Z. Alom, M. Hasan, C. Yakopcic, T. M. Taha, and V. K.
Asari. 2018. Recurrent Residual Convolutional Neural Network
based on U-Net (R2U-Net) for Medical Image Segmentation.
arXiv preprint arXiv:1802.06955 (2018).

[3] M. Anthimopoulos, S. Christodoulidis, L. Ebner, T. Geiser, A.
Christe, and S. Mougiakakou. 2019. Semantic Segmentation of
Pathological Lung Tissue With Dilated Fully Convolutional Net-
works. IEEE Journal of Biomedical and Health Informatics
23, 2 (3 2019), 714–722.

[4] T. Araújo, G. Aresta, A. Galdran, P. Costa, A. M. Mendonça,
and A. Campilho. 2018. Uolo - Automatic object detection
and segmentation in biomedical images. In Lecture Notes in
Computer Science, Vol. 11045 LNCS. Springer Verlag, 165–173.

[5] K. Beck. 2003. Test Driven Development: By Example.
Addison-Wesley Professional, 240.

[6] B. Behboodi, M. Fortin, C. J. Belasso, R. Brooks, and H. Rivaz.
2020. Receptive Field Size as a Key Design Parameter for
Ultrasound Image Segmentation with U-Net. Proceedings of
the Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, EMBS (2020), 2117–2120.

[7] A. Buetti-Dinh, V. Galli, S. Bellenberg, O. Ilie, M. Herold, et al.
2019. Deep neural networks outperform human expert’s capac-
ity in characterizing bioleaching bacterial biofilm composition.
Biotechnology Reports 22 (6 2019), e00321.

[8] S. W. D. Chien, S. Markidis, V. Olshevsky, Y. Bulatov, E. Laure,
and J. Vetter. 2019. TensorFlow Doing HPC. In 2019 IEEE
International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). IEEE, 509–518.

[9] O. Danov, S. Jimenez Delgado, H. Drake, S. Schindler, O.
Pfennig, C. Förster, A. Braun, and K. Sewald. 2014. Species
comparison of interleukin-13 induced airway hyperreactivity in
precision-cut lung slices. Pneumologie 68, 06 (6 2014), A1.

[10] P. M. Duvall, S. Matyas, and A. Glover. 2007. Continuous inte-
gration: improving software quality and reducing risk. Pearson
Education, 336.

[11] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-
Martinez, and J. Garcia-Rodriguez. 2017. A Review on Deep
Learning Techniques Applied to Semantic Segmentation. arXiv
preprint arXiv:1704.06857 (2017).

[12] A. Garcia-Uceda Juarez, R. Selvan, Z. Saghir, and M. de Bruijne.
2019. A Joint 3D UNet-Graph Neural Network-Based Method
for Airway Segmentation from Chest CTs. In Lecture Notes in
Computer Science, Vol. 11861 LNCS. Springer, 583–591.

[13] M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A. Courville,
et al. 2017. Brain tumor segmentation with Deep Neural Net-
works. Medical Image Analysis 35 (1 2017), 18–31.

[14] H. D. Held, C. Martin, and S. Uhlig. 1999. Characterization of
airway and vascular responses in murine lungs. British Journal
of Pharmacology 126, 5 (1999), 1191–1199.

[15] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Busson-
nier, et al. 2016. Jupyter Notebooks—a publishing format for
reproducible computational workflows. Positioning and Power
in Academic Publishing: Players, Agents and Agendas - Pro-
ceedings of the 20th International Conference on Electronic
Publishing, ELPUB 2016 (2016), 87–90.

[16] J. Long, E. Shelhamer, and T. Darrell. 2015. Fully Convolu-
tional Networks for Semantic Segmentation. In Proceedings of
the IEEE conference on computer vision and pattern recogni-
tion. 3431–3440.

[17] S. A. Nadeem, E. A. Hoffman, and P. K. Saha. 2019. A fully
automated CT-based airway segmentation algorithm using deep
learning and topological leakage detection and branch augmen-
tation approaches. In Medical Imaging 2019: Image Processing,
Vol. 10949. SPIE, 11.

[18] V. Neuhaus, O. Danov, S. Konzok, H. Obernolte, S. Dehmel,
et al. 2018. Assessment of the cytotoxic and immunomodulatory
effects of substances in human precision-cut lung slices. Journal
of Visualized Experiments 2018, 135 (5 2018), 57042.

[19] A. R. Ressmeyer, A. K. Larsson, E. Vollmer, S. E. Dahlèn,
S. Uhlig, and C. Martin. 2006. Characterisation of guinea
pig precision-cut lung slices: Comparison with human tissues.
European Respiratory Journal 28, 3 (9 2006), 603–611.

[20] T. W. Ridler and S. Calvard. 1978. Picture Thresholding Using
an Iterative Selection Method. IEEE Transactions on Systems,
Man and Cybernetics SMC-8, 8 (1978), 630–632.

[21] O. Ronneberger, P. Fischer, and T. Brox. 2015. U-net: Convolu-
tional networks for biomedical image segmentation. In Lecture
Notes in Computer Science, Vol. 9351. Springer, 234–241.

[22] J. Vietmeier, F. Niedorf, W. Bäumer, C. Martin, E. Deegen,
B. Ohnesorge, and M. Kietzmann. 2007. Reactivity of equine
airways - A study on precision-cut lung slices. Veterinary
Research Communications 31, 5 (7 2007), 611–619.

[23] J. Wang, L. Perez, et al. 2017. The effectiveness of data augmen-
tation in image classification using deep learning. Convolutional
Neural Networks Vis. Recognit 11 (2017).

[24] A. Wohlsen, C. Martin, E. Vollmer, D. Branscheid, H. Mag-
nussen, et al. 2003. The early allergic response in small airways
of human precision-cut lung slices. European Respiratory Jour-
nal 21, 6 (6 2003), 1024–1032.

[25] Bo Zhao, Jiashi Feng, Xiao Wu, and Shuicheng Yan. 2017. A
survey on deep learning-based fine-grained object classifica-
tion and semantic segmentation. International Journal of
Automation and Computing 14, 2 (2017), 119–135.


	Abstract
	1 Introduction
	2 Background
	2.1 Image Acquisition
	2.2 Semi-Manual Airway Segmentation

	3 Related Work
	4 Automating Segmentation
	4.1 Image Labelling
	4.2 Data Pipeline
	4.3 Model Development Process
	4.4 Metrics and Defaults
	4.5 Experiments and Results

	5 Quality Meta Label
	6 Approach Comparison
	7 Discussion and Conclusion
	Acknowledgments
	References

